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Abstract

Thermally activated migration of defects drives microstructural evolution of materials under irradiation. In the case of vacancies,
the activation energy for migration is many times the absolute temperature, and the dependence of the diffusion coefficient on
temperature is well approximated by the Arrhenius law. On the other hand the activation energy for the migration of self-interstitial
defects, and particularly self-interstitial atom clusters, is very low. In this case a trajectory of a defect performing Brownian motion
at or above room temperature does not follow the Arrhenius-like pattern of migration involving infrequent hops separated by the
relatively long intervals of time during which a defect resides at a certain point in the crystal lattice. This article reviews recent
atomistic simulations of migration of individual interstitial defects, as well as clusters of interstitial defects, and rationalizes the
results of simulations on the basis of solutions of the multistring Frenkel–Kontorova model. The treatment developed in the paper
shows that the origin of the non-Arrhenius migration of interstitial defects and interstitial defect clusters is associated with the
interaction between a defect and the classical field of thermal phonons. To cite this article: S.L. Dudarev, C. R. Physique 9 (2008).
Crown Copyright © 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences. All rights reserved.

Résumé

Migration de type non-Arrhenius des défauts interstitiels dans les métaux de transition de structure cubique centrée. La
migration thermiquement activée des défauts ponctuels contrôle l’évolution de la microstructure des matériaux sous irradiation.
Pour la migration des lacunes la valeur de l’énergie d’activation équivaut généralement à plusieurs fois la température absolue, et, la
dépendance thermique du coefficient de diffusion est bien décrite par une loi de type Arrhenius. Cependant l’énergie d’activation de
la migration des auto-interstitiels isolés ou sous forme de boucle est très faible. Dans ce cas la trajectoire d’un défaut effectuant un
mouvement brownien à la température ambiante ou au-dessus ne suit pas une diffusion de type Arrhenius, c’est-à-dire des sauts peu
fréquents séparés par des durées relativement longues pendant lesquelles le défaut réside dans un site déterminé du cristal. Ce papier
fait la revue des simulations atomiques récentes de la migration d’auto-interstitiels isolés ou sous forme de boucle, et, rationalise les
résultats de ces simulations sur la base des solutions du modèle « multi-corde » de Frenkel–Kontorova. L’approche développée dans
ce papier montre que l’origine de la migration de type non-Arrhenius d’auto-interstitiels ou de boucles d’interstitiels est à associer
à l’interaction du défaut considéré avec le champ classique des phonons d’origine thermique. Pour citer cet article : S.L. Dudarev,
C. R. Physique 9 (2008).
Crown Copyright © 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences. All rights reserved.
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1. Introduction

The thermally activated migration of vacancy and self-interstitial atom defects is the main mechanism driving
microstructural evolution of materials under irradiation. The migration of defects is responsible for the climb of
dislocations, nucleation and growth of voids and vacancy clusters, for the decoration of dislocations by radiation
defects, and for radiation hardening and embrittlement of materials. The ‘standard model’ for migration of radiation
defects is given by the Arrhenius law, where the frequency νi→f of hops between the initial (i) and the final (f )

equilibrium configurations of a defect in the crystal lattice is given by the equation [1–3]

νi→f = ν0 exp

(
− Ea

kBT

)
(1)

where ν0 is the attempt frequency, Ea is the activation energy for migration, and T is the absolute temperature. In
Eq. (1) the attempt frequency ν0 is a constant quantity, and the magnitude of Ea depends only on the type of the defect
and on the local environment of the defect in the initial (i) and final (f ) configurations. The calculated activation
energies for migration of single vacancies in body-centred cubic (bcc) transition metals vary between approximately
0.62 eV in vanadium [4], 0.65 eV in iron [5], and 1.78 eV in tungsten [4,6]. These values are many times kBT

even for the highest temperatures of operation of materials in a fusion or a fission power plant. Hence migration of
vacancies in materials is well described by the Arrhenius equation (1), in which the exponential factor is very small
exp(−Ea/kBT ) � 1.

On the other hand, the migration of self-interstitial atom defects in non-magnetic bcc metals is characterized by
comparatively low activation energies. In ferromagnetic iron the activation energy for migration of a single interstitial
atom defect is approximately 0.34 eV [7], which is half the migration energy for a vacancy. In all the non-magnetic
bcc metals a self-interstitial atom defect adopts the linear 〈111〉 crowdion configuration, and the activation energy
for migration of this configuration is exceedingly low, ranging between 0.02 and 0.05 eV for all the metals forming
groups V and VI of the Periodic Table [4,8–10]. Furthermore, molecular dynamics simulations show that similar small
activation energies characterize thermal migration of mesoscopic self-interstitial atom clusters in all the bcc metals,
including iron [11,12]. In this case, at and above room temperature, we have Ea � kBT , and the exponential factor
in Eq. (1) is of the order of unity. The pattern of migration of a self-interstitial defect now no longer looks like an
Arrhenius-like sequence of infrequent hops between equilibrium positions, separated by the relatively long intervals
of time during which a defect resides at a certain point in the crystal lattice.

In the case where the hopping of defects in the lattice is well approximated by the Arrhenius law (1), the diffusion
coefficient describing the evolution of an ensemble of defects is given by

D = D0 exp

(
− Ea

kBT

)
(2)

where D0 ≈ ν0l
2, l is the average length of a hop, and Ea is the activation energy defined by Eq. (1). According to

Eq. (2), the diffusion coefficient approaches a constant value D = D0 in the limit where T � Ea/kB . A plot illustrating
how the diffusion coefficient given by Eq. (2) varies as a function of absolute temperature T is shown in Fig. 1. The
Arrhenius parametrization (2) for the diffusion coefficients of defects has been implemented in a number of kinetic
Monte-Carlo computer programmes [13–16].

In this article we address the question of the validity of the Arrhenius parametrization (2) for self-interstitial atom
defects in non-magnetic bcc metals in the high temperature limit. By using molecular dynamics simulations and by
investigating the solutions of the multistring Frenkel–Kontorova model [17], and also by rationalizing the results of
simulations through a combined application of the Langevin equation and the fluctuation–dissipation theorem, we
find that in the high temperature limit the diffusion coefficient of self-interstitial defects and defect clusters varies
linearly as a function of absolute temperature T . This finding is at odds with the Arrhenius formula for the diffusion
coefficient (2), pointing to the strongly non-Arrhenius nature of the diffusion of interstitial defects and clusters of
interstitial defects in bcc metals at elevated temperatures.
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Fig. 1. Plot illustrating the temperature dependence of the diffusion coefficient of defects given by Eq. (2). Assuming that Ea = 0.025 eV (see e.g.
Ref. [12]), we find that for T = 300 K the argument of the Arrhenius equation is kB/Ea = 1.034, for T = 800 K it is kBT/Ea = 2.74, and for
T = 1100 K it is kBT/Ea = 3.78. In the last case the diffusion coefficient is already very close to its asymptotic value corresponding to the limit
T → ∞.

2. Brownian motion of single interstitial defects in non-magnetic bcc metals

A self-interstitial atom (SIA) defect is an object formed by embedding an extra atom in the crystal lattice followed
by the subsequent minimization of the total energy of all the atoms in the simulation cell. Since the extra atom is
indistinguishable from any other atom in the material, it is not possible to associate the notion of the defect with any
particular atom in the defect structure. A self-interstitial atom defect hence represents a collective entity corresponding
to an excited state of the crystal lattice or, in other words, a quasiparticle. In bcc metals a self-interstitial atom defect
adopts one of the several possible geometrically distinct configurations, each having its own characteristic formation
energy. The two most significant configurations are the so-called 〈111〉 crowdion/dumbbell that has the lowest en-
ergy of formation in all the non-magnetic bcc metals [4], and the 〈110〉 configuration that corresponds to the lowest
formation energy of a self-interstitial atom defect in ferromagnetic bcc iron [5,7].

At a finite temperature all the atoms forming the structures shown in Fig. 2 vibrate around their equilibrium posi-
tions. The centre of the self-interstitial atom defect, corresponding to the region of the highest strain, does not remain
stationary as a function of time. The defect performs a random walk in the lattice as illustrated by the projection of a
simulated trajectory of migration of the defect shown in Fig. 3.

Once a representative trajectory of a defect is simulated, the diffusion coefficient for a migrating defect can be
found using the Einstein formula [18]

D = lim
t→∞

[R(t) − R(0)]2

6t
(3)

which is subject to the condition that R(t) − R(0) is a random process with zero mean, i.e. that [R(t) − R(0)] = 0.
Here the bar above a function denotes averaging over statistical realizations of the trajectory of a migrating defect.
Condition [R(t) − R(0)] = 0 means that on average a migrating defect remains at its initial position R(0). Since the
diffusion coefficient (3) represents a measure of fluctuations of the position of the defect, the presence of any ‘drift’
terms giving rise to the non-zero values of [R(t) − R(0)] has to be excluded from the statistical analysis involving
Eq. (3).

It is instructive to establish a connection between Eq. (3) and the treatment of Brownian motion based on the
classical Langevin equation

m∗ dv
dt

= −γ v(t) + f(t) (4)

Here m∗ is the effective mass of the defect, γ is the coefficient of dissipative friction and v(t) is the velocity of
migrating defect. The term f(t) in the right-hand side of the above equation represents a random thermal force acting
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Fig. 2. Atomic structures of the 〈110〉 (left panel) and of the 〈111〉 (right panel) self-interstitial atom defects in tungsten. Both defect configurations
are formed by inserting an extra atom in the crystal lattice followed by the relaxation of positions of all the atoms in the structure. The atoms
forming these defect structures are all identical. Colour highlights (i.e. darker atoms) the symmetry of the defect configuration. In metallic tungsten
the energy of formation of the 〈111〉 self-interstitial atom configuration is lower than the energy of formation of the 〈110〉 configuration by
approximately 0.3 eV [4].

Fig. 3. The x-coordinate of the centre of the 〈111〉 crowdion defect performing one-dimensional (in the direction of the axis of the defect) random
Brownian walk in tungsten at T = 150 K. The right panel shows the full simulated trajectory of the defect while the left panel shows a part of the
same trajectory corresponding to the interval of time 500 < t < 1000 picoseconds.

on the defect. Eq. (4) does not include the effect of any non-random external potential on Brownian motion of a defect.
This aspect of the problem has recently received attention and considerable progress was made in solving it [19,20,3].
Here we are interested in the treatment of diffusion of defects in the high-temperature limit kBT /Ea � 1 where the
influence of the non-random component of the potential can be neglected.

Assuming that f(t) = 0 or, equivalently, that migration of the defect is ergodic, in which case

lim
t0→∞

1

t0

t ′+t0∫
t ′

f(t)dt = 0

for any arbitrarily chosen t ′, we find that v(t) = 0 and that the average kinetic energy of a migrating defect is given by

m∗v2(t)

2
= 1

2m∗

t∫
dτ

t∫
dτ ′ exp

[
− γ

m∗ (t − τ)

]
exp

[
− γ

m∗ (t − τ ′)
]

f(τ ) · f(τ ′) (5)
−∞ −∞
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Assuming that the stochastic thermal force is delta-correlated

f(τ )f(τ ′) = f2δ(τ − τ ′) (6)

and applying the classical equipartition principle m∗v2(t)/2 = (3/2)kBT , from Eqs. (5) and (6) we find

m∗v2(t)

2
= 3

2
kBT = f2

2m∗

t∫
−∞

dτ exp

[
− 2γ

m∗ (t − τ)

]
= f2

4γ
(7)

This condition relates the amplitude of stochastic fluctuations of the thermal force and the coefficient of dissipative
friction γ , namely

f2 = 6γ kBT (8)

Using this formula, it is a simple matter to show that the correlation function of velocities of a defect is

v(t) · v(t ′) =
(

1

m∗

)2 t∫
−∞

dτ

t ′∫
−∞

dτ ′ exp

[
− γ

m∗ (t − τ)

]
exp

[
− γ

m∗ (t ′ − τ ′)
]

f(τ ) · f(τ ′)

= f2

2γm∗ exp

[
− γ

m∗ |t − t ′|
]

= 3kBT

m∗ exp

[
− γ

m∗ |t − t ′|
]

(9)

Integrating this correlation function over time we arrive at

∞∫
0

v(t) · v(0)dt = 3kBT

γ
(10)

Defining the coordinate of the defect as an integral of its velocity

R(t) =
t∫

0

v(τ )dτ

where R(0) = 0, and evaluating the average square of this quantity using Eq. (9), we find an equation that was probably
first derived by Chandrasekhar [18]

R2(t) =
t∫

0

dτ

t∫
0

dτ ′ v(τ ) · v(τ ′) = 3kBm∗T
γ 2

γ t

m∗∫
0

dθ

γ t

m∗∫
0

dθ ′ exp
[−|θ − θ ′|]

= 6kBm∗T
γ 2

{
γ t

m∗ −
[

1 − exp

(
− γ t

m∗

)]}
(11)

Combining (11) with the Einstein equation (3), we find a condition that relates the diffusion and the friction coefficients

D = lim
t→∞

R2(t)

6t
= kBT

γ
= 6(kBT )2

f2
= 1

3

∞∫
0

v(t) · v(0)dt (12)

Comparing Eqs. (11) and (12) we see that taking the limit t → ∞ is equivalent to evaluating the right-hand side of
Eq. (11) for γ t/m∗ 
 1. Estimates show that m∗/γ ∼ 1 ps and hence the minimum length of an interval of time
required for evaluating the diffusion constant cannot be shorter than approximately 10 ps.

Eq. (12) shows that if we assume that the variance of the stochastic thermal force f2 varies linearly as a function of
absolute temperature then the diffusion coefficient would also vary linearly as a function of T . The friction coefficient
γ in this case is a constant quantity independent of absolute temperature T . In the next section we will prove this
conjecture for the case of a linear crowdion defect migrating in bcc crystal lattice.
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3. The Frenkel–Kontorova model for a migrating crowdion

We start by pointing out that the conventional one-dimensional Frenkel–Kontorova model [21,22], describing a
linear string of atoms interacting by elastic forces and moving in an external periodic potential, does not provide a
suitable starting point for the treatment of interaction of a crowdion defect with thermal vibrations of atoms in the
lattice. The reason for this is that the conventional Frenkel–Kontorova model does not take into account displacements
of atoms forming the lattice surrounding the defect. Hence it does not preserve the symmetry of the problem, where
the displacement of an atom in a lattice surrounding the defect results in the same force as an equal in magnitude and
opposite in sign displacement of an atom in the core of the defect itself.

An equation of motion for a crowdion moving in a vibrating lattice was derived in Refs. [23,10]. It has the form

d2Z(t)

dt2
= 4ω2

∑
n,h

[
Φn0(t) − Φnh(t)

] 1

cosh2[(n − Z(t)/a)/N] (13)

where Z(t) is the coordinate of the centre of a crowdion, index n refers to an atom in a string, and h refers to a
string. a is the distance between atoms in a string, and N is the dimensionless width of the strain field in the core
of the crowdion defect. Φn0(t) and Φnh(t) are the projections of thermal displacements of atoms in the string (0)

containing the crowdion and in the strings (h) surrounding the crowdion, on the axes of the strings. The right-hand
side of Eq. (13) is proportional to the force acting on a crowdion defect (to actually evaluate the force, the right-hand
side of (13) needs to be multiplied by the mass of the defect).

The amplitude of the phonon force is linear in the atomic displacements. The force changes sign depending on
whether a displaced atom belongs to the string (0) containing a crowdion or it belongs to one of the neighbouring
atomic strings (h). The force is delta-correlated and its variance is proportional to the absolute temperature.

To prove this we first evaluate the correlation function of thermal displacements of atoms. The second-quantized
operator of thermal displacements has the form [24]

û(t) =
∑
f,α

√
h̄

2Mω(f, α)N

{
e(f, α)â(f, α) exp

[
if · Rn − iω(f, α)t

] + h.c.
}

(14)

where h.c. means Hermitian conjugate, â(f, α) is a phonon annihilation operator, and summation is performed over
the wave vectors f and branches α of the phonon spectrum of the material. In Eq. (14) ej (f, α) is the polarization
vector of a phonon, M is the mass of an atom and N is the number of atoms per unit volume. The correlation function
of projections of thermal displacements in the direction ξ of the axis of the crowdion in the classical limit is〈(

û(t) · ξ)(
û(t ′) · ξ)〉

T
=

∑
f,α

kBT

Mω2(f, α)N

∣∣e(f, α) · ξ ∣∣2 cos
[
ω(f, α)t

]
(15)

In the isotropic acoustic approximation where
∑

α |e(f, α) · ξ |2 = 1, and ω(f, α) = cf , where c is the average speed
of sound in the material, we find that〈(

û(t) · ξ)(
û(t ′) · ξ)〉

T
= ΩkBT

4π2Mc3
δ(t − t ′) (16)

where Ω is the volume per atom. Assuming that thermal vibrations of individual atoms are not correlated, and noting
that each 〈111〉 atomic string in bcc lattice is surrounded by six other strings, we find

f(t) · f(t ′) = 64

π2
Ω

kBT

Mc3
(m∗ω2)2Nδ(t − t ′) (17)

This equation shows that the phonon force acting on a defect is linear in absolute temperature and it is delta-correlated
as a function of time. Combining this with the analysis given in the preceding section we see that the diffusion
coefficient of crowdions migrating in a pure bcc metal is expected to vary linearly as a function of absolute temperature
(as opposed to it approaching saturation in the high temperature limit as predicted by the Arrhenius equation (2))

D ∼ T (18)

We now show that the analysis of trajectories of migrating crowdions confirms this prediction.
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4. Numerical evaluation of the diffusion coefficient

A molecular dynamics simulation of a migrating defect predicts a trajectory of the defect R(t) similar to that shown
in Fig. 3. How can we estimate the magnitude of the diffusion coefficient D from this curve? An approach that is often
used to evaluate D consists in splitting the trajectory into many independent sub-trajectories, for example by choosing
arbitrarily defined starting points and time intervals, and evaluating the diffusion coefficient as a statistical average
of [25]

D = 〈R2〉
6t

(19)

While in some cases this approach gives satisfactory results, analysis shows that in the case of nearly freely migrating
crowdions the statistics of values of D found using Eq. (19) may be relatively poor and the spread of calculated values
may be large, making it difficult to draw a reliable conclusion about the temperature dependence of the diffusion
coefficient.

One of the possible reasons responsible for the large statistical uncertainty in the value of the diffusion coefficient
found from a given realization of the trajectory of the defect is that any simulated trajectory R(t) does not satisfy
the condition R(t) = 0 required for the statistical interpretation of this function as a random process. In effect this
means that a trajectory defined on a finite interval of time contains both the ‘random’ component δR(t) that satisfies
the requirement δR(t) = 0, as well as a part that can be interpreted as systematic regular drift of the defect over the
duration of the simulation. The fact that for an infinitely long trajectory the drift term is expected to vanish is of
no immediate significance here since any practical simulation generates a trajectory that is defined only on a finite
interval of time.

To eliminate the effect of the effective drift we introduce a pseudo-trajectory δR(t) defined as a real trajectory
minus a drift term, which we take as a function linear in t , namely

δR(t) = R(t) − 2t

t2
0

t0∫
0

R(t ′)dt ′ (20)

At t = 0 the pseudo-coordinate of a moving defect is the same as its actual coordinate, namely δR(0) = R(0). Fur-
thermore, if we associate taking an average over an ensemble with taking an average over time (which in this case is
limited by the length of the interval of time considered in a simulation), we find that the pseudo-trajectory δR(t) now
satisfies the condition δR(t) = 0 required for the statistical interpretation of the temporal variation of the position of
the defect as a random process. Indeed

t0∫
0

δR(t)dt =
t0∫

0

R(t)dt − 2

t2
0

t0∫
0

t dt

t0∫
0

R(t ′)dt ′ =
t0∫

0

R(t)dt − 2

t2
0

t2
0

2

t0∫
0

R(t ′)dt ′ = 0 (21)

and hence δR(t) has zero mean on the interval of time [0, t0]. Substituting the pseudo-coordinate of the defect given
by (20) into Eq. (3), which defines the diffusion coefficient, we find that in the limit t → ∞ both the actual trajectory
and the pseudo-trajectory result in the same calculated value of the diffusion coefficient (see Eq. (16) of Ref. [10])

D = lim
t→∞

[R(t) − R(0)]2

6t
= lim

t→∞
[δR(t) − δR(0)]2

6t
(22)

Statistical analysis of results of numerical molecular dynamics simulations of migration of defects shows that the use
of pseudo-trajectories instead of the actual trajectories reduces the statistical uncertainty of the calculated values of D

and improves the numerical convergence of the method.
Fig. 4 shows plots of the diffusion coefficient evaluated in this way for a 19 self-interstitial atom cluster and a 37

self-interstitial atom cluster. In both cases diffusion coefficients vary approximately linearly as a function of absolute
temperature, confirming the analysis given above. Also, data shown in Fig. 4 agree with simulations of diffusion
of single interstitial defects and defect clusters performed recently by Zepeda-Ruiz et al. [26]. When analyzing the
results of simulations, the authors of Ref. [26] noted that “. . . Although Arrhenius behavior is widely expected for
diffusion in the solid state, it clearly does not occur here. . . .” Analysis given in this paper explains the origin of the
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Fig. 4. Coefficients of thermal diffusion of a 19 self-interstitial atom cluster and a 37 self-interstitial atom cluster in tungsten evaluated by analyzing
the statistics of trajectories of migration of mesoscopic defects in the crystal lattice, as described in the text. Straight lines are linear fits to the values
found using molecular dynamics simulations.

non-Arrhenius diffusion of defects, and highlights the somewhat unexpectedly significant part played by the direct
interaction between a migrating self-interstitial atom defect and the field of thermal phonons.

The fact that the diffusion coefficient of self-interstitial defects varies as a function of temperature in the way not
consistent with the conventional Arrhenius law has significant implications for modelling microstructural evolution of
materials under irradiation. Thermally activated mobility of defects is one of the main factors driving microstructural
evolution. Correct quantitative understanding of mechanisms of migration of point defects, as well as defect clusters,
represents an essential step in the development of quantitative models describing this evolution. The non-Arrhenius
diffusion of defects occurring in the two most common bcc metals, vanadium [26] and tungsten, suggests that it
probably also occurs in all the other bcc metals, including iron, where migration of clusters of self-interstitial defects
obeys the same principles as migration of clusters of self-interstitial defects in vanadium or tungsten.

5. Summary and discussion

The activation energy for the migration of self-interstitial defects, and particularly self-interstitial atom clusters, is
very low. Analysis given in this paper shows that a trajectory of a defect performing Brownian motion at or above
room temperature does not follow the Arrhenius-like pattern of migration involving infrequent hops separated by
the relatively long intervals of time during which a defect resides at a certain point in the crystal lattice. At high
temperature the diffusion coefficient of a self-interstitial atom defect or a self-interstitial atom cluster varies linearly
as a function of absolute temperature, in agreement with predictions of an analytical model for migration of crowdion
defects involving interaction between point defects and phonons.

Concluding this investigation, I would like to highlight several significant outstanding questions that stem from the
analysis given above. One of them is how to generalize the analytical model describing thermally activated migration
of a single defect to the case of a cluster of defects, or in other words, to the case of a migrating mesoscopic dislocation
loop. This question is closely related to the question about thermal fluctuations of dislocation lines, and dislocation
dynamics at a finite temperature, see e.g. [27]. Another significant aspect of the treatment of diffusion of defects is
related to the role played by disorder and interaction with solute atoms in dilute and concentrated alloys. There have
been several interesting developments in this field including a study of migration of dislocation loops in the field of
randomly distributed impurities [28], an investigation of the effect of solutes on migration of defects in concentrated
FeCu and FeCr alloys [15,29,30] and the development of comprehensive kinetic Monte-Carlo models of migration
of defects in alloys [31]. Further development of predictive models for migration of defects, mesoscopic defect clus-
ters, and dislocations in technological alloys are required for the interpretation of experimental data and predictive
modelling of behaviour of materials in the extreme environment of advanced nuclear and fusion power plants.
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