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Abstract

The advantage of small angle neutron scattering associated with isotopic labelling through deuteration is illustrated in the case
of mixed systems, created by associating already well-known systems of characteristic structures; this is also important for ap-
plications. Our first mixed system associates charged polymer chains, polyelectrolytes (here polystyrene sulfonate, PSS), with
oppositely charged particles, proteins (here lysozyme). Different fractions of deuterated water (D2O) mixed with normal water
are used to match the scattering length density of the protein or of the polymer in non-deuterated or deuterated version. First,
this allows us to separate the protein and the polymer signal: we can then distinguish a case where the structures of each species
alone in water are hardly modified by mixing, except for interconnections yielding a gel, and a case inducing complete change
into a structure common to both species, made of aggregated globules. Second, using, for counterions of the polyions, deuterated
TetraMethylAmmonium, together with matching both protein and polymer, we establish unambiguously the counterion release
into the solvent. Third, matching only a fraction of polymer chains, the other being deuterated, we extrapolate at zero deuterated
fraction their form factor and describe the chain conformation inside the complexes. Fourth, we illustrate the possibilities of mod-
elling the signal on a second example of mixed system: a nanocomposite made of silica particles surrounded by polymer dispersed
into a deuterated polymer matrix. Chains are then visible in such reinforced polymer system, in particular when it is submitted to
elongation: we discuss a possible model for an ideal system, introducing the scattering contribution from deformed chains, another
subject studied at LLB. To cite this article: F. Boué et al., C. R. Physique 8 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Diffusion de neutrons aux petits angles par la matière molle—application aux systèmes mixtes. Les possibilités de mar-
quage par deutériation associées à la diffusion de neutrons aux petits angles sont illustrées dans le cas des systèmes mixtes, créés
par l’association de systèmes simples aux structures caractéristiques connues dans le domaine de la matière molle ; ces systèmes
mixtes sont très importants dans les applications. Le premier système choisi résulte du mélange de chaînes polymères chargées en
solution dans l’eau (polyélectrolytes), ici du polystyrène sulfonate, avec des protéines de charge opposée, ici du lysozyme. Des
mélanges eau lourde/eau légère à différents taux sont utilisés pour adapter la densité de longueur de diffusion du solvant à celle de
la protéine ou du polymère. Ceci nous permet d’abord de séparer les signaux des deux espèces ; dans un cas, la répartition spatiale
des deux composants est à peine modifiée, à l’exception de connexions menant à un gel, dans un autre un changement complet
mène à une structure, partagée par les deux espèces, d’agrégats globulaires. Deuxièmement, en utilisant comme contre-ions des
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polyions, le TetraMethylAmmonium deutéré, nous démontrons sans ambiguïté le relargage des contre-ions dans le solvant. Troi-
sièmement, en éteignant en même temps les signaux des protéines et des chaînes non deutérées, en présence d’une fraction de
chaînes deutérées, nous pouvons extrapoler à fraction nulle le signal d’une seule chaîne et son facteur de forme, et en déduire sa
conformation au sein des complexes. Finalement, nous illustrons les possibilités de modélisation sur un deuxième système mixte,
un nanocomposite de particules de silice entourées par des chaînes polymères introduites dans une matrice polymère deutérée.
Les chaînes sont alors visibles dans un tel système polymère renforcé, en particulier quand il est soumis à une élongation. Nous
discutons un modèle possible qui introduit la diffusion anisotrope des chaînes et la “perte d’affinité”, un autre sujet étudié au LLB.
Pour citer cet article : F. Boué et al., C. R. Physique 8 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

The aim of this article is to give some examples of the possibilities of Small Angle Neutron Scattering developed
recently in the field of soft matter, associated with labeling strategies. More general lectures on Small Angle Neutron
Scattering can be found in several places [1–3]. Here, we present studies on polymers associated with a second species.
The reason for this choice is that we want to illustrate the possibilities of SANS in the domain of mixed systems,1

which is one of the most lively area of research at present. We now know enough about the behavior of single species
systems, to feel encouraged to look at mixtures of these elements, which involve and mingle their specific properties
into some new combinations. A large ensemble of the objects created under mixing involves the nanometer sizes
measurable by Small Angle Scattering; this is true in particular when the wavelength order of magnitude of neutrons
is concerned. Moreover, when looking at such mixtures with neutrons, the possibility of isotopic labeling is a very
rich source of experiments. Labeling, mostly using deuterated solvent, or solute, allows us to play with contrast. This
concept is explained below. At the same time, we chose here some examples in echo to the basic studies on polymer
conformation developed some years ago in the pioneer “Groupe Polymères” of Saclay.

2. Small angles = large distances = low density fluctuations—contrast concept in SANS

We assume that the general expression for the elastic scattering in the kinematic approximation is already known:

I =
∑

all nuclei

bi exp(i.q.ri).
∑

all nuclei

bj exp(−i.q.rj ) (1)

where bi (bj ) are the scattering lengths of nuclei i (j ) located at spatial positions ri (rj ), and q is the scattering vector
corresponding to a scattering angle θ , for an incoming beam of wavelength λ, with a modulus q = (4π/λ) sin(θ/2).

Let us now focus on the specificity of Small Angle Scattering: the distances considered are large compared to
interatomic distances. Thus we can group the atoms in ‘elementary bricks’ of repeating species: molecules, polymer
chain repeating units.2 We can even define as a continuous function nk(r), the number volume density of the species k

at a point r, so that the first term of the product above becomes:

∑
all molecules k

∫
nk(r)d3rbk exp iqr =

∑
bk.nk(q) (2)

1 We use ‘mixed systems’ as a probably imperfect translation of the French expression “Systèmes mixtes”, widely used in the Soft Matter
community.

2 Chain units are sometimes called ‘monomers’, which is wrong: a monomer is a chemical species, of different formula, which reacts during the
polymerization.
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where nk(q) is the spatial Fourier transform of nk(r)

I =
∑

species

nk(q).
∑

species

nl(−q) (3)

where nk(l)(−q) is the conjugate of nk(l)(q).
Let us consider a system made of two molecular species, A and B . We have:

I = (
bAnA(q) + bBnB(q)

)
.
(
bAnA(−q) + bBnB(−q)

)
(4)

Here comes a second important source of simplification related to distances large compared to interatomic dis-
tances, in condensed matter: the fact that the density fluctuations of the system are most of the time negligible. Hence
nA(r) and nB(r) and the molar volumes vA and vB are linked by a simple relation:

vA.nA(r) + vB.nB(r) ∼ cst. (5a)

or in q space3

vAnA(q) + vB.nB(q) ∼ δ(q) ≡ 0 at q �= 0 (5b)

Replacing in (4), we get:

I (q) = (bA/vA − bB/vB)2.nA(q).nA(−q)

= K2
AB.nA(q).nA(−q) (6)

which depends only on nA(q) (or nB(q)). One ‘sees’ the positional fluctuations of one species with respect to the
other, since both positions are inter-related by the incompressibility relation: where species A is present, species B is
not present. This is akin to the Babinet theorem in optics: the diffraction figure obtained for a given shape is the same
when the shape corresponds to the transparent (e.g. cut out of a black cardboard) or the opaque part (e.g. black paint
deposited on a transparent glass) of the planar object. The pendent of the difference between black and white is the
contrast K2

AB in Eq. (6) above.
If we have more than two components, the incompressibility relation can be written∑

bk.nk(q) ∼ δ(q) ≡ 0 at q �= 0 (7)

If, for example we consider several species in a solvent, we can eliminate the solvent and obtain:

I =
∑

k=A,B...

(bk/vk − bS/vS)2.nk(q).nk(−q) (8)

which involves the density of contrast squared

K2
kS = (bk/vk − bS/vS)2. (9a)

We can then define ρ, a ‘density of scattering length’4

ρk = bk/vk (9b)

Thus, all will depend on differences between values of ρ obtained for different molecules or other elementary
bricks.

3. Deuteration: a superlabel

At this stage, remember that our reasoning is valid for any radiation, in particular photons, with two examples in
practice:

3 Rigorously, the limit at q → 0 is vAnA(q) + vB .nB(q) = kBT . χT , where compressibility χT is negligible most of the time (completely
opposite would be the case of CO2 close to critical point, for example, where density fluctuations are huge).

4 ρ is noted also Nb , in particular, in the neutron reflectivity community.
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Fig. 1. Nuclear scattering length for thermal neutrons, b in 10−13 cm, versus the atomic mass (in dotted line is schematized the variation for X-rays
which is linear in atomic number Z).

– usual, visible light as produced by lasers (e.g. red light or green light). In this case the contrast depends on
differences in optical index;

– X-rays, where the contrast is proportional to the difference in electron density in the different electronic clouds of
the atoms or molecules.

Let us, in particular, compare the neutron and X-ray cases in Fig. 1. We see that for neutrons, b displays a very
erratic variation as a particles after purification. They were studied in solution, using on the nucleus, not on Z while
for X-rays, it would be continuously increasing as a function of atomic number Z. As a consequence we can have
a high difference of neutron scattering length densities between two nuclei of atoms, neighbours in values of Z, at
variance with X-rays. Hence there is some ‘contrast’ between such neighbours which would be indistinguishable if
one was using X-rays.

There is also a very important additional fact: the isotopic effect. When the nuclei are different for the same element,
their interaction with neutrons is different. Let us look at the atomic number Z = 1: it corresponds to hydrogen
(H), but also to deuterium (D), an isotope of hydrogen of very different scattering length, bD = 6.67 fm instead of
bH = −3.74 fm. Let us evaluate the consequences of this on the value of ρ for water: we find 0.05 × 10−10 cm−2 for
H2O, instead of 6.6 × 10−10 cm−2 for D2O.

The effect of replacing H by D on ρ for water will be similar for organic species where carbon C, which has about
the same b value as oxygen, bC = 6.64 fm, is combined with hydrogen in proportions similar to that for O in H2O
(‘saturated’ groups as in alkanes imply the group ‘CH2’). Many solvents are available in deuterated version, often
because of their use in Nuclear Magnetic Resonance, which becomes here an ‘objective ally’ of neutron science.
So just by replacing normal solvent by deuterated solvent, we can strongly increase the contrast of a non-deuterated
solute. We can also create deuterated sequences in polymers, or in surfactants, via a convenient synthesis. Since the
electronic clouds are not modified, neither chemical properties nor physicochemical interactions are strongly changed.
This is particularly important for large objects, micelles, polymers, where the number N of individual molecules is
large, which increases by the same factor N the enthalpy cost for mixing. For D and non-D polystyrene segments
the enthalpy of mixing is χHD. T = 10−4kBT , which leads to 10−2kBT for a chain of 100 segments, and hence the
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translational entropy of mixing (∼kBT per chain) remains dominant. For segments of different chemical nature, the
enthalpy of mixing would be around at least 100 times more, and would balance entropy, leading to phase separation
between the two types of chains.

In summary, contrary to chemical labeling, deuteration is a thermodynamically neutral labelling in soft condensed
matter because χHD is often small enough.

4. Playing with contrast

Now that we have defined the contrast, and know how to tune it, in particular through the use of deuterated species,
we will show various uses of contrast and contrast matching.

4.1. Contrast variation

In order to use such possibilities at their best, we first need to know exactly the ρ value for each component. This
is not so easy by calculation, because it requires knowing the species exact molecular volume, in the exact conditions
of measurements, which is difficult to obtain accurately either from the literature or from densitometry. A simple way
is to use neutrons: we realize a series of solvents of different ρ using different fractions φD of deuterated solvent, and
measure for each species A the intensity scattered by a homogeneous solution of A in these solvents; the solution can
be dilute, but can as well be a concentrated one. As long as the spatial distribution of species A stays the same for all
fractions φD, only the front factor, i.e. the contrast K2 will vary. Since K2 will be a quadratic function of φD, we must
find that

√
I can be fitted by a linear function of φD. The zero value corresponds to a solvent having the same ρ than

the solute A. In practice, we can class all species on an axis of scattering length density ρ (see Eq. (9b)), as shown for
two examples in Fig. 2.

4.2. Ternary mixture: matching one species or the other in mixed systems: the case of polyelectrolyte–protein
complexes

Here we consider two species A and B in a solvent S, with value ρA different enough from ρB . Then if we
match one species with the appropriate mixture of deuterated (D) and non-deuterated (H) solvents, we have access
to the contribution of the other species only. In the example which will be described here, our second species, B , is
deuterated so it can be matched using a high D fraction, whereas species A is matched with a much lower D fraction.
There is always a large contrast between the non-matched species (A or B) and the solvent matching the other species
(B or A).

This strategy is very convenient for what is called a ‘mixed system’ (see Note 1 again). The interest is that
such a system is very common in the field of soft matter, both on the synthetic/industrial side and on the biol-
ogy/biotechnology side.

Among mixed systems, we will use as an example the one studied recently in detail at Laboratoire Léon-Brillouin
[4–9], namely, complexes made by lysozyme, a positively charged protein in acid buffer (pH 4.7, 5 × 10−2 mol/L
acetate buffer), and sodium poly(styrenesulfonate) (PSSNa), a negatively charged polyelectrolyte. This kind of ‘mixed
system’ (protein and polyelectrolyte) has been very much studied macroscopically, and has many applications [10]. In
this article, PSS is always used in its deuterated version D-PSS. In order to get either the PSSNa signal or the lysozyme
signal independently, each PSS/protein composition has been achieved in two solvents: a fully D2O buffer that matches
(within less than 1%) the neutron scattering length density of deuterated PSSNa, and a 57%/43% H2O/D2O mixture
that matches the neutron scattering length density of lysozyme.

This example is also an opportunity of showing a variety of different SANS signals often encountered in soft matter.
Let us show a first case of complexes obtained for a large excess of polymer [4,5]. As a basis of comparison, let us
describe the signal of a free protein at concentration low enough and ionic strength high enough that the differential
scattering cross-section dΣ/dΩ is proportional to the scattering S1(q) of a single object. This is the continuous line in
the log–log plot of Fig. 3: we see that it displays a plateau at low q , followed, when increasing q , by a smooth decay.
This decay is described by the Guinier law:

S1(q) ∼ Mw.P (q) ∼ Mw.
(
1 − q2R2

g/3
)
, qRg < 1 (10)
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(a)

(b)

Fig. 2. (a) A first example of a scale for scattering length density for the system silica, DimethylAcetamide (DMAc) solvent in H (non-deuterated)
and D (deuterated) versions, and polystyrene PS, in H and D version. (b) A second example of a scale for scattering length density for the system
lysozyme (protein), sodium polystyrene sulfonate (PSS), deuterated (D) or not (H), TetraMethylAmmonium counterions (TMA+), and the matching
solvents.

where Mw is the weight average mass, P(q) the form factor and Rg the radius of gyration. Increasing q even more
and reaching qRg > 1, we see that P(q) decreases like q−4. This ‘Porod law’ is characteristic of a compact object
(no scattering from the inside of the object since it has a constant density) with a sharp interface with the solvent.

Let us compare it to the scattering of the protein inside the complex at high concentration of polyelectrolyte chains
(+ symbols and o symbols in Fig. 3). At low q , we see also a Guinier law; a vertical shift has been introduced to make
the free protein curve distinguishable, but, in reality, if it was just corrected to concentration, all curves would tend to
the same zero q limit, because the protein keeps the same mass. On the contrary, at larger q the complexed protein
scattering changes: it varies now as q−1.7 instead of q−4. Such variation is characteristic of an excluded volume chain
as showed some time ago for polymer solutions by the Saclay Polymer Group [11]. A power law q−Df is expected
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Fig. 3. Scattering signal of lysozyme—polymer is matched—within the complexes for [−]/[+]introduced = 20 ([lysozyme] = 20 g/L;
[PSSNa] = 0.3 mol/L). Black symbols: signal of lysozyme form factor (measured at 10 g/L and magnified here by a factor 4 instead of 2 in
order to make curves distinguishable). Blue symbols: complexes made with small chains (N = 100). Green symbols: complexes made with chains
of intermediate length (N = 360).

Fig. 4. Scattering signal of PSS chains within the complexes (lysozyme is matched) for [−]/[+]introduced = 20 ([lysozyme] = 20 g/L;
[PSSNa] = 0.3 mol/L) as for Fig. 3. Black symbols: signal of a pure solution of PSSNa at 0.3 mol/L. Orange symbols: complexes made with
small chains (N = 100). Mauve symbols: complexes made with chains of intermediate length (N = 360). Full squares: complexes made with small
chains (N = 625).

from a fractal object of dimension Df : this is indeed the fractal dimension of a Self Avoiding Walk (while random
walk has a fractal dimension Df = 2). It has been shown formerly [12,13] that a q−1.7 law is also obtained for an
unfolded protein. So we can infer, from such a direct measurement, that the conformation of lysozyme inside the
complexes has changed: the protein is no longer in its native state (this has been checked by spectroscopy).

In the same system, if now we match the protein signal, and look at the polyelectrolyte one in Fig. 4, the scattering
shape is strongly different. At q∗ ≈ 0.08 Å−1, we see a maximum characteristic of electrostatic repulsion between
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Fig. 5. SANS curves as a function of the introduced charge ratio: (a) scattering of lysozyme (40 g/L) for all 5 ratios [−]/[+]introduced noted [−]/[+]
in the figure. Each curve is shifted by a factor 10, and compared to that of diluted lysozyme (10 g/L) measured in same contrast conditions,
multiplied by a factor 4, and plotted in black points. (b) Scattering of polyelectrolyte for the same five charge ratios (shifted each by 10), and
compared to the one of pure PSS Na solutions measured in same contrast conditions and plotted in black points. (c) Macroscopic aspect of the five
samples: from left to right, samples are less and less turbid when increasing [−]/[+]introduced.

charged chains. At large q , PSS chains scatter as q−1, as expected for one-dimensional rod-like objects (Df = 1)
with short scale rigid structure due to electrostatic repulsions. Both features are present in pure PSSNa solutions
(continuous curve of Fig. 4).

In summary, we see distinctly the scattering of the two objects, although they are very different. Meanwhile, a small
correlation between species is visible through a common feature of both spectra: at low q , in the signal of lysozyme in
the complexes, a slight ‘shoulder’ can be seen at the same q∗ as for the scattering of polyelectrolyte: this suggests that
the networks formed by the two chain-like objects are interpenetrated. The protein is unfolded and simply coexists
with the polyelectrolyte chain without larger spatial concentration fluctuations. This agrees with the fact that solutions
are macroscopically clear in this regime.

Let us now consider in Fig. 5 the evolution of the mixture scattering with the quantity of polyelectrolyte chains
added, measured in terms of the ratio of charges introduced, [−]/[+]introduced. At large ratio (lower curves), we recover
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the behavior just described. At a lower ratio, we know that the visual aspect of the samples shows a transition towards
a second region of the phase diagram where samples become more and more turbid (see Fig. 5).

At the same time, the scattering (upper curves) shows a second type of complexation [4–6]. It displays very differ-
ent features, which also make appear several different q ranges, detailed below:

– at large q , the scatterings from the two species are different from each other (as above). As in pure PSS solutions,
the PSS signal is akin to that of a semi-flexible individual chain (which will be detailed below in Section 3.4):
it approaches progressively the signal of a rod (q−1 as Df = 1) at the largest q’s. In this same large q range,
the protein signal is also identical to that of an individual protein: it displays a q−4 law. But at intermediate q ,
a new effect is visible: a pronounced maximum can be seen at q ∼ 2π/Rlys. This is characteristic of close contact
between two proteins inside the complexes. We have thus again a quite accurate and independent description of
the two species using these two different contrasts;

– at low q , the situation is reversed. Instead of being different, the signals of lysozyme (when PSS is matched) and
of PSS (when lysozyme is matched) display an identical variation with q . Remember that we look at the upper
curves in both left and right pictures. When going from large to low q , we first see an increase, corresponding to a
q−4 law. This law, which is characteristic of compact objects with sharp interface as said above, is observed here
again, but at much lower q range (hence much larger scale) than for the lysozyme protein q−4 law described above.
Looking at a slightly lower q (still for upper curves), we see that the signal bends down and follows a rounded
curve: this corresponds to the Guinier law for this compact globule, which we can call ‘primary aggregate’. We
can actually fit the signal in such Guinier range and in the q−4 regime to the scattering calculated for spherical
‘globules’ of radius Rcomp of order 10 nm.

The fact that both species give the same signal in this q range means that both species are located in spherical
globules. Before discussing this in detail, let us describe the last regime, observed at the lowest q available of upper
curves: we see that a new power law q−α is clearly present, with α = 2.1. Here as before, the exponent for such a
power law can be the fractal dimension of aggregates Df . The value 2.1 can indeed be attributed to fractal aggregation
of the primary aggregates (globules): it turns out that this is the one observed for reaction limited aggregation; here the
limiting ‘reaction’ can be attraction between electrostatics species, as observed elsewhere. The q−2.1 law is observed
down to the lowest q: no Guinier regime is visible for these ‘secondary’ aggregates. Their size is larger than the
accessible range.

4.2.1. Connection with real space and larger scales
Since, as we just discussed, the aggregates have larger sizes than those accessible by our measurements, we used

real space imaging through electronic microscopy after cryofracture [7] in order to access larger scales. In Fig. 6, we
can see grape-like aggregates which can be attributed to the fractal behaviour deduced from SANS. This is an example
of the connection between observations in the q space and imaging in real space at larger scale. It is clear that no
complete information can be gained from a single picture. The fractal behaviour is not seen clearly and necessitates
interpretation. We can check that large aggregates are present, as suggested by SANS, but access to the maximum size
of the largest aggregates would require examination of a much larger number of pictures. On the contrary, the globule
size is well apparent. Correcting from the fact that the apparent size depends on the distance from the centre of the
object to the fracture plan, we find largest sizes around 15–20 nm. One gets a visual insight of the narrow distribution.
This agrees with the accurate values of radius Rcomp (12 nm for lysozyme, 15 nm for PSS) and variance σ (0.37)
obtained by SANS on the same sample.

4.2.2. Low q effective neutron contrast
In this specific scattering situation we can largely extend our analysis taking advantage of the identity of scatter-

ing length densities from both species [4,6]. We can assume that below 0.03 Å−1 the scattering is only due to the
complexes. This allows us to introduce here the very classical formula for centrosymmetric objects in solution:

Ilyso(q) (cm−1) = Φcomp�ρ2
compVcompPcomp(q)Scomp(q) for q < 0.03 Å−1 (11)

where Φcomp is the volume fraction of the complexes, Vcomp is their volume, �ρ2
comp the effective neutronic contrast

between the complexes and the solvent, Pcomp their form factor and Scomp their structure factor.
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Fig. 6. Transmission Electronic Microscopy pictures after cryofracture for sample with introduced charge ratio [−]/[+]introduced = 1.6. Square
edge of the picture ∼0.5 µm.

Let us focus more on the term �ρ2
comp, which is the key point of our analysis. It is an effective neutronic contrast,

i.e. the difference between the scattering length density of the solvent ρsolvent, and an average scattering length density
of the complex ρcomp, since the latter can be considered as homogeneous on the scale of observation. Let us take
the case where the polyelectrolyte is matched, and the lysozyme visible. The average composition of the complex
comprises lysozyme with an inner volume fraction Φlyso_inner, and the solvent and polyelectrolyte chains, which
occupy together a volume fraction (1 − Φlyso_inner) and have here the same scattering length density as the solvent,
ρsolvent. So we can write:

ρcomp = Φlyso_innerρlyso + (1 − Φlyso_inner)ρsolvent (12)

and the effective contrast between the complex and the solvent becomes a very simple expression:

�ρ2
comp = (ρcomp − ρsolvent)

2 = Φ2
lyso_inner(ρlyso − ρsolvent)

2 = Φ2
lyso_inner�ρ2

lyso (13)

This makes two things possible.
First, if we fit the scattering, in the region where Scomp(q) = 1 (this is when q > 1/Rcomp), to the form factor of

a sphere (a very classical expression), of radius Rcomp and volume Vcomp, the front factor will give us the apparent
contrast �ρ2

comp, and from it we get Φ2
lyso_inner the squared inner lysozyme fraction.

Second, we know that the same equation is valid for PSS when lysozyme is matched, replacing ‘lyso’ by ‘PSS’ in
the indices above. Hence this prompts us to look at the ratio Ilyso(q)/IPSS(q) between the two signals: if the variations
are similar, this ratio is constant with q and exactly equal to Φ2

lyso_inner/Φ
2
PSS_inner! This is particularly exciting in the

example given here, since we are interested in the inner charge ratio of the electrostatic complexes, [−]/[+]inner. We
see on Fig. 7 two different cases:

(i) for ratio [−]/[+]introduced � 1 (values 0.65 and 1), the ratio Ilyso(q)/IPSS(q) is indeed constant (lower curves of
Fig. 7). Moreover, its value, when correcting by the different factors, yields [+]/[−]inner = 1;

(ii) for [−]/[+]introduced > 1 (values 1.66 and 3.33, upper curves), i.e. a larger amount of polyelectrolyte, the ratio
Ilyso(q)/IPSS(q) is not perfectly constant: it is decreasing at low q . This means that the polyelectrolyte scattering
decreases faster with q , i.e. that the sphere occupied by the polyelectrolyte is larger than that of the protein. This
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Fig. 7. IPSS(q)/Ilyso(q) at low q . Open circles: [−]/[+]introduced = 3.33; open triangles: [−]/[+]introduced = 1.66; crosses: [−]/[+]introduced = 1;
open squares: [−]/[+]introduced = 0.65. The continuous lines correspond to the fits of sphere and sphere plus corona scattering (see Ref. [6]) for
[−]/[+]introduced = 3.33 and [−]/[+]introduced = 1.66. The dashed line ordinate is 0.055. The dotted line ordinate is equal to 0.05.

Fig. 8. Pictures of the different structures of lysozyme–PSSNa complexes as suggested by SANS when [−]/[+]introduced is “close to 1” (here in
between 0.65 and 3.33).

can be explained by the presence of a polymer corona around a compact core of polymer plus protein. This picture
agrees with the extra negative charge observed in this regime.

These analyses are translated into real space in Fig. 8, which shows pictures of the different structures of lysozyme–
PSSNa complexes around [−]/[+]introduced = 1.

4.2.3. Kinetic evolution of samples after synthesis
Like X-ray or light scattering, neutron scattering allows one to follow a kinetic evolution. To illustrate this, we

keep our lysozyme–PSS system. We have studied, in the early stages after its realization, one sample with a high
polymer ratio, [−]/[+]introduced = 20, which, after a long time, eventually evolves to completely unfolded protein and
weak scattering at small q . Fig. 9 presents the results recorded in the first hour from 2 min (upper log–log curves)
to 60 min. We see in the log–log plot a rapid vanishing with time of the low q signal: we learn that the globules
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Fig. 9. Early stages of kinetics (from 2 min 30 sec to 60 min), for the protein signal (polymer is matched) in a lysozyme–PSS mixture with large
excess of polymer: [−]/[+]introduced = 10 ([lysozyme] = 40 g/L; [PSSNa] = 0.3 mol/L). Insert: a I (q)q1.7 = f (q) representation, showing the
fractal behavior and the vanishing of the medium q maximum due to correlations between proteins inside the aggregates, for a similar kinetics
(successive frames of 10 min each) at same concentrations.

are first immediately formed, and progressively redissolved. Let us then focus on the insert plots, which represent
qDf . I (q) versus q in a similar kinetics study. Such a plot is widely used for showing a q−Df law, in particular for
large q behaviours, since it is much more sensitive. Here Df = 1.7, and we observe that at the beginning (upper curves
of the insert) there is an oscillation corresponding to the maximum for proteins at contact; this oscillation vanishes
progressively with time, simultaneously with the disappearance of the low q globules scattering.

4.3. Matching several species in a multiple system: example of counterions localisation in polyelectrolyte–protein
complexes

We will now consider here a quaternary system, in which we will match two species to the solvent. We are then able
to observe distinctly the fourth one. We keep as an example our PSS–lysozyme system, where we can use the rare and
invaluable advantage that hydrogenated PSS chains and lysozyme have exactly the same scattering length density ρ.
Thus the scattering from both species can be switched off simultaneously (by a 57%H2O/43%D2O solvent mixture).
We can see the fourth component, which is the counterions, if we can make their ρ different enough, using labelling.
This is possible [4,8] by replacing the Na+ counterions by deuterated TetraMethylAmmonium d-TMA+ counterions,
which have the same valence, and are known to behave similarly (contrary to what the chemical formula crudely
suggests). The signal is the scattering of the deuterated counterions only, and we can check whether they are released
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Fig. 10. Pictures: Structures of globules made of lysozyme (green), h-PSS (green), and (CD3)4N+ counterions (red) in 100% H2O solvent
(left, light blue background) or in 57%H2O/43%D2O solvent (right, green background). Curves: corresponding scattering of (CD3)4N+ in
the 57%H2O/43%D2O solvent. (a) and (b): ‘naked cores’ ([−]/[+]introduced = 0.65 and [−]/[+]introduced = 1). (c) and (d): ‘hairy cores’
([−]/[+]introduced = 1.66 and [−]/[+]introduced = 3.33). On the lower left-hand side figure, is also plotted the scattering in 57%H2O/43%D2O
with Na+ c.i. which shows very low compared to that with (CD3)4N+ c.i.

in the solvent or gathered around the globule. We get a ‘yes or no’ check, unambiguously linked to the presence or
not of the chain counterions in protein–polyelectrolyte complexes by choosing 4 samples which should, or should
not, have released only counterions, and hence who should scatter, or not. These four samples, which correspond
to the four typical structures described above in Fig. 8, are illustrated with respect to the localisation of counterions
in Fig. 10. In short, by varying [−]/[+]intro we can pass from ‘naked’ cores, where all c.i. (counterions) should be
released, to ‘hairy’ cores, where some c.i. are still present because they are condensed on the dangling polyions of the
shell. In order to do this experiment, we first check the effect of TMA on the globule size using non-deuterated TMA
counterions which are matched by H2O-rich solvent, with deuterated PSS polyelectrolyte. Then we replace d-PSS by
normal PSS, and TMA by d-TMA.

On Fig. 10, at first sight, samples containing ‘naked’ globules ([−]/[+]intro = 1 and 0.65) do not scatter at low
q , while samples with ‘hairy’ globules ([−]/[+]intro = 1.66 and [−]/[+]intro = 3.33) do scatter. A control sample
with Na+ counterions has been measured for [−]/[+]intro = 1.66. Compared with the d-TMA scattering in Fig. 10, its
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Fig. 11. Counterions release: (a) [−]/[+]introduced = 1.66; (b) [−]/[+]introduced = 3.33. Full squares: lysozyme scattering (in 100%D2O solvent).
Red crosses: PSS scattering (d-PSS in 57%H2O/43%D2O solvent). Black crosses: c.i. (CD3)4N+ (in 57%H2O/43%D2O solvent with h-PSS
chains) in hairy globules. Open symbols: c.i. scattering renormalized—noted counterions(r) in the figure caption, in order to facilitate comparison
with the signal from d-PSS.

scattering at low q is very small. This confirms that the low q scattering from hairy globules comes from the d-TMA
counterions.

In order to check whether this scattering comes from the decoration of the shell by the counterions, we compare it
to the d-PSS chains scattering. They should be proportional to each other. The ratio, which we will call F, is the square
of a product of two terms:

– the ratio of the d-TMA and d-PSS contrasts, which is close to 1, because the neutron density length of (CD3)4N+
and d-PSS are close;

– the ratio of the d-TMA c.i. and d-PSS volume fractions, equal to (1 − f ).Vc.i./VPSS, where f is the fraction of
free counterions equal in Manning’s condensation theory to 0.66 for PSS Na. Applying this value, together with
our estimate of Vc.i./VPSS, we obtain a value of F not very far from the experimental value found equal to 10.
This is a good support of the picture of decoration of the PSS shell by counterions which we proposed.

In summary, contrast matching has allowed us to show that when no polymer corona is present, there are no
counterions around the spheres, and hence counterions are released in the solvent, which gives an entropy gain to the
system.

4.4. Zero deuterated fraction extrapolation for chain form factor in polyelectrolyte–protein complexes

Using for the third and last time the example of polyelectrolyte–protein complexes, we show how to extrapolate
the contribution from scatterers belonging to the same individual object, here a chain, in the case where such objects
have strong intercorrelations due to interdispersion—we could say ‘interminglement’ for chains—among the mixed
system [9]. The q dependence of this intrachain contribution is accounted for in the so-called form factor (normalised
to 1 at zero q limit). This section will be an opportunity of introducing the form factor of a polymer chain.

The system is equivalent to a quaternary system: protein (1), non-deuterated h-PSS (2), solvent (3), and a fraction
of deuterated PSS (4). Because h-PSS and protein have very close scattering length densities, we can match them both
by the same 57%H2O/43%D2O mixture (as just above in Section 3.3). So deuterated d-PSS is the only visible species.
To get the single chain contribution, we can then extrapolate the d-PSS signal to zero d-PSS concentration. Of course,
this makes sense only if the total PSS concentration (cd-PSS + ch-PSS) is kept constant.
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Fig. 12. Sketch figuring the extrapolation of the single chain scattering.

This is schematized in Fig. 12. Because we match h-PSS, only the SDD(q) term is present and:

I (q) (cm−1) = K2
DV 2

mol

{
ΦDS1D(q) + Φ2

DS2D(q)
}

(14)

where K2
D is the contrast between d-PSS chains and the solvent, and Vmol the molecular volume of one chain unit.

S1D(q) is the scattering from couples of segments from the same d-chain, and S2D(q) from two different d-chains (we
use for h-chains the same notations for S1H, S2H, with H instead of D, and S2HD(q) between one d-chain and one h-
chain). Since the total concentration is constant and all chains are identical apart from deuteration, S1D(q) (=S1H(q))
can be noted S1(q) (Å−3), and S2D(q) (=S2H(q) = S2HD(q)) noted S2(q) (Å−3). Finally,

I (q) (cm−1)/(K2
D.V 2

molΦD) = S1(q) + ΦDS2(q) (15)

We will measure solutions with four values of ΦD at constant total concentration of chains; for each q value we
will get a series of four intensities. By extrapolation of I (q)/ΦD to ΦD = 0, we get the value of S1(q) at this q value.

To check the validity of this zero ΦD extrapolation, we applied it first to a pure PSS solution. Doing this we repeat
an experiment done some years ago in the Polymer Group at Saclay [14] (S1(q) was later obtained by an even more
direct method, called Zero Average Contrast (ZAC), detailed in Appendix A).

In order to discuss the three form factors obtained, we recall now in more detail the q dependence in usual poly-
electrolyte solutions:

(1) at q < 1/Rg , the complete intrachain scattering S1(q) tends at q → 0 towards:
S1(q → 0) (Å−3) = (1/Vmol).Nw.P (q), where Nw is the weight average of the number of units in one chain.
We have limq→0(P (q)) = 1, and all the q dependence is contained in P(q), which can be written at low q (see
Eq. (10)): P(q) ∼ 1 − q2R2

g/3, Rg being the radius of gyration of the chain;
(2) in the so-called ‘intermediate’ range, q > 1/Rg , P(q) gives information from the inside of the object. For a

wormlike chain, one has two ranges:
– at sizes r larger than the persistence length lp , for q < 1/lp , the conformation is that of a Gaussian chain,

a random walk. Since the fractal dimension of a random walk is 2, S1(q) and P(q) vary as 1/q2;
– at distances smaller and smaller than lp , the chain appears more and more rigid. The curve followed by the

chain in real space is such that if Ψ is the angle between the tangents of two points of the chains separated by
a curvilinear distance l, then:

〈cosΨ 〉 ≈ exp(−l/ lp) (16)

– at larger q , the chain is rigid, so the fractal dimension is Df = 1, and S1(q) ∼ q−1.
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Fig. 13. ‘Kratky plot’ (q2I (q) vs q) of the three I/ΦD signals extrapolated at zero deuterated volume fraction ΦD, proportional to the chains form
factors for PSS: alone (lower curves, red dots), inside the gel structure (middle curve, yellow dots) and inside the globular structure (upper curve,
brown dots) as well as the three corresponding fits (solid lines).

To visualize better the signal of the form factor, a convenient representation is the Kratky plot, q2.I (q) = f (q),
represented in Fig. 13, from q = 10−3 to q = 6 × 10−2 with a linear q axis. This allows careful comparisons with
calculations in the frame of the wormlike chain model [15]. At low q , S1(q) tends to a constant, so q2I (q) is null at
q = 0. For q.lP < 4, Sharp and Bloomfield [16a] give the following expression:

P(q) = 2(exp(−x) + x − 1)

x2
+

[
4

15
+ 7

15x
−

(
11

15
+ 7

15x

)
exp(−x)

]
2lp

L
(17)

with x = Lq2lp/3, L being the chain length. This describes both the Guinier range, where q2I (q) is increasing,
and the Gaussian chain spatial range, where q2I (q) displays a plateau, since I (q) ∼ q−2. When q.lp > 4, the signal
follows the asymptotic law of des Cloizeaux [16b]:

P(q) = π

qL
+ 2

3q2Llp
(18)

for which the quantity q2.I (q) ∼ q2.q−1 ∼ q is increasing again. We show the result of a fit (L being known, the
fitting parameter is lp) on Fig. 13. For pure PSS, the best fit is for lp = 50 Å. This is the value given in the literature
for the same ionic strength as in our solutions (0.05 M buffer, cPSS = 0.1 M). It is a combination of the intrinsic
persistence length l0 due to the chemical rigidity chains (∼10 Å) with the electrostatic persistence length le due to the
repulsion between the charged monomers.

The extrapolated signal for PSS inside the gel structure is represented on Fig. 13 in the Kratky plot and compared
with the signal of the PSS chains alone in solution. A change in the persistence length of the chains can be seen in two
ways:

– the upturn position is at q = 0.025 Å−1 for the PSS inside the complexes when it is at q = 0.015 Å−1 for the PSS
alone;

– the plateau value is 5×10−20 cm−3 for the PSS alone, when it is 12 × 10−20 cm−3 for the PSS inside the com-
plexes.
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Fig. 14. Scattering cross-section I (cm−1) normalized to deuterated chain volume fraction (I/ΦD), and zero ΦD extrapolation, proportional to the
form factor of PSS chains in complexes.

Since the plateau height varies as 1/lp , the persistence length has undoubtedly decreased; the fit gives a best value
lp = 20 Å instead of 50 Å for the PSS alone.

In summary, after interaction with the protein, in the gel phase, the PSS chains are shrunk. Note that these changes
in S1(q) are accompanied by corresponding changes in the scattering for ΦD = 1. We can see in Fig. 5 that the position
of the ‘polyelectrolyte peak’, is shifted towards lower values of q: the chains being shrunk, they are further apart.

Finally, let us look at the conformation of the PSS chains inside the globular complexes. To be consistent we
wished to use the same chains. Hence, in order to obtain a transition towards the globule regime, we used another
parameter affecting the transition, the ionic strength, which we increased to 0.5 M. Of course, we first have used the
100% deuterated sample to check this globular structure. Before looking at the Kratky plot of extrapolated data, let us
look for this sample at the extrapolated signal in log I versus log q representation. On Fig. 14 are represented the four
PSS signals (in I (q)/φD) for ΦD = 100%, 75%, 50% and 25%, as well as their extrapolation at φD → 0:

– at low q , the PSS “total scattering” (ΦD = 100%) increases when q → 0. Then, when decreasing ΦD, this low
q intensity decreases. This is opposite to the pure solution and gel case (curves not shown here), where the total
scattering displayed a maximum, so that when reducing the interchain contribution at lower ΦD, the intensity was
increasing at low q;

– at the high q values, the inter-chains correlation peak imposed between chains by the inter-proteins contact cor-
relations, vanishes as the deuteration ratio tends to zero, as expected. Thus, finally, the extrapolated signal seems
not so different from the signals of pure PSS and PSS inside the gel structure; the high q region scatters like q−1

and crosses-over when decreasing q .

This last result is also represented in the q2I representation on Fig. 13. It is possible to see immediately that the
structure adopted by the PSS chains inside the dense complexes is completely different from that of the pure PSS
chains in solution and inside the gel structure. The conformation adopted is no longer a wormlike chain. In the present
case an apparent plateau can be seen. It can be attributed to a scattering like q−2, which suggests that the chains are
close to a Gaussian behaviour and behave as random walks inside the globules. Alternately, we can focus on the slight
maximum observed in the q2I plot. This can be attributed to a collapsed conformation, as observed at shorter scale in
partially sulfonated PSS, which adopts a pearl necklace-like conformation [17].
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4.5. Summary

In summary, using various possibilities of contrast matching in a polymer–protein complex, we have been able
to measure separately the protein and the polymer signals. In the case where the structure was as simple as mixed
globules, the contributions of the two species are proportional, so we can ‘titrate’ them inside the globules. Moreover,
because the scattering length density of lysozyme was equal to that of the polymer (a very special case), we have also
been able to measure the counterions signal, and the polymer form factor inside the globules. In the more general case
when the scattering length densities are different, other possibilities can be explored, such as ZAC (see Appendix A).

5. Accuracy, absolute units and modelization

We will briefly discuss how neutron scattering allows us, through accurate measurements in absolute units, to
compare data with theoretical models and calculations, analytical or from simulation.

5.1. Accuracy, absolute units

As discussed above, one advantage of neutrons for Small Angle Scattering is the high contrast available, in partic-
ular in the case of deuterium labelling. Hence a high enough scattering can be obtained, even if the incoming flux is
weak. The collateral interesting aspect of low flux is that all parasitic signals such as scattering and reflexion by the
collimation slits, as well as from sample container (which, moreover, is often the lowest in the case of neutrons com-
pared to other radiations), or impurities in the sample are low also and easy to correct. The signal can be expressed in
absolute cm−1 units, after normalisation by the water scattering, the cross-section of which can be measured on each
spectrometer, in the corresponding conditions. Other advantages are:

– the sample is not damaged during the measurement, so the scattering does not evolve during the recording;
– multiple scattering is also often negligible, and the density of scattering length is well defined for each species, so

that the contrast is well known.

Thus, finally, we obtain an accurate reproducible expression of the Fourier transform of the spatial correlations in
absolute units.

5.2. The direct link between scattering and theory or simulation

Absolute units and measurement accuracy have a direct consequence: a quantitative comparison with theories.
In soft matter, many calculations use analytical derivations in which the correlations are the key to the statistical
calculation since entropy as well as the interaction spatial potential are often involved. In many cases, calculations are
easier in Fourier space, giving directly such a result with a physical meaning. Computer simulations also are possible
in Fourier space since the positions of the molecules are known, and thus the Fourier transform can be achieved during
the computer calculation, and stored by authors allowing later comparisons with data.

For computer simulations, in the case of the polyelectrolyte complexes described above, extensive Monte Carlo
calculations were performed [18]. To be brief, some of the results predict gel or globules and allow direct comparisons.

As we have seen, models for analytical calculation of the scattering were used to fit data on polyelectrolyte–
protein complexes showed above: from simple one (sphere), to more complex one (semiflexible chain). In the next
paragraph, we choose to present as an example, a slightly more complex calculation—namely, implying anisotropic
chain scattering, in order to discuss the feasibility aspect of comparison with an experiment.

5.3. Silica particles and polymer in a deformed nanocomposite: observation of anisotropic scattering and proposal
for modeling

We give here another brief example of mixed system implying polymer chains, which is often called a nanocom-
posite. It is a mixture of silica nanoparticles—first species—with chains of a film made of polymer—second species.
In order to improve the mechanical reinforcement, we were interested in a better dispersion of the silica inside the
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Fig. 15. Log–log representation of the measured scattering of films containing nanoparticles with hard silica core surrounded by polystyrene
non-deuterated grafted chains in a deuterated PS matrix at rest before deformation (middle curve, red dots), and submitted to a macroscopic
stretching of ratio λ = Length/Lengthinitial = 2. Upper curve (blue dots), scattering perpendicular to stretching axis. Lower curve (green dots),
scattering parallel to stretching axis.

polymer matrix. In this aim we undertook the task of growing polymer chains from the surface of the silica particles
[19–21]. Usually these chains are made of a non-deuterated polymer; if we disperse the particles in a deuterated matrix
of the same polymer, there is a strong scattering contrast between the chains brought together with the silica particles
and the matrix deuterated chains.

Indeed, looking at the red dots (which correspond to the scattering at rest, i.e. before deformation) in Fig. 15 [19]
we observe a signal characterized by:

– at low q , a steep decrease, followed by a more ‘rounded’ part. In this q range we see both the scattering from
polymer chains and the scattering of the silica core, which here has also a (smaller) contrast with the polymer
matrix;

– at larger q , by a slower decrease with a q−2 variation. As explained above in Section 4.4, a q−2 law is character-
istic of a Gaussian chain. This means that the deuterated chains brought together with the silica are interdispersed
with the matrix non-deuterated chains. At the local scale, the system is akin to a mixture of D and non-D chains in
a polymer melt. Such a mixture scatters neutrons, so the D chains are visualized. This signal dominates the silica
contribution, which decays much faster (q−4 law).

Note at this stage that some other synthesis gave non-aggregated particles after purification. They were studied
in solution, using contrast matching. We could see either the silica or the polymer, and fit the data to a well-defined
core–corona object in this case [21].

In a second step, the nanocomposite films have been deformed (at a temperature T = 112 ◦C, about 30 ◦C above
the glass transition, with a velocity gradient 0.007 s−1). It is then possible to observe the deformation of the polymer
shell within the sample. It is important to understand this particular interfacial region which is expected to be linked
with the mechanical reinforcement. Indeed, the latter is much stronger than expected from simple hydrodynamics of
hard spheres inside a fluid, as soon as the filler volume fraction becomes larger than a few percent; moreover, even if
percolation concepts—introducing connections between the hard objects—are considered, connections seem to occur
surprisingly below the expected volume fraction threshold. This suggests that the polymer at the surface of the fillers
has a specific behavior. In Fig. 16 we observe on a X,Y multidetector at different sample–detector distances (shorter
distances correspond to larger q):
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Fig. 16. Anisotropic scattering of a film made of a polymer matrix containing nanoparticles, on an X, Y multidetector located at 12, 4 and 1 m. The
wavelength is equal to 6 Å for all distances, so a shorter distance corresponds to larger q range. The stretching direction of the films is vertical.
Upper: matrix made of non-deuterated polystyrene similar to the non-deuterated grafted polystyrene ones: one sees only the silica particles, which
are not deformed, except for their aggregates at low q (large scales).
Lower: matrix made of deuterated polystyrene, presenting high contrast with respect to the non-deuterated polystyrene chains brought together
with the particles: the scattering is dominated by the signal of these chains surrounding the particles inside the matrix, which appears anisotropic at
low q and intermediate q , and isotropic at large q .

– on the upper row the ‘silica only’ scattering (particles in non-deuterated matrix). It is anisotropic at low q , with
an elliptical shape (left-hand side image): this corresponds to deformed aggregates. On the contrary, the scatter-
ing is completely isotropic at medium and large q (middle and right-hand side images): the elementary silica
nanoparticle is not deformed.

– On the lower row the polymer scattering (for the same particles in a deuterated matrix) is anisotropic at low q .
This may be linked to the deformation of the global shape of the aggregates since they contain labeled chains, but
also to the deformation of the chains themselves. We actually see some anisotropy also at medium q: we conclude
that some of the polymer chains surrounding the particles are deformed.

To proceed further towards a quantitative comparison, we need comparison with a model. If particles were isolated
with chains grafted regularly at their surface, chains would form a corona of chains. What would it give if those chains
were deformed? This leads us to achieve the goal of this section: to show a calculation of the expected anisotropic
scattering; we will limit ourselves here to the form factor, approached in [19]. For the isotropic case, the form factor
of a core–corona system has been calculated, for A–B block copolymer emulsion droplets (core of solvophobic A
sequences surrounded by a corona of solvophilic B sequences), by Pedersen et al. [22]. In the basic case, the core,
made of a solvophobic polymer is considered as compact. Its signal is the one of a compact sphere, while the corona
is made of chains swollen by the solvent. In our case of grafted silica, the core is made of silica and the grafted chains
form a corona and are swollen by the matrix chains. The global form factor can be written [22]:
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Pgrafted silica(q) = Fhybrid(q) = (�ρcore)
2.v2

core.Fcore(q) + (�ρchain)
2.v2

chain.Fchain(q)

+ 2.N.vcorevchain.(�ρcore.�ρchain).Score–chain corona(q)

+ N.(N − 1)(�ρchain)
2.v2

chain.Schaincorona–chaincorona(q) (19)

The first term is the self-correlation term of the core, i.e. its form factor. The second term is the self-correlation
term of each of the N chains. The third term is the cross-term between the core and the N chains of the corona. The
fourth term is the cross-term between each chain with the N −1 other chains of the corona. It is a convolution—thus a
simple product in Fourier space—of two amplitude factors (an amplitude factor is defined by the fact that a form factor
is the product of an amplitude factor by its conjugate): the global amplitude factor of the corona and the amplitude
factor of one chain (here a Gaussian chain).

We have extended the Pedersen derivation [22] to the deformed case [19]: the silica core is not deformed, obviously,
whereas the polymer shell is. At low q , a calculation of a simple core–corona model with deformed ellipsoidal corona
would be convenient. However, at medium q , we need to calculate the contribution of the chain conformation, because
its anisotropy gives a specific q dependence of the scattering anisotropy, as we will see now. From former work done
at LLB, extensively, on chain conformation in melts and networks (in collaboration with J. Bastide), we know that
the form or amplitude factor of stretched chains in a melt or a network is different from the one of a polyelectrolyte
chain. The latter is extended by repulsion between each segment along the chain. On the reverse, in a network the
chain is pulled through a few points relatively far from each other. The form factor is relatively easy to calculate.
This is because the chain conformations under deformation have been extensively studied theoretically as a route to
calculation of mechanical properties in amorphous polymers. We can adapt these calculations to derive the scattering.
The basic model [23] is a network of chains of NC segments at fixed end-to-end vector, to which is associated an
entropy, since the number of accessible conformations is restricted to a subset of the full set of accessible conforma-
tions. Since we are in the regime of relaxation where an entangled melt behaves as a rubber, we use a network model
and consider chains of sub-chains of Ne segments, with their ends bridged to other chains by temporary crosslinks.
At rest, the distribution of the end-to-end vectors is Gaussian, and we recover an average Gaussian behavior. Under
stretching, the distribution of the end-to-end vectors is deformed affinely to the macroscopic deformation, which is
transmitted down to the size corresponding to Ne segments. Below this size, we recover progressively the isotropic
Gaussian chain; this is called the ‘loss of affineness’ [24].

In Fig. 15 the lower and upper sets of dots (blue and green) display the measured scattering along parallel and
perpendicular directions. We see that the curves join together at large q , i.e. at sizes lower than the threshold for loss
of affineness. We obtain a similar behavior from the model. At low q , the chain corona is deformed, at medium q

the scattering recovers isotropy when increasing q; the comparison is satisfying with the model for a stretching ratio
λ = 2, equal to the macroscopic one applied to the sample. In summary, chains of the corona and close to the corona
appear deformed as much as the matrix, at least at the corresponding stretching temperature, 112 ◦C. It is beyond our
scope to discuss whether it is already too high to see a ‘glassy layer’: the glass transition temperature Tg is probably
abated by residual solvent down to 90, even 80 ◦C. The aim of this discussion was simply to show the feasibility of
getting interesting information in the domain of mechanical reinforcement of polymers.

6. Conclusion and final remarks

We have given above examples of how strong contrast can be varied due to the large range of scattering length
density brought by deuteration, how this can be used in mixed systems by various strategies, and how it is useful to
compare with nanometric scale analytical theories and simulations. The technique is mature for objects of size less
than ∼500 Å, and distances between objects less than a few 1000 Å. In this range X-rays can be used, but neutrons
offer the possibility of contrast. To look at larger scales, smaller scattering angles are required, which is hindered
by flux problems. Presently, the possible progress is mostly in improving the neutron flux, using more sophisticated
optics (supermirror guides and elliptical mirrors, multi-beam collimators, neutron lenses) and large detectors, allowing
gains in recording time by factors ten or a hundred, or gains in collimation permitting to reach lower angles, thus
larger scales. At these scales, the technique is competing in principle with X-rays—though only a few synchrotron
facilities reach the q range below 10−2 Å−1. Competition exists also with visible light, at very low q only. Electronic
microscopy is also very important, but labelling, accuracy and non-destructive aspects are still strong advantages of the
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neutron radiation. And one must never forget that the averaging brought by scattering techniques is a huge advantage
in studying very complex systems.

Mixed systems are a promising field: industrial formulation is alive even more than before, since it follows a present
trend of companies to get the best of products or to create new ones without too heavy new synthesis investment. New
fields are under strong development, where well thought out tricks can also lead to fast progress in smaller size
companies, as in biotechnology and pharmacy, which imply nanotechnology. Finally, nanotechnology combining soft
matter and hard matter is slowly progressing: this will again be the occasion of creating mixed systems, and benefit of
additional properties of neutrons, such as, for example, their magnetic properties.
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Appendix A. The zero average contrast method

We described in the text a way of zero deuterated fraction extrapolation of the form factor for a chain inside a given
system. We give here another method, which is more direct for polymer solutions. In particular, at the LLB, the form
factor of polyelectrolyte chains has been measured by this method, yielding the variation of the persistence length
[25]. Let us recall the fundamentals of this very convenient method by which the form factor of a chain among others
can be obtained. We start from the general expression of the scattered intensity:

I (q) (cm−1 or Å−1) = (1/V ).dΣ/dω = 1/V
∑

i

∑
,j

{
ki .kj exp

(
i.q.(ri − rj )

)}
(A.1)

where ki (cm or Å) = bi − bs . (Vmol i/Vmol s ) is the ‘contrast length’ between one repeating unit i (same with j ) of
scattering length bi and molar volume Vmol i , and a solvent molecule (bs , Vmol s ), of scattering length bs and molar
volume Vmol s ; in other words, following the formula of the main text, ki = �ρi.Vmol i .

Assume first that all chains are labeled with respect to the solvent; here we dissolve H-polystyrene into D2O. The
concentration is cp , in mole/L (or mole/Å3), so the total volume fraction of chains is ΦT = NAv.cp.Vmol i , where
NAv is the Avogadro number. Then for all i, we have ki = kH, and

I (q) (cm−1 or Å−1) = (1/V ).dΣ/dω = k2
HST (q) (A.2)

Using Å and Å−1 as the units for kH and I (q), we obtain ST (q) in Å−3. Quite generally,

ST (q) = S1(q) + S2(q) (Å−3) (A.3)

where

S1(q) (Å−3) = 1

V

∑
α,

∑∑
i,j

exp
(
i.q.(rα

i − rα
j )

)
(A.4)

corresponds to the correlations between monomers i, j of the same chain α (intrachain scattering) and

S2(q) (Å−3) = 1

V

∑ ∑
α,β �=α

∑∑
i,j

exp
(
i.q.(rα

i − r
β
j )

)
(A.5)

corresponds to the correlations between monomers i, jof two different chains α and β �= α (interchain scattering).
Assume now that only a fraction of the chains is labeled. We use a mixture of a number fraction xD of d-PSS chains

(ki = kD) and (1 − xD) of h-PSS chains (ki = kH). The total volume fraction of chains in the solution is the sum of the
volume fractions of the two types of chain, ΦT = ΦH + ΦD (we have in general Vmol H = Vmol D , so ΦD/ΦT = xD
and the equation ΦT = NAv.cp.Vmol H is still valid, cp being the total polymer molar concentration). The scattered
intensity (A.1) becomes:

I (q) (cm−1) = (1/V ).dΣ/dω = {[
(1 − xD)k2

H + xDk2
D

]
S1(q)

} + {[
(1 − xD)kH + xDkD

]2
S2(q)

}
(A.6)
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This second type of labeling allows us to suppress the interchain contribution S2(q), if we can have

(1 − xD)kH + xDkD = 0 (A.7)

This is possible if we use as a solvent a mixture of H2O and D2O: then the average scattering length of the solvent
bS can be varied. In the equation above, the symmetric case kH = −kD (which also implies xD = 0.5) is the most
efficient situation in term of intensity. This is obtained if bS/VS is made equal to the arithmetic average of bH/Vmol H
and its pendent bD/Vmol D. For PSS, this corresponds to a solvent constituted of 71% H2O and 29% D2O [8–10]. We
write |kZAC| = −kH = kD, and Eq. (A.2) gives:

I (q) = k2
ZACS1(q) (A.8)

which permits a direct measurement of intrachain scattering of one chain among the others, even in the semi-dilute
regime. The values evaluated for the contrast lengths of the Na counterions with the H2O/D2O mixture used here are
low; their contribution to the scattering have therefore been neglected. This has been confirmed by a more refined
evaluation accounting for hydration [26]. The S1(q) limit at q tending to zero is

lim
q→0

S1(q) = cp.NAvNw (A.9)

where cp should be expressed in mole/Å−3. Hence, from the definition of the form factor, we can write:

S1(q) = cpNAvNwP(q) (A.10)

To give an order of magnitude, the zero q limit of S1(q) is close to 0.2 Å−3 for cp = 0.34 M. This corresponds for
I (q) to about 10 cm−1.

The ZAC technique has been used since on polyelectrolytes by other authors [17,26–28].
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