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Abstract

We review a selection of recent applications of neutron scattering to the field of quantum magnetism. We focus on systems where,
because of quantum fluctuations enhanced by frustration and low dimension, there is no long range magnetic order in the ground
state. We select two examples that we treat in more depth to show how neutron studies, in conjunction with the results of other
experimental techniques, can give new insights. The first is the case of the spin ladder NaV2O5, where the origin of the spin gap
at low temperature is now understood in detail. Apparent contradictions between quantitative measures of the charge order from
neutron inelastic scattering, resonant X-ray scattering and NMR have been resolved giving interesting insights into the correlations.
The second case is that of spin dimer system Cs3Cr2X9 (X = Br, Cl), undergoing transitions to field induced transverse magnetic
order. The Br compound is attractive as the critical fields are sufficiently low that a complete study, in different field directions,
is possible. In addition, it is noteworthy in that the magnon that softens and condenses is incommensurable with the lattice. The
common description in terms of Bose–Einstein condensation must be extended to include a continuous degeneracy and single ion
anisotropy, and conclusions can be drawn by comparison with the Cl compound. To cite this article: B. Grenier, T. Ziman, C. R.
Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Étude du magnétisme quantique moderne par diffusion des neutrons. Nous passons en revue une sélection des applications
récentes de la diffusion neutronique dans le domaine du magnétisme quantique. Nous nous concentrons sur des systèmes où,
du fait des fluctuations quantiques amplifiées par la frustration et la basse dimension, l’état fondamental ne présente pas d’ordre
magnétique à longue portée. Nous détaillons deux exemples afin de montrer comment les études neutroniques, conjointement à
d’autres techniques expérimentales, peuvent apporter de nouvelles connaissances. Le premier est l’échelle de spin NaV2O5 où
l’origine du gap de spin à basse température est maintenant comprise en détail. Les contradictions apparentes entre les mesures
quantitatives de l’ordre de charge par diffusion inélastique des neutrons, diffraction résonante des rayons X et RMN ont été résolues,
conduisant à des résultats intéressants sur les corrélations. Le second exemple est le système à dimères de spins Cs3Cr2X9 (X =
Br, Cl) qui subit des transitions vers un ordre magnétique transverse induit sous champ. Le composé au Br est attrayant pour
ses faibles valeurs de champs critiques, permettant ainsi une étude complète, avec différentes directions du champ. Il est de plus
remarquable que le magnon qui s’amollit et se condense est incommensurable avec le réseau. La description commune en terme
de condensation de Bose–Einstein doit être étendue pour inclure la dégénérescence continue et l’anisotropie à un ion, et des
conclusions peuvent être tirées par comparaison avec le composé au Cl. Pour citer cet article : B. Grenier, T. Ziman, C. R. Physique
8 (2007).
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1. Introduction: quantum magnetism and contribution of neutron scattering

We review a small selection of current work on quantum magnets where the use of neutrons has made apparent
concepts that were barely known thirty years ago. To measure the progress we can compare current results with those
reviewed extensively by Steiner, Villain and Windsor [1] in 1976. We will emphasize systems which have in com-
mon that, while they have well developed local magnetic moments, they have non-magnetic ground states, at least in
zero field. The moments do not simply order as ferromagnets or antiferromagnets in zero field since quantum fluc-
tuations are enhanced by the low spatial dimension and/or frustration, i.e. competition of different possible magnetic
orders. Such systems have generated enormous amount of attention for several reasons: (i) The general interest in
quantum fluctuations and quantum critical points. This developed particularly in the 1980s, driven by the much better
understanding of the role of fluctuations in classical phase transitions. Experimentally this was through the obser-
vation of critical scattering and theoretically from the application of field theoretical methods and renormalization
group calculations. It was natural to look at the same methods for quantum phase transitions. (ii) The discovery of
high Tc superconductivity in copper oxide materials in the late 1980s gave a boost to the subject because of the im-
portance of understanding the interplay of magnetic fluctuations and superconductivity, especially in low dimension.
(iii) The availability of single crystals of materials which closely approximate some of model systems. In many crys-
tals the magnetic moments are well described by quasi-one (or -two) dimensional Hamiltonians. If we compare the
situation now to that when the review article [1] was written, to look at one dimensional Heisenberg systems, for
example, there are several new examples that are more isotropic in spin space (more accurately Heisenberg) and less
three-dimensional (weaker interactions between adjacent chains). For example, compare NENP [2] to CsNiCl3 [3] for
s = 1. The Hamiltonians for the systems we will discuss can be written as

H =
∑

i,j

Ji,j
−→
S i · −→

S j +
∑

i

Di

(
Sα

i

)2 +
∑

i,j

−→
Mi,j · (−→S i × −→

S j ) (1)

where the summations i, j are determined by the geometry of the lattice, Ji,j are the strengths of isotropic Heisenberg
interactions between spins

−→
S i and

−→
S j , Di is a single-ion anisotropy with respect to some axis α and

−→
Mi,j is the

vector determining possible Dzyaloshinskii–Moriya interactions. Other anisotropies occur (in the exchange term,
higher order single-ion anisotropies, . . . ) but will not appear in the examples we discuss.

This introduction intends to give a brief review about quantum magnetic systems, starting from low-dimensional
systems and going to higher dimension, with both model and real systems (including anisotropy, frustration, and other
degrees of freedom such as charge, structure), and then focussing on field-induced magnetism in gapped systems.
The central role of neutron scattering will be illustrated with two materials treated in detail: Section 2 will present
a study by neutron inelastic scattering performed in the spin-ladder compound NaV2O5, and will show how the
complementarity between neutrons and X-rays played a crucial role in the understanding of this compound. Section 3
will be devoted to combined neutron elastic and inelastic scattering studies of the field-induced magnetic ordering
(FIMO) phase of the spin 3/2 dimer system Cs3Cr2X9 (X = Br, Cl). It will illustrate how useful it is to study
simultaneously the magnetic structure and the spin dynamics.

1.1. Model systems

Probably the most studied model systems have been those which are approximately one-dimensional (1D), i.e.
where the summation i, j in Eq. (1) is between neighbors along a single direction in space. They are particularly
attractive as there is a wealth of information from a theoretical point of view and concepts which are far from that
of classical mean field. For example, theorists have the tools of low dimensional field theories originating in Lut-
tinger field theories in the 1950s and developed in the 1970s and 80s in what is now known as ‘fermionization’ and
‘bosonization’ methods [4]. Such continuum theories are complemented by exact results of integrable models obtained
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by methods known as Bethe Ansatz methods [5] which continue to yield more exact information on special Hamilto-
nians. Neither low dimensional continuum field theory nor the methods of integrable systems are perturbative. Thus
phenomena can, and do, appear that are very different from those seen in more classical stable magnetic structures
where standard Dyson–Maleev spin wave theory reduces the dynamics to that of a gas of weakly interacting harmonic
oscillators. Originally the low dimension meant that in the experimental field of magnetism the non-perturbative re-
sults had little direct relevance, but thanks to the study of new materials with, for example, loosely coupled chains
of magnetic ions, relatively obscure concepts such as conformal field theories, quantum critical points can be seen to
be essential to understanding experimental systems. Nowadays there is, of course, more direct fabrication of artificial
structures which are literally low dimensional, so in principle one can study a single chain magnet rather than a crystal
of weakly coupled chains. Here neutrons are of less obvious application, simply because scattering from a single chain
is too weak, but the conclusions of neutron studies are directly applicable.

1.2. 1D systems

The argument which probably first convinced the wider community of the qualitative importance of quantum
fluctuations in low dimensions was that of Haldane [6] who predicted that the quantum Heisenberg model (first term
of Eq. (1)) in one dimension would show a gap to excitations, between the singlet ground state and the first excited
triplet state, in the absence of any spin anisotropy, provided that the spins were integer (e.g. spin 1) rather than half-
integer. For those used to three dimensional magnets this seemed surprising: The standard argument is that a simple
two sublattice Heisenberg antiferromagnet orders at low temperature with a sublattice magnetization in some arbitrary
direction. Since the direction of the sublattice can be continuously changed without affecting the energy, there must
be infinitesimal changes, linear spin waves or magnons whose frequencies vanish at the wave vector associated with
the alternation. This argument is valid beyond spin wave theory and the vanishing spin wave is known as a Goldstone
mode. If we observe a gap in a three dimensional magnetic system we attribute it to anisotropy. Haldane concluded
that this is incorrect in one dimension: Gaps may be generated even for perfect spin isotropy. He argued that in one
dimension, the Goldstone mode associated with a classical breaking of symmetry in the ground state acquired a gap
because quantum fluctuations suppress the symmetry breaking. This was despite the fact that for spin 1/2, where one
might expect stronger fluctuations, exact solutions [7] had proved that there are gapless excitations even though there
is no symmetry breaking: The sublattice magnetization vector processes in all directions. The subtlety of the argument,
based on a large spin expansion, was that it predicted a gap for the integer case, but no gap in the half-integer case. This
introduced the concept of topological terms into the non-linear sigma-model describing spin dynamics. For spin 1/2
chains, the gapless triplets of spin 1, that can be created by the flip of a spin 1/2 neutron, are not the Goldstone modes
of higher dimensions as there is no symmetry breaking. They are better thought of as composite objects of pairs of
spin 1/2, ‘spinons’, in that they give a response that is a continuum. Spinons can be thought of as domain walls
between opposite antiferromagnetic domains that can propagate independently. As the momentum transfer from the
neutron can be distributed between the two spinons, this gives rise to a continuous range of energies for given transfer
rather than the single energy peak that would be seen if the triplet were an elementary excitation.

In Fig. 1(a) and (c) we sketch the regions of inelastic response for spin 1/2 and spin 1 chains. This distinction
between half-integer and integer spin chains is beautifully illustrated by neutron inelastic scattering in compounds
such as KCuF3 [8,9] (s = 1/2) and CsNiCl3 [10] or NENP [2] (s = 1). In KCuF3 the boundaries of inelastic response
follow clearly the theoretical limits, as seen in Fig. 1(b), which therefore illustrates the reality of spinons. For spin
one the ‘Haldane gap’ is clearly seen as a well defined mode for wave vectors around the antiferromagnetic vector
(q = π ). What remains less clear experimentally is that this mode, predicted to have zero width at zero temperature for
wave-vectors above some critical value, should disappear into a continuum of states for smaller wave vector transfer.
In contrast to spin 1/2, there is yet to be a clear experimental demonstration of the continuum [10].

An alternative way to understand the alternation of the physics for half-integer and integer spin is, instead of
varying the value of the spin at each site of a chain, to take ‘ladders’ of spin 1/2 chains: n = 2,3,4 parallel chains with
interactions along the infinite chain direction that may or may not be comparable to the transverse coupling between
the n chains (see Fig. 2(a) and (b)). In increasing n to large values, we can study the crossover from a small number
of chains to the infinite two-dimensional plane. The connection between spin s in a chain and the properties of n = 2s

parallel chains of spin 1/2 was made in the early days of bosonization [11]. For appropriate couplings n even and odd
will correspond to integer and half-integer spin respectively. Experimentally there are very nice examples of chains
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Fig. 1. Excitations in spin 1/2 and spin 1 chains: (a) theoretical prediction and (b) neutron inelastic scattering measurements in KCuF3 (taken from
Ref. [9]) for spin 1/2, (c) theoretical prediction for spin 1. The pink line in figures (c) corresponds to elementary excitations with width in energy
that is resolution limited (outside the continuum), while the blue lines in figure (a) and (c) are the limits of the continuum of none-zero scattering
intensity. Fig. (b) shows experimentally the divergence of the intensity at the lower limit of the continuum, as expected theoretically.

Fig. 2. (Color online) Schematic view of spin ladder with (a) n = 2 and (b) n = 3, (c) alternating chain, with δ defining the relative strength of
the alternation, (d) frustrated chain, with α the relative strength of second to first nearest neighbor interaction, defining the frustration, and (e) the
Shastry–Sutherland lattice: The exact ground state up to a critical value of J ′ ∼ 0.65 is simply a product of singlets on each of the bonds of
coupling J . The couplings shown in the different figures define the Ji,j interactions of Eq. (1).

of copper ions SrCu2O3 (n = 2), Sr2Cu3O5 (n = 3) [12], and La2Cu2O5 (n = 4) [13]. As mentioned above, one of
the motivations of studying low dimensional magnetism is to understand magnetism in two-dimensional copper oxide
planes. If there is indeed a convergence between the properties of ladders and infinite planar systems it is obvious
to look for ways to dope, or otherwise introduce carriers into such systems. The discovery of superconductivity in
Ca-doped Sr14Cu24O41 under pressure [14] was therefore exciting. An even more direct connection to the physics
of copper oxide planes is via the models of ‘stripes’ [15] used by some groups to describe the magnetism of doped
planes. The effective magnetic model is of magnetic ladders coupled weakly in the transverse direction.

For simple Heisenberg models, the distinction between integer and half-integer spins is clearly seen in the existence,
or not, of a gap to excitations for chains with nearest neighbor interactions. For more general interactions, when the
unit cell of the magnetic ions is larger or when there are frustrating interactions, the situation is more complex and
the nature of the quantum ground state and excitations depends on the exact coupling. For example, in spin 1/2
chains, either a structural dimerization of the lattice (e.g. CuGeO3 [16]) or an alternation of the intra-chain interaction
(e.g. Cu(NO3)2·2.5H2O [17], see Fig. 2(c)) or for sufficiently large frustrating second nearest neighbor interaction
(α > 0.2411 [18], see Fig. 2(d)), spontaneous formation of singlet that lowers the symmetry leads to a singlet ground
state with a gap. The spinons that interact weakly in the uniform case acquire a stronger interaction and can form
bound states giving triplet states well defined in energy as well as continuum at higher energies. If, on the other
hand, a spin one chain has alternation (see Fig. 2(c)), the gap may vanish at a critical value (δc = 0.25) representing
a quantum critical point between the Haldane phase and a phase of coupled s = 1 dimers [19]. Model compounds
illustrating these points have been studied in detail (e.g. NENP with δ = 0 [2], NTEAP with δ = δc [20], NTENP
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with δ = 0.4 [21]). Dimerization in practice involves coupling to the lattice (e.g. CuGeO3) or to the charge (e.g.
NaV2O5 as we shall see later). Finally, we mention studies of more complicated 1D systems: the tetrahedron chain
Cu2Te2O5Br2 [22], the diamond chain azurite Cu3(CO3)2(OH)2 [23], . . . , characterized by strong frustration between
the various intra-chain interactions.

1.3. 2D and 3D spin gapped systems

In two spatial dimensions long range magnetic order will occur, at least at zero temperature, even for Heisenberg
spins, and non magnetic phases can be found, for example for the square lattice only when there is strong frustra-
tion [24]. Even the triangular lattice with nearest neighbor interactions is probably ordered but the consensus is that
the Kagomé lattice is so dilute that quantum fluctuations are sufficient to destroy magnetic order [25]. This has lead
to interesting neutron scattering results interpreted as evidence of spinons in 2D, although this cannot be considered
conclusive. An interesting planar lattice based on interacting dimers where there is no doubt as to the existence of
a gapped phase was proposed by Shastry and Sutherland [26], who showed that for a particular pattern of dimers,
coupled with intra-dimer J and inter-dimer J ′ couplings, as shown in Fig. 2(e), the quantum state, that is simply a
product of singlet wave functions on each dimer, is the exact ground state for a finite range of J ′

J
. Some years later a

very good realization of this lattice model was discovered [27]: SrCu(BO3)2 with planes of dimers having precisely
the geometry considered by Shastry and Sutherland. The ratio of inter to intra-dimer interactions J ′

J
is, at 0.62 [27],

sufficiently large that it could not be considered in the perturbative regime, but is, nevertheless, within the dimer phase
for pure Heisenberg interactions. In fact it is just below the estimated value of the quantum critical point (with ratio
about 0.65) [28] where there is a predicted transition to what is probably some form of quadrumized state. Neutron
scattering results were essential to show rather a novel aspect of the spin dynamics: Because of frustration between the
dimers, magnon excitations propagate very weakly via Heisenberg interactions, and the splitting and dispersion of the
low lying excitations are dominated by the relatively weak Dzyaloshinskii–Moriya interactions (terms

−→
Mi,j in Eq. (1)

with the i, j neighbors corresponding to J ′ in Fig. 2(e)) as they are unfrustrated [29]. This compound continues to
attract much attention because of novel aspects of multi-magnon states and the occurrence of magnetization plateaus
in high magnetic field with magnetic order deduced from high field NMR [30]. The day when neutron scattering is
possible at 30 T, this compound will no doubt be one of the first studied!

In three dimensions the natural generalizations of highly frustrated triangular-based geometries are the pyrochlores,
structures with corner-sharing tetrahedra. Examples of these are CsNiCrF6 [31] and Re2Ti2O7 with Re a rare earth
ion [32]. While Heisenberg exchange does not lead to long range order, the actual properties of the low energy
physics are rather complex and depend on weaker interactions: dipole–dipole, Dzyaloshinskii–Moriya, single-ion
anisotropies, . . . It is possible to find quantum gapped systems in three dimensions in a more elementary way, starting
from a local dimer configuration. A family of compounds to which we shall return later is Cs3Cr2X9, in which the
Cr 3/2 spins are in tightly bound dimers. Provided the inter-dimer interaction is sufficiently weak (X = Cl, Br), a state
with the same symmetry as the dimer product state remains the ground state [33,34] and for stronger interactions with
respect to the intra-dimer coupling (X = I), a magnetic state appears [35]. Of course unlike the Shastry Sutherland
lattice, the ground state is never precisely a product of singlet wave functions on the dimers: There are always quantum
fluctuations. In this particular family of compounds it is the strength of the local dimer coupling that gives a singlet
ground state. In fact there is frustration in the couplings between dimers: this produces interesting incommensura-
bilities in the dispersion of magnons and the magnetic states induced by an applied field. As more general examples
of singlet states in 3D, one can imagine weakly coupled clusters of total spin zero: molecular nano-magnets. While
three-dimensional crystallographically, from a magnetic point of view they can equally be considered as quasi-0D.
Take for example that of keplerates such as {Mo72Fe30} where 30 s = 5/2 spins interact at the vertices of an icosi-
dodecahedron [36]. They can be considered as 30 spins on the surface of a finite sphere. As the molecules are well
isolated, these spins, which on the surface of an infinite sphere might order, have a singlet ground state separated by
near lying states of S = 1, S = 2, . . . This tower of states is indicative of long range magnetic order in the thermo-
dynamic limit of an infinitely large sphere [37]. Thus we have an example of magnetic systems with singlet ground
states having low-lying excited triplet states rather different from magnetic excitons.

This review will not mention organically based spin-gap systems (for a review, see Ref. [38]) simply for the reason
that while advantageous for some techniques, most of them are as yet not available in sufficiently large single crystals
for neutron inelastic scattering. Furthermore magnetic moments are often spread over several atoms of a molecule,
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giving small cross-sections. It is to be hoped that this situation will change, no doubt first for organic materials
including transition metal moments (e.g. λ-(BETS)2FeCl4 [39]), with increasing intensities of sources and future
developments of powder techniques.

1.4. Real systems

While the examples mentioned have provoked the search for model systems showing behavior specific to classes
of special interest, e.g. a particular spatial dimension, isotropy etc., real crystals have their own properties: For ex-
ample a crystalline ‘1D’ system is in fact a crystal with interactions much stronger in a particular lattice direction
than in others. In practice, the interactions between chains or planes can be sufficiently strong to induce long range
magnetic order. This is an interesting question in itself. The general approach is to treat one dimensional correlations
exactly and the weak coupling in mean field theory. This is not exact but can give good predictions for phase diagrams.
Experimentally, looking at a phase diagram as a function of varying field H and temperature T can give detailed in-
formation of dimensional crossover. Measurements of dispersion relations in zero field by neutron scattering provide
a direct test of the low dimensionality. For example in CuGeO3, which is often treated as a highly one dimensional
dimerized system with an interesting competition between spin-Peierls and magnetic frustration, neutron scattering
measurements of the dispersion revealed substantial dispersion perpendicular to the chains [40]. While we may be
most interested in systems with weak anisotropy where gaps arise more from fluctuations than intrinsic anisotropies,
in real life, anisotropies always occur from spin orbit interactions, even in orbital singlet states. Macroscopically this
gives rise to Dzyaloshinskii–Moriya terms in the exchange, single-ion anisotropy, and anisotropies in the g-tensor.
Only neutron scattering provides direct measures of the effects of such anisotropies throughout the Brillouin zone.
Of course complementary measurements with electromagnetic probes are essential: while restricted to momentum
transfer essentially q ≈ 0, they are normally much more precise in energy. Good examples of the complementar-
ity of optical and neutron measurements are in the studies of the field-dependent gaps in Cu-benzoate [41] and in
SrCu2(BO3)2 [42].

1.5. Field-induced magnetism

The combination of neutron scattering studies and application of external magnetic fields has always been important
in magnetism. It is relatively easy to combine the techniques and the field is obviously a relevant parameter to any
magnetic state. For relatively low fields, the Zeeman splitting seen by neutrons confirms the magnetic nature of
multiplet excitations and gives direct evidence of anisotropies. A very nice example is that of SrCu2(BO3)2 where not
only the splitting but also the ratio of intensities of the split lines gave direct evidence of the Dzyaloshinskii–Moriya
anisotropies [29]. In this, and in other systems, comparison of neutron studies and the more precise information
limited to the zero wave vector of ESR was vital. Similarly NMR gives detailed information on local correlations and
relaxation seen at different nuclear sites.

Apart from such studies, where variation of the magnetic field essentially provides a tool for refining our under-
standing of a phase at low fields, there are now examples where the field allows passage from one phase to another,
entirely different, via, at zero temperature, some sort of quantum critical point. The best examples of this are probably
now in the transition from a low field singlet phase to a higher field phase with spontaneous magnetic order induced
transverse to the applied field. This is illustrated in Fig. 3(b), where the shaded area indicates the range of energies of
magnons at different wavevectors q with dispersion (shown in Fig. 3(a)), as a function of the field. The lowest com-
ponent |1,−1〉(q) of the magnon at each vector q decreases linearly by Zeeman splitting, and when the first magnon
of q = Q0 vanishes in energy, at Hc1, there is a transition to a state with Field Induced (transverse) Magnetic Order
(FIMO). While this is generally true for systems with singlet ground state, for the case of strongly bound dimers we
can picture the ground state of the FIMO in local terms as being a product over the dimers of coherent superpositions
of the singlet and lowest triplet states defined on each dimer. The coherent superposition of the two states generates
non-zero expectation values for transverse components of spin. The phases of superposition will vary in space, giving
spatial variation in the transverse components, and in the simplest approximation this variation would have the same
wave-vector as the soft magnon |1,−1〉(Q0). Because of interactions between magnons the propagation vector of the
induced structure may differ from Q0. This induced state persists up to a saturation field Hc2 whose distance from Hc1
is roughly the width of the dispersive triplet band. At finite temperatures TC(H) there is a phase transition associated
with the appearance of the symmetry-breaking transverse components and TC vanishes approaching the two critical
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Fig. 3. (Color online) Field effects on an isotropic gapped quantum magnetic system. (a) Schematic picture of spin wave dispersion of the triplet
state at zero field. (b) Field dependence of the energy gaps: Zeeman splitting up to Hc1, followed by a Bose–Einstein condensation up to Hc2,
where saturation is reached; the width of the condensed phase is determined by the dispersion in zero field, as indicated schematically by the dashed
area. (c) Field dependence of the critical temperature (left axis) and that of the parallel magnetization (right axis). The spin liquid (gapped) system
enters below TC(H) a Field-Induced Magnetic Ordering at Hc1 up to Hc2, in which a transverse ordering develops while a parallel magnetization
monotonically increases up to saturation, yielding the canted spin configuration sketched above.

fields Hc1 and Hc2 where these components go to zero (Fig. 3(c)). The transverse component of magnetization follows
qualitatively the curve drawn for TC and the longitudinal (paramagnetic) component M‖(H) increases monotonically
from Hc1 to saturation reached at Hc2. Thus the FIMO state is a form of canted antiferromagnet similar to a classical
antiferromagnet above the spin-flop field.

A first description of the transition to the field-induced state is as a Bose–Einstein condensation of the magnon that
softens [43]. The analogy with Bose–Einstein condensation of, say, photons or helium atoms, is complicated by the
different form of interactions between bosons and the presence of a crystal lattice. The magnons are pseudo-bosons
rather than real bosons: i.e. their number is not necessarily conserved in interactions. Nevertheless the phenomenon
in magnetic systems provides the opportunity for a detailed study of correlations and dimensional dependencies. It
is particularly interesting to look at the transverse components since their phase is analogous to the phase of the
condensate of superfluid Helium-4. The parallel magnetization as a function of the applied field corresponds to the
helium density as a function of chemical potential. If there is substantial anisotropy in the plane perpendicular to the
applied magnetic field, the analogy with superfluidity (where there is exact symmetry with respect to different phases)
is no longer perfect. Therefore it is best to choose the most symmetric crystal direction to apply the magnetic field.
Even a few years ago a full neutron study was difficult because of limitations in the magnitudes of the fields available
in different configurations (horizontal versus vertical field).

The first really comprehensive study with static and dynamic correlations perpendicular to the important field
directions will be fully described in Section 3, with the choice of material s = 3/2 Cs3Cr2X9, dictated by the relatively
low critical field for X = Br (2 T). Another material which has received much attention is TlCuCl3 [44]. This is
somewhat simpler than the material we will consider in detail in that the spin 1/2 should be less anisotropic, but
nonetheless many of the same questions are relevant: Is the Goldstone mode that we would expect from the broken
continuous symmetry of the ordered phase really gapless? In TlCuCl3 neutron scattering [45] can be directly compared
to ESR [46] as it happens that the soft mode is at q = 0. As we mentioned, it is only by choosing special materials
that we can attain the first magnetic fields where the magnetization becomes non-zero. It is also interesting to look
for magnetization plateaus at higher field, at either fractional (e.g. Kagomé) or integer (e.g. azurite) multiples of a
single saturated moment of the magnetic species per unit cell. Finally, in some materials it may be possible to apply
a magnetic field sufficiently strong that the spins are totally aligned. This is extremely useful as the absence of zero
point fluctuations around the fully saturated state means that measuring the dispersion of excitations determines the
microscopic couplings of the Hamiltonian essentially without any approximation. A good example of this is in the
s = 1/2 alternating chain compound Cu(NO3)2·2.5H2O where the couplings determined unambiguously at high field
can be used to test our understanding of the strongly correlated zero field phase [47].

1.6. What is the special contribution of neutrons to the above?

It is well known that neutron scattering is a powerful technique particularly for magnetism but we shall nonetheless
review the fundamental reasons for this. Historically, even though many steady-state sources are the same as at the time
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of the review of 1976 [1], advances in instrumentation and sample environment have improved the quality of the data
enormously. Nowadays, magnetic fields up to 15 T (17 T without dilution) and 4 T can be applied, perpendicular and
parallel, respectively, to a horizontal scattering plane, even at dilution temperatures, for both single-crystal diffraction
and triple-axis spectroscopy. These limitations are due to the necessity of using split coils to allow access to the
neutron beam. Pressure cells allow one to measure typically up to 30 kbar for reasonably large samples (30 mm3)
and up to 500 kbar for very small samples (0.01 mm3). In addition, new spallation sources extend the energy range to
allow, for example, the spectacular images of Fig. 1(b). The neutron is electrically neutral so it can penetrate deeply
in matter and interact with the nuclei of the atoms, by the nuclear interaction. Second, the neutron carries a spin 1/2,
and thus a small magnetic moment μn = 1.913 μBN (nuclear Bohr magneton): It can thus also strongly interact with
the moments of electronic origin (unpaired electrons), which are about a thousand times larger than μn.

The neutrons produced in a nuclear reactor or in a spallation source have a typical wavelength of 0.4 to 10 Å, that
is of the same order of magnitude as the typical inter-atomic distances in condensed matter. Therefore, neutrons are
perfectly suited for elastic scattering (i.e. diffraction): They allow us to determine crystallographic and magnetic struc-
tures. Contrary to X-rays, for which the magnetic diffracted intensity is about 106 times smaller than the nuclear one,
the nuclear and magnetic scattered amplitudes are comparable for neutrons, so that in practice, magnetic structures
are almost exclusively determined by neutron diffraction. In addition to the structural Bragg peaks located at positions
H = (h, k, l) of the reciprocal space (h, k, l integers), a magnetic structure will give rise to additional peaks at scatter-
ing vectors Q = H + k, where k is the propagation vector of the magnetic structure. The propagation vector describes
how the magnetic structure propagates in the lattice from cell to cell (e.g. k = 0 for a ferromagnet, k = (1/2,1/2,0)

for a simple antiferromagnet with a doubling of the cell along the a and b directions, and no doubling along the c

direction). The integrated intensities of the magnetic Bragg peaks give the information about the spin arrangement
within the unit cell: spin direction relative to the crystallographic axes and between the various magnetic atoms of
the cell, and value of the magnetic moment. Fig. 4(a) gives a scheme of the typical diffractometer used for magnetic
structure determination or phase diagram study on a single crystal mounted in a magnetic field. The determination of
a magnetic structure will be illustrated by the example presented in Section 3.

Neutrons also have a typical energy of 0.8 to 600 meV, that is in the energy-range of most excitations in condensed
matter (phonons, magnons, . . . ). Thus, when the neutron is inelastically scattered, its energy change corresponds
to a large fraction of its incident energy. Inelastic scattering can therefore bring precise information on excitation
energies and thus on the inter-atomic forces, in the case of nuclear scattering (e.g. phonons), and on the magnetic
interactions, in the case of magnetic scattering (e.g. magnons). Neutrons and X-rays have the huge advantage of
allowing one to select a specific momentum transfer h̄Q together with a specific energy transfer h̄ω, contrary to other
techniques, such as ESR or Raman that can only measure at Q = 0, or NMR that as a local probe, integrates over
all Q’s and investigates much smaller energies. This feature is particularly important in some of the transitions to be
considered here: for example spin-Peierls transitions in the simplest models occur at band edge phonons. If X-rays and
neutrons are both adapted to study phonons, X-rays have not been used to study magnons due to a too weak intensity
(excitations have a much weaker intensity than Bragg peaks). Thus, neutron inelastic scattering is, in practice, a unique
tool to study the dispersion of magnetic excitations. In scattering, the total spin (neutron plus sample) is conserved,
so that the neutrons can exchange either zero or one unit of spin. From measuring the dynamical structure factors
S(Q,ω), one can obtain the spin dispersion (from the position in Q and ω of the excitation), as well as the intensity of
energy-integrated structure factor S(Q). From these two quantities, as will be illustrated by the two selected examples
presented in Sections 2 and 3, one can determine the exchange interactions (not only Heisenberg interaction but
also anisotropic ones such as e.g. Dzyaloshinskii–Moriya or single-ion anisotropy), demonstrate frustration or some
extended form factors (in the case of a delocalized electron). Also, neutron inelastic scattering is an ideal technique
to study a continuum of magnetic excitations, which are of special importance in low-dimensional magnetism where
the elementary excitation can be an excitation of spin half (a spinon). The neutron must then create spinon pairs to
exchange a unit of spin. Fig. 4(b) gives a scheme of the typical spectrometer used for such inelastic measurements on
a single crystal.

Finally, let us mention that the use of polarized neutrons is even more powerful, though it will not be illustrated
here. In diffraction, it is widely used to determine spin density maps, taking the advantage that the magnetic (M) signal
is enhanced by the nuclear (N) one, due to interference NM terms. Moreover, by analyzing the final polarization of
neutrons, one can solve completely certain complex magnetic structures for which unpolarized neutron diffraction
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Fig. 4. (Color online) (a) Schematic drawing of a lifting-counter two-axis diffractometer, used for neutron diffraction on single-crystals. Once the
incident wavelength has been chosen (by rotating the monochromator around the first vertical axis to an angle θM ), one can select various Bragg
peaks by rotating the sample around the second vertical axis (angle ω) and turning the detector in the horizontal plane (angle γ ) and outside of
this plane (angle ν). A rocking curve (i.e. an intensity versus ω measurement) is performed for each peak, and then integrated over ω to obtain the
intensity. Note that the diffracted neutrons of different wavelengths have negligible intensity, as compared to (elastically) diffracted neutrons, so that
they just give a background contribution. (b) Schematic drawing of a triple-axes spectrometer (top view), used for neutron inelastic scattering on
single-crystals. The scattering plane is strictly horizontal, and a third vertical axis is now added (analyzer) in order to select a specific scattered wave
vector, with different modulus from the incident one for inelastic scattering. By changing the two angles of each of the three axes (monochromator,
sample, and analyzer), one can select a specific scattering vector Q and a specific energy transfer h̄ω. In practice, one makes energy-constant
Q-scans and/or Q-constant energy scans: the peaks in the neutron counts S(Q,ω) correspond to the excitations.

leaves ambiguities. Fully polarized neutron inelastic scattering allows to separate magnetic from nuclear contributions
(e.g. magnons from phonons), and in the future, to measure mixed nuclear-magnetic correlation functions [48].

2. First selected example: the spin-ladder compound NaV2O5

The low dimensional inorganic compound NaV2O5 undergoes a phase transition at Tc = 34 K [49] associated with
both a lattice distortion [50] and the opening of an energy gap to the lowest triplet spin excitations [51]. This was
originally thought to be the second inorganic example, after CuGeO3, of a spin-Peierls transition. It has turned out
that neither compound is so simple: In CuGeO3 magnetic frustration is very important and in NaV2O5 charge order
(CO) dominates. Formally the vanadium orbitals have charge +4.5 e so that naïveley, i.e. in thinking of an effective
single band model with one d orbital per V atom, it may seem obvious that charge order is likely. We shall see
that the picture that emerges, from neutron and other results, is considerably more subtle. Returning to a possible
analogy with CuGeO3, however, we could imagine a possible reduction to a half-filled model, as follows: In the high
temperature structure, the vanadium atoms form a ladder structure with V–O–V ‘rungs’ in the a direction, coupled in
the b direction [52]. A possibility, likely in the absence of strong correlation, would be that the final half electron per
V atom occupied a bonding V–O–V orbital. Projecting out the anti-bonding combination on each rung, this gives an
effective model in a single band which is now half-filled, i.e. each ladder would be equivalent to a spin 1/2 Heisenberg
chain (see Fig. 5(a)). Then comparing bonding V–O–V orbitals to half-filled copper orbitals in CuGeO3, we might
expect a similar form of spin-Peierls transition, via coupling to the phonons, at lower temperature.

This picture is not consistent with experiments, however: NMR measurements indicated two inequivalent vanadium
sites below Tc, compared to one site above [53,54]. This suggests a quite different mechanism, likely if we consider
only V orbitals but assume that the dominant terms are Coulomb interactions within each d orbital, between d orbitals
across a rung, and between d orbitals on adjacent rungs (i.e. along the ladder legs). For a physically reasonable model
with stronger Coulomb repulsions within the ladder rungs and from rung to rung along the b direction rather than
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Fig. 5. (Color online) Sketch of the NaV2O5 ladders, where only the vanadium atoms are represented, (a) in the high temperature phase, with (blue)
circles representing V +4.5, and (b) in a low temperature phase of zig-zag order with complete charge disproportionation, with the full and empty
circles representing, respectively, V +4 and V +5. These two states can be viewed as in-line or zig-zag spin 1/2 Heisenberg chains, respectively, as
indicated by the dotted (purple) lines.

diagonally, this can favor a zig-zag pattern of charges 5+ (s = 0), 4+ (s = 1/2) [55], as shown in Fig. 5(b). This
explains very plausibly the inequivalence of the sites. Again there can be a reduction to a spin-Peierls mechanism
via elimination of the 5+ orbitals and a lattice distortion reflecting the zig-zag order. Thus we have two different,
relatively simple, possible mechanisms for spin-gap formation at low temperature and it would seem straightforward
to determine which is the accurate picture. An accurate account has emerged, through a combination of neutron, X-ray
and NMR results which, at a quantitative level, is far from either of the two simple pictures of Fig. 5(a) and (b). All of
these studies revealed that the charge order was not total, but the problem arose that neither taken literally is consistent
quantitatively with apparently contradictory values of the zig-zag order parameter (quite large from neutron inelastic
scattering [56] as we shall see hereafter, very small from NMR [54] and X-rays [57]). The final picture [58] is a
synthesis in that it combines physical elements of both images: The zig-zag nature of the wave function and V–O–V
hybridization are both central.

As NMR is a local measurement, scattering experiments, by neutrons and by X-rays, were necessary to determine
the actual distribution of charges in the gapped phase and to produce a microscopic theory of the spin gap. Only
through a combination of these techniques has a coherent picture of the spin gap emerged. X-ray diffraction measure-
ments [59] suggested a lattice structure below Tc described by the Fmm2 space group with a (2a × 2b × 4c) unit
cell, consisting of a succession of distorted and non-distorted ladders of vanadium ions, which would give rise to three
different V valences (4+ and 5+ in the distorted ladders, 4.5+ in the non-distorted ones). Doubt was cast, however,
by other experimental results, in particular the observation by NMR of only two inequivalent V sites [53,54] but as
many as 8 Na sites [60]. This is in contradiction both with the existence of three different V sites and the space group
Fmm2, respectively. Later on, both X-ray diffraction [61] and anomalous X-ray scattering [62] studies showed that
all ladders are modulated and that different stacking sequences along the c direction coexist in the structure. As a
result, the structure proposed by Lüdecke et al. [59] is an average of this stacking structure. It is now well accepted
that the correct structure at low-T is monoclinic rather than orthorhombic (space group A112) [61] with a two times
smaller unit cell as initially proposed (a′ = a − b, b′ = 2b, c′ = 4c) and all the ladders distorted (see Fig. 6(a)). Let us
now review the neutron inelastic scattering results of the spin excitations in the low-T phase [56] that were central to
showing the apparent contradictions in the values of charge order and also their resolution. The interpretation given
here is more complete than in the original publication, thanks to the newer structure of Sawa et al. [61] to be compared
to that known at the time [59], to later work on anomalous X-ray scattering and to quantum chemical calculations.

The basis of the interpretation of the neutron inelastic scattering results to deduce charge order was the comparison
of the intensities of the spin wave scattering as a function of scattering vector Q along a, that is transverse to the
ladder direction. In fact the spin wave excitations are strongly dispersive along the ladder direction (b-axis), and the
low frequency components around the zone centre and zone boundary for the b direction (Qb integer and half-integer,
resp.) were used to exploit the better resolution at these frequencies. This allowed us to deduce a ‘form factor’ within
each rung, for the electrons participating in the spin excitation. At the time we interpreted the results by means of a
simplified form of charge distribution involving only the V atoms (with their magnetic d orbital only). Comparing
calculated to measured intensities allowed determination of the effective charge transfer from left to right or right to
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Fig. 6. (Color online) (a) Sketch of one possible charge order (labeled C or D in figure (b)) in the (a, b) plane. The large and small lobes represent
large and small average charges: this partial charge order is intermediate between those of Fig. 5(a) and (b), so that the (red) ellipse from Fig. 5(a) is
now replaced by an asymmetric object. In addition, there are lattice displacements of V atoms, different in the two ladders, indicated by the arrows.
The low-T cell (a′ = a − b, b′ = 2b) is shown in the (yellow) parallelogram. This charge order leads to the two distinct observed spin gaps and
the elementary translation a ± b of this CO agrees with the observed periodicity of spin excitations. (b) The four possible different charge-ordered
planes, consistent with the neutron inelastic scattering results: B and D are obtained from A and C, respectively, by applying a translation a.

left of each V–O–V rung and the arrangements of these CO patterns from rung to rung along and transverse to the
ladders. We will make this more explicit a little later, once the main neutron inelastic scattering results are presented.

2.1. Neutron inelastic scattering results

The inelastic scattering measurements were performed at Institut Laue Langevin (ILL) on the thermal neutron
triple-axes spectrometer IN22 [63] (see Fig. 4(b) for a schematic drawing of the instrument), using a large NaV2O5
single crystal, cooled down well below Tc , at T = 5 K. A wide set of energy scans (as shown in Fig. 7(a)) were
performed at constant scattering vectors Q = (Qa,Qb,0) for many Qa components ranging between 0 and 5 r.l.u.
(relative lattice units, i.e. 5a∗) and for Qb chosen either at the zone center (QZC

b = 1) or boundary (QAF
b = 0.5,1.5),

for the reasons mentioned above. Note that the components Qa and Qb are expressed in the reciprocal lattice of
the orthorhombic high temperature (a × b × c) unit cell. Two distinct excitations were clearly observed on most of
the energy-scans, with an unsymmetrical line shape characteristic of gapped excitations undergoing a rapid energy
dispersion (along b). Using an appropriate dynamical response function, all these scans could be well fitted (see solid
lines) allowing to extract, for both excitations (labelled + and −), the position in energy E

AF,ZC
± and the integrated

intensity of the fitted function over a wide energy-range, that is, the individual structure factors S
AF,ZC
b± (Q). This

analysis yielded the dispersion curves presented in Fig. 7(b) along the a direction and the Qa dependence of the
individual and total structure factors SAF

b (Qa) = SAF
b+ (Qa)+SAF

b− (Qa) and SZC
b (Qa) = SZC

b+ (Qa)+SZC
b− (Qa) plotted

in Fig. 7(c). We shall now explain in detail what crucial information could be learned from these two results.
As can be seen in Fig. 7(b), two distinct excitation branches are clearly observed, well separated in energy over

all the Qa range, with a maximum of the lower branch E−
g 	 9.1 meV and a minimum of the upper branch E+

g 	
10.1 meV. Note that in earlier neutron inelastic scattering observations [51], which could not separate these two
extrema due to a poorer energy resolution, the two branches were thought to cross each other, yielding a periodicity
two times larger for the dispersion and a single energy gap. As will be shown here, the existence of two, and not
one, distinct energy gaps, and the knowledge of the correct periodicity for the dispersion played a crucial role in the
understanding of the phase transition and in the determination of possible charge orders.

First, from the periodicity found in our dispersion curves, we could propose the zig-zag charge order sketched in
Fig. 6(a) (labeled C or D in Fig. 6(b)), as well as the symmetry related (by changing a into −a) A or B patterns. The
Qa dependence of the structure factors (see below) allowed us to rule out an in-line CO. Second, the observation of
two distinct energy branches proves the existence of two inequivalent alternating chains. Charge order alone would
give equivalent alternating chains; thus the splitting comes from lattice distortions. This is true both for the newer
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Fig. 7. (Color online) (a) Examples of constant-Q energy scans (closed circles) and background (open circles) determined from Qb-scans at same
Qa and various energies. The solid lines are fit to the data as described in text. (b) Spin dispersion of the two excitation branches along the a

direction at zone center QZC
b

and boundary QAF
b

. The curves are theoretical predictions [56] fitted to the data (solid symbols). (c) Qa -dependence

of the structure factors SAF
b± and SZC

b± for the upper (+) and lower (−) branches at QAF
b

and QZC
b

and of their sums SAF
b

and SZC
b

(closed

and open symbols). The data are corrected from the V4+ atomic form factor and normalized at Qb = 0.5 (dot-dashed line). The other curves are
theoretical predictions compared to the data (see text).

structure [61] and the older [59]. Taking into account the CO sketched in Fig. 6(a) and the newer structure, this
yields four different transverse couplings J ′

i (i = 1,2,3,4) between the two types of ladders, as shown in the same
figure. Their sequence in the b direction differs from one ladder to the other, thus implying two different sets of
couplings along the ladder legs and, therefore, two inequivalent alternating ladders. The transverse dispersion of the
two branches could then be derived, involving the two energies E+

g and E−
g and the alternation in the inter-ladder

diagonal bonds δJ = J ′
1 − J ′

2 + J ′
3 − J ′

4. The spin dispersions could be very well fitted (see solid and dashed lines
in Fig. 7(b)), yielding δJ = 1.2 meV (to be compared to the average coupling along the ladder legs, Jb 	 60 meV,
determined from the stiff spin dispersion along b [56]). E+

g and E−
g can be interpreted as the gaps for the two isolated

ladders. From estimates of the gap produced by the measured charge order, as discussed below, the conclusion is that
in NaV2O5, the gaps are primarily due to the CO while the lattice distortion plays a secondary role, explaining why
two distinct branches are observed experimentally, and their separation.

We now come to the analysis of the structure factors. In our simplified analysis involving only the vanadium
magnetic 3d orbitals, a charge disproportionation Δc = 0.6 (i.e. V4.2+, V4.8+) could be deduced on each rung based on
the expression [56]: SQb

(Qa) = cos2(πQaρ)S̃(Qa,Qb) + Δ2
c sin2(πQaρ)S̃(Qa + 1

2 ,Qb + 1
2 ) for the total structure

factor, where ρ = l/a ≈ 0.304 (l, rung length and a, lattice parameter) and S̃(Qa,Qb) would be the structure factor
for spins localized at the center of each rung [64]. As seen in Fig. 7(c), the agreement is good both for SAF

b (Qa)

and SZC
b (Qa). Note that from the ratios of intensities for different values of momentum, one can extract the charge

transfer δ = Δc/2 independently of the form of S̃. In addition, this served to rule out other forms of charge order that
had been proposed. For the individual intensities, we needed an explicit form for S̃, e.g. from the strongly dimerized
limit. This allowed structure factors to be calculated within each branch, as shown by the dashed lines in Fig. 7(c).
The agreement with the data was rather good at the zone center. In particular, the extinction phenomenon observed
for each branch was well reproduced. However, there was one difficulty at the AF position which was noted at the
time but not resolved: While the sum SAF

b (Qa) was well described, there was a discrepancy between calculated and
measured individual structure factors SAF

b+ (Qa) and SAF
b− (Qa). This was an interesting point which was resolved later

thanks to the deduction of the three dimensional structure.
In our analysis we assumed one of four different symmetry related forms of charge order (shown in Fig. 6(b)), but

the more recent anomalous X-ray diffraction study of Ref. [62] has shown that the ladder planes are in fact stacked
along the c direction with the two coexisting sequences: either BDAC and DBCA or BBAA and DDCC. Therefore,
one has to average the individual structure factors coming from each type of plane. For symmetry reasons, one easily
finds that it is equivalent to replacing S

AF,ZC
b± (Qa) by 1

2 [SAF,ZC
b± (Qa) + S

AF,ZC
b± (−Qa)]. This now gives the correct

result at the zone boundary (with SAF
b± (Qa) odd functions of Qa and SAF

b± (−Qa) = SAF
b∓ (Qa)), while it yields the

same result at the zone center (since SZC(Qa) are even functions of Qa). Thus the X-ray structure in 3 dimensions
b±
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resolved a slightly puzzling aspect of the self consistency of some of the results raised in the previous neutron study.
The estimate Δc ≈ 0.6 was based on the total intensities and was thus unaffected. The charge transfer was also shown
to explain the magnitude of the spin gap [56]. While this worked reasonably well, it was phenomenological in the
sense that no microscopic argument for the magnitude of the charge order was provided.

The really puzzling aspect of the results at that time was that the charge transfer was found to be quite large from
neutron inelastic scattering, while in NMR [54] and later resonant X-ray studies [57], it had been deduced to be very
small (δ = 0.04 e from Ref. [57]). The key idea to make a fully coherent description of all techniques came from
quantum chemical calculations of clusters of atoms and their orbitals [65]. What emerged was that fluctuations in
the occupations of bridging oxygen p orbitals should be significant [66] and this had been totally neglected in the
analysis of the neutron results. Thus while the form factors correctly described interference coming from amplitudes
on the different V orbitals contributing to the magnetic scattering, they did not ‘see’ contributions to the charge from
essentially non-magnetic orbitals. Thus what was measured was really the charge disproportionation projected onto
the magnetic moments only. The NMR and resonant X-rays, on the other hand, probed all the charge fluctuations,
allowing the magnitude of the charge order to appear smaller. The fuller wave function, with both V and oxygen
bands can give a microscopic justification for the very small charge order, the essential effect at the transition being a
reorganisation of the 3d orbitals population within the V atoms [58].

2.2. Conclusions for first considered example

The investigation of NaV2O5 by neutrons, NMR and X-rays has been rewarding in that it gives an essentially
quantitative description of an interesting strongly correlated system. There is a wider significance in that apparent
contradictions on a measured quantity ‘the charge disproportionation’ from various techniques gave clues to the nature
of the wave function, and in particular the role of oxygen orbitals, often considered as essentially passive transmitters
of magnetic exchange. A rather similar mechanism of weak charge disproportionation has recently been deduced in
the context of manganites [67].

3. Second selected example: the spin 3/2 dimer compound Cs3Cr2X9 (X = Br, Cl)

This system corresponds to the case of gapped quantum system in a field described in Fig. 3, except that due to
the 3/2 spin value of Cr, two other FIMO’s can be expected at higher field, when the gaps from higher excited states
S = 2 and S = 3 close. Cs3Cr2X9 crystallizes in an hexagonal structure with two dimers of Cr3+ ions per unit cell,
oriented along the c-axis and arranged in planes perpendicular to c [68]. The intra-dimer J and inter-dimer Jp and
Jc (in-plane and out-of-plane) magnetic couplings (shown in Fig. 9(a)) were determined from the dispersion of the
triplet measured by neutron inelastic scattering in zero field [33,34]. The larger ratio of the intra- to the inter-dimer
couplings (J/(6Jp + 3Jc) 	 6.1 for Cl, 	 2.3 for Br) gives a higher energy gap in zero field for Cl than for Br,
and thus a higher critical field. Inagaki et al. [69] have measured the magnetization curves in both compounds at
T = 0.5 K, for the field applied along the c-axis (see Fig. 8(a)). The first critical field is indeed much higher for Cl:
Hi

c1 	 12.3 T, to be compared to Hc1 	 2 T for Br. Moreover, the Cl compound has two magnetization plateaus before

saturation, and is thus characterized by three distinct FIMO’s (simple-FIMO’s) between Hi
α and H

f
α (α = 1,2,3). On

the contrary for X = Br, no magnetization plateau is seen: there is a unique FIMO (extended-FIMO, i.e. the three
simple-FIMO’s overlap), a direct consequence of a smaller ratio of intra- to inter-dimer couplings. The decreasing
widths of the plateaus in the M(H) curve for Cl could be well explained by introducing some biquadratic exchange
in the Hamiltonian [69,70]. The magnetization for H ⊥ c, measured in the Br compound (see green solid triangles in
Fig. 8(c)), reveals sizable anisotropy (Hc1 	 1.4 T, smaller than Hc1 for H ‖ c).

Cs3Cr2X9 differs from other dimer systems that are currently studied by neutron scattering (e.g. PHCC [71],
TlCuCl3 [45]) in two important ways: each Cr3+ ion of the dimer has spin 3/2 rather than 1/2 for Cu-based sys-
tems and, because of the hexagonal arrangement of the dimers, the inter-dimer couplings are frustrated. The higher
spin means that the anisotropy, always present in magnetic systems, is likely to be greater and thus its effect on
Bose–Einstein condensation can be seen more easily. The frustration means that the bosons that condense have in-
commensurate wave vectors that lie on a degenerate line in the (a∗, b∗) plane of reciprocal space (plotted in red on
the contour plot of excitations from Fig. 8(b)). This last effect raises interesting theoretical questions that are not yet
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Fig. 8. (Color online) (a) Magnetization curves measured at T = 0.5 K for H ‖ c in Cs3Cr2X9 (X = Cl, Br). In the case of Cl, two distinct
plateaus are clearly seen, evidencing the presence of 3 simple-FIMO’s, while for X = Br, no plateau is seen, due to an overlap of the 3 FIMO’s
resulting in an extended-FIMO. (b) Contour plot of excitations in the (a∗, b∗) plane: the �, K , M points are local maxima, the red line is the
line of continuous degenerate minima. The dashed (orange) line indicates the 110 direction. (c) Field-dependence of the propagation wave-vector
component k (top panel) and that of the parallel and transverse magnetizations (lower panel) in Cs3Cr2Br9 for H ‖ a − b. The inset shows Q-scans
performed across the (3/4,3/4,0) magnetic peak at H = 2.9 T for increasing and decreasing field along the a + b direction: Hysteresis effects and
incommensurabilities are clearly seen.

Fig. 9. (Color online) (a) Arrangement of the Cr3+ dimers in the hexagonal unit cell of Cs3Cr2X9 (X = Br, Cl) and magnetic couplings: a Cr atom
of a dimer (J coupling) is coupled to 6 neighbors from the same plane (through Jp ) and 3 neighbors from the neighboring plane (through Jc).
Transverse spin ordering shown for Cr2 and Cr3 for (b) H ‖ a−b in the Br compound at 6 T and in the Cl one at 15 T, (c) H ‖ c in the Br compound
at 6 T. Within a dimer, the spins are antiparallel for both field orientations.

fully resolved (see the discussion in Ref. [70]). For example, how is the magnetic order above Hc1 related to the Q
vectors of the softest magnons before condensation? Clearly, only neutron scattering can study this question in detail.

These were the motivations for looking at the compounds Cs3Cr2X9 (X = Cl, Br). The opportunity to do so was
especially interesting, as only recently has there been the possibility of doing neutron scattering experiments up to 15 T
and down to 50 mK. In particular, this allows the study of the Cl compound, with a large first critical field of 12.2 T
and a maximum in Tc1(H) at 800 mK and 16 T. In order to see in detail the effect of the anisotropy, two different field
orientations have been exploited in Cs3Cr2Br9 (the compound with the lowest critical field) [72]: H ‖ a−b and H ‖ c,
i.e. perpendicular and parallel to, as will be shown here, the easy-axis c. In order to clarify the impact of the nature of
the FIMO (extended vs simple), the two compounds, X = Br [73] and X = Cl [74], were studied, with the same field
orientation, H ‖ a − b. The neutron diffraction experiments were performed at ILL on the lifting-counter two-axes
diffractometer D23 and the neutron inelastic scattering ones on the cold neutron triple-axes spectrometers IN12 and
IN14 [63] (see Fig. 4(a) and (b) for a schematic drawing of these instruments). Various state of the art cryomagnets
were used: 6 T vertical and 4 T horizontal for Br, 15 T vertical for Cl, equipped with a dilution insert.
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3.1. Magnetic structure

Neutron diffraction allowed us to determine the transverse spin ordering in the FIMO. The transverse magnetic
structure was found to have a commensurate propagation vector k = (1/4,1/4,0) for H ‖ a − b, at 6 T for Br and
15 T for Cl, and an incommensurate one, k = (0.426(2),0.148(2),0) for H ‖ c, at 6 T for Br. Their two equivalent
propagation vectors, by symmetry, were also observed. A wide set of magnetic peaks were collected in the three do-
mains to allow the magnetic refinement. For both field orientations and both compounds, the three magnetic domains
were found to be roughly equally populated and the spin arrangement antiparallel within a dimer. For H ‖ a − b, the
collinear + + −− magnetic structure depicted in Fig. 9(b) was obtained, assuming a constant moment amplitude.
The AF moments of 1.58(1) μB (resp. 0.79(1) μB) per Cr3+ ion at 6 T for X = Br (resp. at 15 T for X = Cl) point
along the c-axis, thus identified as being the easy-axis. Applying the field along the c-axis makes this anisotropy
ineffective in breaking axial symmetry, and indeed a very different magnetic structure was found for X = Br, still at
6 T: the cycloid depicted in Fig. 9(c), with constant AF moments rotating in the (a, b) plane. A moment amplitude of
1.75(1) μB per Cr3+ ion was deduced, with a phase difference of 0.422(2) × 2π between Cr2 and Cr3 from the same
unit cell, close to the 0.426(2) × 2π angle between two adjacent Cr2 ions when moving along the a direction.

For both field orientations (H perpendicular and parallel to the easy-axis c), the AF magnetic structure corresponds
indeed to a transverse ordering. Although these two orderings differ in important ways—the first is commensurate and
collinear, differing in both respects from the second—, they also show some strong similarities: In both cases, one
pair of spins out of three, intra- and inter-plane, is aligned in parallel, even though Jp and Jc are antiferromagnetic,
evidencing some frustration, while the sum of the two others is antiparallel. Let us emphasize that the determination
of these transverse orderings, which is possible by neutron diffraction, is of crucial importance to give a complete
description of the frustration and anisotropy, and thus to explain the spin dynamics in the FIMO. The parallel mag-
netization could also be determined from the ferromagnetic contribution appearing on top of a weak nuclear Bragg
peak (see the open green triangle in Fig. 8(c), obtained from the (1,1,4) reflection in the Br compound at 6 T for
H ‖ a − b): It allows to check agreement with magnetization measurements.

The field dependence of the propagation wave-vector and that of the AF transverse magnetic moment M⊥ were
studied in both compounds for H ‖ a−b, by following a strong magnetic peak. Practically, Q-scans were performed in
the (110) direction across the strongest magnetic peak (1 − k, 1 − k, 2) with k ∼ 0.25, for increasing and decreasing
magnetic field H . Then, k and M⊥ could be accurately obtained from fitting each scan by a Gaussian function:
The position gives the wave-vector component k and the square-root of the intensity gives M⊥. As can be seen in
figure 8(c) (solid and open circles), coming from 6 T, the transverse commensurate + + −− ordering of Cs3Cr2Br9

remains locked down to H ∼ 3 T (k = 0.25) and then becomes incommensurate (k varies progressively up to 0.29
for H = 1.5 T, that is slightly above Hc1), suggesting pinning [75]. For increasing H , however, the commensurate
+ + −− structure is reached only at H ∼ 5 T, which, interestingly, indicates a large hysteresis. These two effects can
be clearly seen on the scans shown in the inset of Fig. 8(c), where the magnetic peak is recorded for the same field
value, H = 2.9 T, while H is increased or decreased. On the contrary, no hysteresis and no incommensurabilities were
observed in Cs3Cr2Cl9 from 15 T down to 12.2 T [72]: The propagation vector remains (1/4,1/4,0). Also, the field
dependence of the transverse magnetic intensity close to Hi

c1 was found to be much sharper as in the case of bromide.
The observation for X = Br and the absence for X = Cl of incommensurabilities remains unclear. Nevertheless, it

should be related to the position (Q0,Q0,2) of the energy gap along the 110 direction (see Fig. 8(b), where the dashed
orange line intercepts the contour in red), as compared to that of the propagation vector in high field. Indeed, the first
minimum of the dispersion curve occurs at Q0 	 0.27 �= k for X = Br [73], but at Q0 = 0.25 = k for X = Cl [74].
Note that this hysteretic effect for Br was only visible on the transverse moment, so that only neutron diffraction could
reveal this interesting feature of the FIMO.

3.2. Spin dynamics

Neutron inelastic scattering is also an essential tool for: (i) studying the spin-wave dispersion of the triplet excitation
in zero field, in order to quantify the exchange couplings, isotropic and anisotropic, and (ii) following the energy gaps
(minima of the dispersion curves) as a function of field, in order to study the Zeeman splitting and especially the
FIMO, with the essential question: does the gap close or not?
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Fig. 10. (Color online) Neutron inelastic scattering measurements in Cs3Cr2Br9. (a) Q-constant energy scan at H = 0 measured at Q = (Q0,Q0,2)

with an improved resolution (Q0 = 0.27), evidencing the splitting of the S = 1 state. (b) Spin-wave dispersion along the a + b direction showing
the positions of the energy gaps and evidencing an anticrossing between the optic (opt.) and acoustic (ac.) branches. (c) Field dependence of the
three energy gaps for H ‖ a − b. The various lines are described in the text.

Fig. 10(b) displays the dispersion curves measured in zero field for the Br compound along the a∗ + b∗ direction
(solid and open circles) and their fit by the same expression as in Ref. [34] (solid lines) which allows to extract the J ,
Jc and Jp couplings. The presence of two Cr3+ dimers per unit cell gives rise to two distinct branches while the two
minima (energy gaps) mentioned before can be clearly seen, around (0.27,0.27,2) and (0.41,0.41,2) along the (110)
direction. Looking in more detail at the positions of the energy gap (QH,K = 0.27) and that where the two branches
join (QH,K = 0.33), the two following new results (not seen previously [34]) were obtained thanks to the improved
resolution now available: (i) the two excitation branches show an anticrossing, which remains to be explained, (ii) more
important, a splitting of the S = 1 triplet, ΔE = 0.056 meV, is clearly observed on the energy scan from Fig. 10(a)
performed at (0.27,0.27,2) with a higher resolution (using a smaller final wave vector kf ). This splitting is accounted
for by a single-ion anisotropy term D(sc

i )
2 at each Cr3+ site with D 	 −0.01 meV ∼ −J/100, which confirms the

easy-axis character of the c-axis assumed from the previous diffraction results in the FIMO. In the Cl compound, the
energy gap at (0.25,0.25,2) is at much larger energy, 	 1.4 meV, so that unfortunately, neither splitting of the triplet
nor anticrossing of the two branches could be tested for comparison. These results emphasize the power of neutron
scattering, that can give a direct evidence and estimation of the anisotropy, but also the limitations due to the rather
poor energy-resolution that can be achieved on a triple-axes spectrometer (δE/E ∼ 10−1 for a reasonable flux, that is
with no collimation but only with optimized kf ).

Let us now focus on the field effects on the spin dynamics. For both compounds, and for both field orientations in
the case of Br, we found from dispersion curves measurements performed at a few field values up to the maximum
accessible one, that the Q0 positions of the energy gaps are field-independent, even though the propagation wave
vector of the magnetic structure is changing for Br. So we present the field dependence study of the energy gaps for
the three branches of the S = 1 state, obtained from energy-scans at (Q0, Q0, 2). Particular attention was paid to
correct the data by subtraction of the background (the tail of the incoherent scattering) to the low energy part of the
scans. This was feasible only down to 0.05 meV, putting a limit of 0.07 meV for the lowest observable gap. Fig. 10(c)
presents the energy gaps vs H results obtained in Cs3Cr2Br9 for H ‖ a − b. The Zeeman splitting observed below
Hc1 is very well fitted for the three branches using the value of D derived in zero-field (see solid orange lines) and
yields an expected critical field of 1.5 T for H ‖ a − b, in good agreement with the diffraction data. For H > Hc1,
three distinct energy branches are still observed. The upper two agree roughly with Zeeman behaviors (dashed purple
lines), while the lowest remains gapped: It is non-zero even at Hc1 (εg ∼ 0.11 meV) and increases up to 0.19 meV at
4 T. The gap in the FIMO phase can be accounted for, at least qualitatively, by the presence of single-ion anisotropy
along c, i.e. in the plane perpendicular to the applied field [73] (see dot-dashed green line, for which the calculated
εg(H) curve was multiplied by a factor of 5). The 5 times too large value of the gap in the FIMO was ascribed to the
extended nature of the FIMO, implying a mixing of higher order states (S = 2 and S = 3), which were not taken into
account in the theoretical description proposed in Ref. [73].

To test these two hypotheses, that is the role of the anisotropy and that of the extended-FIMO, the same study was
performed in the Br compound for the other field orientation and in the Cl compound for the same field orientation.
For H ‖ c, the single-ion anisotropy does not break axial symmetry around the field direction and, in consequence,
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should not create a gap. Indeed, the remaining gap observed in Cs3Cr2Br9 at Hc1 is very small or may even vanish
(εg < 0.05 meV), but surprisingly, it increases above Hc1 to reach the same value of 0.19 meV at 4 T [72], although
one might now expect a gapless Goldstone mode throughout the magnetic phase. To explain this, one could perhaps
invoke some small anisotropy in the (a, b) plane and, again, the effect of the extended-FIMO, that amplifies the
observed gap. In the Cl compound, the simple description considering only the lowest branch of the S = 1 state and
the S = 0 state should now better describe the results, since the three FIMO’s are distinct. Indeed, the remaining gap
εg < 0.05 meV observed at H = 12 T 	 Hi

c1 is much smaller than for Br (εg ∼ 0.11 meV at 2 T) and reopens only
up to 0.13 meV at 15 T, to be compared to 0.21 meV for Br at 5 T, that is 3 T above the first critical field. We now
lack the value of the single-ion anisotropy in the Cl compound, in order to estimate the expected gap and thus check
whether the nature of the FIMO can explain alone the discrepancy for Br. Last, the ideal test would be of course to
measure the spin dynamics in the FIMO of the Cl compound for H ‖ c, where we have the best chance to observe a
Bose–Einstein condensation. But this is unfortunately impossible for technical reasons: The magnetic field has to be
applied in the horizontal plane of the triple-axes spectrometer, but the maximum available field for a split horizontal
magnet is only 4 T (due to enormous stray fields), which puts a limit to what can be done actually. But we keep the
hope such an experiment to be possible in the future, with all the developments taking place to always access more
extreme conditions.

3.3. Conclusions for second example

This example has illustrated the completeness of the study that can be performed with neutron scattering. This
complementary study of the magnetic ordering and the spin dynamics, as a function of the applied field, with the
possibility to choose the field direction, to test anisotropy effects, and to vary the X element (Cl or Br), to look in
detail at the nature of the FIMO, yields a better understanding of this interesting system. Our comparison shows
explicitly the relation of the energy gap to the transition to the FIMO: For Cl, with commensurate Q0, there is neither
hysteresis nor incommensurabilities, contrary to Br. In addition, the gap really closes at Hi

c1, but reopens substantially
immediately after, a behavior which remains to be explained quantitatively. The existence of a continuous degenerate
line of soft magnons and the anisotropies force us to generalize the Bose–Einstein condensation description for real
magnetic systems.

4. General conclusions

While two examples out of the many possibilities currently studied cannot be said to be representative, we can
attempt nonetheless to draw some more general conclusions. One is that while sometimes the increasing power of
alternative techniques might seem to threaten the preeminence of neutron scattering in magnetism, this is unlikely to
be the case. Advances in resonant X-ray scattering, in particular, allow increasingly valuable comparisons for some
elements and allow more precise conclusions to be drawn from neutron scattering studies. While the intensity of the
new generation of pulsed sources of neutrons will give new information, especially at higher energies, even ‘incre-
mental’ improvements in instrumentation can be of equal importance. In the first example taken, crucial information
of analysis was in the intensity of inelastic scattering: The extraction of such intensities from the background has
necessitated continuous instrument development. The further elimination of background by pulsed sources could be
as important as increases in peak intensity. In that example the intensities allowed for information on the (magnetic)
electron wave function. Another example in the literature where the variation of intensity was crucial, is in spin ladder
systems where it has been argued that it allowed separation of two-magnon from one-magnon scattering [76]. The
second example shows the importance of developing superior sample environment and crossed techniques; in partic-
ular the availability of higher magnetic fields has opened up new domains of physics for exploration. We can hope for
static fields considerably larger (30 T) than those available and there is even the demonstration that pulsed fields (at
40 T) can be used in conjunction with coincidence techniques for magnetic diffraction [77]. An aspect that we have
hardly touched on is the use of the analysis of the full polarization for both elastic and inelastic scattering. Here the
instruments already exist (for example at the ILL, several instruments can be equipped with the ‘Cryopad’ device)
and are in use in zero external magnetic field. They have been used in diffraction to resolve ambiguities in complex
magnetic structures. For Polarised Neutron Inelastic Scattering, the full exploitation remains to be made: In principle
there should be significant new information on cross-correlations between nuclear and magnetic scattering [48]. The
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feeling is that there are significant new discoveries to be made, but the appropriate systems are yet to be found. For a
recent review of experimental results, see Ref. [78].

Predicting the future in terms of subjects and concepts is probably even more hazardous than anticipating in-
strumental development. Extrapolating from current trends, it seems likely that there will continue to be many new
magnetic materials to be characterized with neutron scattering as well as more detailed studies of materials already
identified. This is true within the class of materials we have focussed on: systems without long range magnetic order at
zero field, where many aspects, such as doping effects and coupling between magnetism and transport, modifications
under field and pressure, remain to be elucidated. For comparison with detailed theories, while quasi-one dimensional
materials can be analysed with the help of very detailed quantitative calculations, the same is not true in two and
three dimensions. It remains to be seen whether concepts, such as topological and fractional excitations can be made
sufficiently quantitative that detailed comparison is possible with experimental systems. If we enlarge the discussion
to more general magnetic systems, particularly interesting for material properties will be those combining magnetic
properties with others: ferroelectricity, semiconducting transport properties and so on. There are materials which are
well studied by other techniques, but where, up to now, single crystals sufficiently large to allow detailed study by
neutrons have not been grown. As crystals become larger and fluxes increase these may have renewed importance:
Organic conductors with and without transition metals come to mind [38]. Artificially structured and inhomogeneous
materials are of enormous current interest and again the problems of techniques suited most to single homogeneous
crystals must be circumvented. An example where this is already happening is in dilute magnetic semiconductors
where most samples are inhomogeneous films; recent studies using grazing incident polarised neutron reflectrometry
have yielded profiles of magnetic and structural scattering transverse to the surface of the film [79]. This is also an ex-
ample where history dependent properties of non-equilibrium samples can be revealed. One can imagine other likely
applications: Neutron scattering for samples subject to applied laser excitation may well lead to exciting new physics.
A recent example used an applied laser with neutron Laue diffraction to study photo-induced phase transitions in a
molecular magnet [80].
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