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Abstract

The use of momentum-resolved inelastic x-ray scattering with meV energy resolution to study the high-frequency atomic dy-
namics in disordered systems is here reviewed. The typical realization of this experiment is described together with some common
models used to interpret the measured spectra and to extract parameters of interest for the investigation of disordered systems.
With the help of some selected examples, the present status of the field is discussed. Particular attention is given to those results
which are still open for discussion or controversial, and which will require further development of the technique to be fully solved.
Such an instrumental development seems nowadays possible at the light of recently proposed schemes for advanced inelastic x-ray
scattering spectrometers. To cite this article: G. Monaco, C. R. Physique 9 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Diffusion inélastique de rayons X à haute résolution pour l’investigation de la dynamique atomique de haute fréquence
dans les systèmes désordonnés. Nous passons ici en revue l’utilisation de la diffusion inélastique de rayons X résolue en impulsion
et à haute résolution en énergie (meV) pour l’étude de la dynamique atomique haute fréquence dans les systèmes désordonnés. Nous
décrivons la mise en œuvre typique de cette expérience, ainsi que quelques modèles couramment utilisés pour l’interprétation des
spectres expérimentaux et l’extraction de paramètres pertinents dans l’étude de ces systèmes. Sur la base d’exemples expérimentaux
concrets, nous discutons l’état de l’art de cette technique. Nous nous focalisons tout particulièrement sur un certain nombre de
questions ouvertes et autres résultats encore controversés, dont l’interprétation définitive nécessitera des développements techniques
ultérieurs. Nous montrons finalement qu’à la lumière des récentes propositions pour la réalisation de spectromètres avancés dédiés
à la diffusion inélastique des rayons X, ces développements semblent être à notre portée. Pour citer cet article : G. Monaco, C. R.
Physique 9 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The energy spectrum measured in an off-resonance scattering process of x-rays from matter is basically propor-
tional, at least up to energies of some hundreds of meV, to the atomic dynamic structure factor, S(q,E), where q

and E are the momentum and the energy exchanged in the scattering process, respectively. The momentum-resolved
technique used to measure this spectrum with meV energy-resolution in the 1–100 nm−1 q-range is often referred to
as high-resolution inelastic x-ray scattering (IXS), and this is the definition used hereafter.

Formally, S(q,E) is the space and time Fourier transform of the atomic density–density correlation function. This
is a key observable in the investigation of atomic dynamics: it holds, in particular, the information on the phonon
dispersion relations in crystals, on the acoustic excitations in disordered systems, and on diffusive processes in gases
and liquids. Traditionally, the atomic S(q,E) is measured in inelastic light and neutron scattering experiments. In
Brillouin light scattering experiments (BLS), due to the small wavevector of visible photons (k0 ∼ 10−2 nm−1), only
the q → 0 limit is basically probed, corresponding to the Γ point in the reciprocal space of a crystal. Inelastic neutron
scattering (INS) experiments complement light scattering ones by probing a finite q range, which in particular allows
for the measurement of the full phonon dispersion curves in a crystal. This possibility is disclosed to neutron scattering
by the fact that the energy of neutrons with wavelengths of the order of inter-particle distances is ∼100 meV, i.e. quite
close to the typical energies of phonons in crystals. Consequently, a neutron spectrometer with a moderate relative
energy resolution offers an easy access to the atomic dynamics. Different is the case of x-rays: for example, x-rays
with a wavevector of 1 Å−1 have an energy of ∼10 keV. Consequently, in order to detect the energy exchanged by an
x-ray beam with an acoustic phonon, a resolving power of at least 106 is needed. For this technical difficulty, x-rays
have not been considered useful in the study of the atomic dynamics until only recently.

Things have changed considerably since the advent of synchrotron radiation sources, which have provided brilliant
x-ray beams amenable for experiments fulfilling such pushed resolving power requests. The first IXS experiment with
55 meV energy resolution was set up during the years 1984–1987 at the second generation synchrotron source of Doris
II, Hamburg, and lead to the first IXS measurement of the acoustic phonon dispersion curve in a crystal [1]. Important
advances in the technique came few years later with the advent of the third generation synchrotron source of the
ESRF, that started to deliver an x-ray beam with an unprecedented brilliance. Exploiting the beam quality, and using
new ideas in perfect crystal optics, a new instrument was build up during the years 1992–1996 at the beamline ID16
of the ESRF by F. Sette and co-workers [2–4], capable of achieving a 1.5 meV energy resolution with an intensity
still exploitable for experiments. Since then, the IXS technique has seen continuous improvements in terms of flux,
flexibility and stability that push further and further its scientific case.

The (q,E) region of interest for the study of the acoustic excitations in disordered systems currently covered by the
IXS technique is shown in Fig. 1 (black border) together with the regions accessible to Brillouin light and ultra-violet
scattering (blue border) and to INS (green border). In Fig. 1 the (q,E) region foreseen to be accessible to IXS using
improved optical schemes [5] is shown as well (red border).

Nowadays, IXS can be considered as an established tool to measure the atomic S(q,E), in a few cases extending
and, more generally, complementing INS techniques. In fact, though IXS and INS probe the same atomic dynamics,
the measured spectra are differently modulated by different atomic species, the weight function being the atomic form
factor f (q) for IXS and the scattering length b for INS. Thus, the study of the atomic dynamics of a polyatomic
system profits from the joint use of IXS and INS just in the same way as a structural study profits from a joint use of
x-ray and neutron diffraction. Moreover, though IXS presents several disadvantages with respect to INS, it has as well
some important advantages which define a class of experiments where IXS really extends the INS capabilities. The
most relevant disadvantages of IXS with respect to INS are readily listed:

(i) The best energy resolution achieved in IXS experiments is ∼1 meV, while INS experiments can easily do much
better. Though there exist optical schemes to push the IXS resolution below 1 meV [5], their feasibility has not
been demonstrated yet.

(ii) The rapid decrease of f (q) with q makes IXS experiments very difficult already for q larger than few Å−1, while
there is no such stringent limitation in INS experiments.

(iii) Neutrons can be scattered both coherently and incoherently, the first channel probing S(q,E) and the second
its self part, which gives a direct handle on single atom dynamics; x-rays miss such richness, and only probe
S(q,E).
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Fig. 1. The wavenumber (q) and energy (E) space for the acoustic excitations in first Brillouin zone as covered by different techniques: Brillouin
light scattering (BLS) together with its extension to the ultraviolet regime (IUVS); inelastic neutron scattering (INS); inelastic x-ray scattering
(IXS) in the range that is presently covered (black border) and foreseen to be covered in the future (red border). The dashed lines indicate two
extreme longitudinal sound velocities for liquids and glasses.

In order to understand where IXS extends INS capabilities, it is as well useful to list the main advantages of IXS
over INS:

(i) In a scattering process, the probe cannot create excitations with an energy larger than its own. This simple
fact, together with the energy-wavenumber relation for neutrons, sets kinematic limitations for INS – while IXS
does not suffer of this problem. In particular, INS has severe difficulties to probe at low-q collective excitations
propagating with a speed larger than ∼1500 m/s. This is not a problem in single crystal studies, where it is always
possible to probe the same excitations at larger q , in some higher order Brillouin zone; it is, however, a severe
limitation in the study of the collective excitations of disordered systems where, due to the lack of translational
invariance, these excitations only exist at low-q , in the so-called first pseudo Brillouin zone. This opens a class
of scientific problems where IXS significantly extends INS capabilities, with particular reference to the study
of the acoustic excitations in liquids and glasses. A similar situation occurs for the study of vibrations in the
100 meV range, and in the study of high-energy optic modes in crystals: INS can access these modes only at
high-q , where the energy resolution is no longer optimal or, in the case of liquids, where the vibrational spectrum
is often already heavily modified as a consequence of the recoil of the atom struck by the neutron. Here, IXS has
the advantage to be able to easily access high energy vibrations at low-q with high-energy resolution.

(ii) X-ray beams, contrary to neutron ones, can easily be focused down to a linear size of ∼10 µm or less. The
availability of small beams reduces drastically the problems related to multiple scattering processes, which re-
quire sophisticated procedures of data reduction and which are often non-negligible in INS experiments. More
importantly, small beams disclose the access to samples of small sizes: samples only available in very small
quantities, like crystals difficult to grow to large sizes, or very expensive samples, or also materials subjected to
extreme thermodynamic conditions. Within this last class of systems, both crystalline and disordered materials
under extreme conditions of pressure and/or temperature represent an area of growing interest.

(iii) The absence of incoherent scattering, previously listed as a disadvantage, is at the same time an advantage of
IXS over INS since it simplifies the cross-section and makes the IXS access to S(q,E) sometimes more direct
that the INS one. This is particularly important in line-shape studies of S(q,E) in disordered systems.

It is finally important to underline that IXS with meV energy resolution, due to the above mentioned reasons, has
gained an important place among the synchrotron radiation activities worldwide. Today, at the ESRF, the beamline
ID28 [6] is fully dedicated to it, and beamline ID16 [7] for ∼60% of its time; at the Advanced Photon Source in
Chicago – the 7 GeV synchrotron radiation source in the USA – one beamline (ID3) carries on IXS experiments
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with meV energy resolution [8], and a new beamline fully dedicated to this activity is under commissioning and is
expected to be fully operational in 2007; at SPring-8 – the 8 GeV national Japanese synchrotron radiation source –
one beamline (BL35XU) is fully dedicated to this activity [9]. Moreover, a new IXS beamline is under study at the
new synchrotron radiation source of NSLS-II at Brookhaven, in the USA.

This article is meant to provide a short review of IXS studies of the high-frequency atomic dynamics in disordered
systems and is organized as follows. Section 2 summarizes the main technical solutions presently adopted for IXS
experiments. Section 3 recalls the models most commonly used to interpret the experimental spectra. In Section 4
some selected recent results on the high-frequency atomic dynamics of disordered systems are overviewed. Some
general conclusions are finally reported in Section 5.

2. The high-resolution inelastic x-ray scattering experiment

High-resolution inelastic x-ray scattering experiments are presently feasible at all three existing high-energy third
generation synchrotron sources ESRF, APS and SPring-8. The way these experiments are realized in these differ-
ent centers is very similar, and in what follows the experimental realization at beamline ID16 of the ESRF will be
discussed as an example.

The optical layout of beamline ID16 in the high-resolution configuration for atomic dynamics studies is shown
in Fig. 2. Schematically, the x-ray beam is monochromatized in two steps (premonochromator, monochromator) and
then focused at the sample stage; the radiation scattered by the sample is collected at a chosen scattering angle and
analyzed in energy by the spectrometer, basically consisting of a crystal analyzer and a detector. Energy spectra are
collected by scanning the energy of the incident beam – this is accomplished by scanning the temperature of the
monochromator crystal with respect to that of the analyzer crystal.

The experimental strategy used for IXS measurements with meV energy resolution resembles that of a triple axis
neutron spectrometer, where the first axis selects the incident photon energy (backscattering monochromator), the
second one selects the scattering angle (sample goniometer), and the third axis selects the scattered photon energy
(analyzer crystal).

In more detail, the x-ray beam is provided by three undulators with a magnetic period in the range of 26–35 mm and
with a total length of 4.8 m. The x-ray beam from the undulators odd harmonics has a spectral bandwidth �E/E ∼
10−2, an angular divergence of approximately 40 × 20 µrad2 (H × V ) FWHM, and an integrated power within this
divergence of the order of ∼300 W. A set of cylindrical compound refractive lenses, made out of beryllium, are used
to collimate the beam in the vertical direction to better than 2 µrad with a transmission higher than 90%.

The undulator beam is premonochromatized to a bandwidth �E/E ∼ 10−4 using a pair of independent Si(1,1,1)
crystals cooled using liquid nitrogen to evacuate the heat load of the incoming beam.

The premonochromatic beam is further monochromatized using a Si crystal operated in near backscattering geom-
etry (Bragg angle ϑB = 89.98◦, asymmetry angle α = 85◦ in the dispersive vertical plane) and on a high reflection
order. The backscattering geometry is motivated by the requirement that the Darwin width of the reflection of interest
be larger than the natural beam divergence. A high order of reflection is required since the higher is the reflection order

Fig. 2. Optical layout of beamline ID16 at the ESRF in the high-resolution configuration for atomic dynamics studies.
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Table 1
Representative values of the measured photon flux of the x-ray beam at the sample stage. n indicates the
order of the Si(n, n, n) reflection, and E the corresponding energy in the backscattering configuration.
�E is the energy bandwidth while �Etot is the total (monochromator + analyzer) energy resolution that
can be achieved using the 6.5 m long horizontal spectrometer. Flux values refer to a three U35 undulators
operation, with 200 mA ring current

n E �E �Etot 3 × U35 flux
[eV] [meV] [meV] [photons/s]

7 13 839 5.3 7.6 ± 0.2 1.0 × 1011

8 15 816 4.4 5.5 ± 0.2 7.6 × 1010

9 17 793 2.2 3.0 ± 0.2 2.4 × 1010

11 21 747 0.83 1.5 ± 0.1 4.6 × 109

12 23 724 0.73 1.3 ± 0.1 3.4 × 109

13 25 701 0.5 1.0 ± 0.1 1.0 × 109

the smaller is the corresponding �E/E. In fact, for a given Bragg reflection �E/E is basically inversely proportional
to the number of reflecting crystalline planes throughout the extinction length of the x-ray beam, and the extinction
length in turn increases with increasing energy or reflection order [5], see Table 1. At the same time, a higher order of
reflection means a lower diffracted intensity, and a compromise has to be found between resolution and intensity.

Depending on the experiment, reflection orders between the Si(7,7,7) and the Si(13,13,13) are typically chosen,
which correspond to energy bandwidths between 5 and 0.5 meV, see Table 1. Reflection orders higher than the
Si(13,13,13) provide one with a beam flux at the sample stage <109 photons/s, a value that, with current optics
and detectors, is too small to allow performing successful IXS experiments. The monochromator crystal is tempera-
ture controlled at the mK level by a high precision thermometry bridge in closed-loop operation with a PID controlled
heater unit.

The focusing of the beam at the sample position can be provided by different optical schemes which lead to focal
spot typically comprised between 40×60 µm2 and 250×100 µm2 (H ×V ) FWHM. The former figures refer to the use
of a cylindrical graded multilayer to provide horizontal focusing, while the latter ones refer to the simplest available
optical scheme based on the use of a single Pt-coated toroidal mirror located 4 m away from the backscattering
monochromator. Representative values of the measured photon flux of the x-ray beam at the sample stage in the setup
where the toroidal mirror provides the focusing are reported in Table 1.

The photons scattered by the sample are collected using a 6.5 m long horizontal spectrometer. They are energy-
analyzed by five spherical analyzers mounted in the horizontal spectrometer and which operate similarly to the
high-resolution monochromator (i.e. in a near-backscattering configuration and at the same reflection order as the
backscattering monochromator). These analyzers focus the energy-analyzed photons onto five independent Si-diode
detectors installed close to the sample position. The whole spectrometer arm can be rotated around the sample po-
sition in order to select the scattering angle 2θs and then the exchanged momentum q , being q = 4π

λ
sin θs , where λ

is the wavelength of the incoming beam. The analyzers are mounted with a constant angular offset of 1.5◦, which
corresponds to a basically constant q offset of 3 nm−1 at 21 747 eV, the energy corresponding to the Si(11,11,11)
Bragg reflection. Five spectra at five different exchanged momentum values – one for each analyzer – can then be
collected at the same time for each setting of the horizontal spectrometer arm. The q-resolution, �q , corresponding
to each spectrum is selected by slits mounted in front of the analyzer units. Typical figures are �q/q ≈ 10–20% for q

in the 1–5 nm−1 range. Further details on beamline ID16 can be found in Refs. [2–4,7].

3. Models to describe the IXS spectra

The spectrum I (q,E) of a moderately quantum monatomic system1 measured in a high-resolution IXS experiment
can be readily expressed as:

1 Here I refer to a moderately quantum system as to a system where the quantum effects that arise from the overlap between the single-particle
wavefunctions can be neglected. The quantized character of the energy transfers at the microscopic level leads however to a natural unbalance of
the spectrum that is expressed by the detailed balance condition that clearly has to be fulfilled.
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I (q,E) = Io

[
R(E)

] ⊗
[

E

kBT

(
n(E) + 1

)
S(q,E)

]
, (1)

where Io is an overall intensity factor; R(E) is the instrumental function; ⊗ stands for convolution, n(x) =
[exp(x) − 1]−1 is the Bose factor, with T the temperature, kB the Boltzmann constant and x = E/kBT ; and S(q,E)

is the classical dynamic structure factor defined as the space and time Fourier transform of the density fluctuations
correlation function, Φq(t). An equation of motion for Φq(t) can be written in the form of a generalized Langevin
equation [10,11], which leads to the following formal expression for S(q,E):

S(q,E) = 2h̄2v2
oq

2

E
Im

[
E2 − h̄2ωo(q)2 − iEmq(E)

]−1
, (2)

where Im denotes the imaginary part. The parameter ωo(q) introduced in Eq. (2) is fixed by the second sum rule for
S(q,E) and turns out to be:

ω2
o(q) = (qvo)

2

S(q)
, (3)

where S(q) is the static structure factor and vo is the classical thermal speed defined in terms of the atomic mass,
M , being v2

o = kBT /M . Moreover, in Eq. (2) the second memory function, mq(E), of the so-called Zwanzig–Mori
expansion of S(q,E) has been introduced [12]. Alternatively, Eq. (2) can be simply considered as an equation that
defines mq(E). In fact, the real advantage in using Eq. (2) is that the introduction of simple models for mq(E) –
instead than directly for S(q,E) – guarantees that at least the first two non-zero spectral moments of S(q,E) are
always fulfilled.

Different models for mq(E) are utilized in different portions of (q,E) space. Two quantities are usually introduced
as reference points in such a space: the average interatomic distance, a, and the characteristic relaxation time for
the density fluctuations, τ . The conditions qa �1 and Eτ � h̄ define the region of the (q,E) space where simple
hydrodynamics holds, and in this range an analytical, well-known expression for mq(E) is available [10]. If condition
ωτ � 1 fails and qa �1, as it occurs for most of the IXS studies, one enters the realm of the so-called molecular
hydrodynamics [10]. In this region the atomic dynamics is influenced both by structural and relaxational effects. For
what concerns the former, their intervention directly comes into play through the structure factor, S(q). For what
concerns the latter, instead, an appropriate model for mq(E) has to be introduced. In general, the smooth transition
from the simple hydrodynamics regime to the molecular one is the main argument used to extend the hydrodynamics
description by retaining its formal structure, but replacing the thermodynamic derivatives and the transport coefficients
with functions that can vary both in space (or wavenumber) and time (or energy). Within this formalism, the memory
function (in time domain) can be written as:

mq(t) = h̄ω2
o(q)

[
γ (q) − 1

]
e−DT (q)q2t + Kl(q, t), (4)

where γ (q) and DT (q) are q dependent generalizations of the constant pressure to constant volume specific heat ratio
γ = CP /CV and of the thermal diffusion coefficient DT = κ/(ρCP ), where κ is the thermal conductivity and ρ the
mass density and where Kl(q, t) is the q and t dependent generalization of the kinematic longitudinal viscosity νl . The
strength of the thermal contribution, ω2

o(γ −1), is typically one order of magnitude smaller than that corresponding to
the longitudinal viscosity contribution [10]. Therefore, the most important and delicate point here is to model Kl(q, t).
This is usually accomplished using phenomenological expressions that contain the necessary ingredients to describe
the atomic dynamics.

The simplest choice for Kl(q, t) is an exponential decay. This choice, which is usually known as the viscoelastic
model, allows for a reasonably good description of the evolution of S(q,E) with q for q ≈ qm, where qm denotes
the first diffraction peak position. However, for q ≈ qm/10, i.e. in the standard range for IXS studies of disordered
systems, the viscoelastic model begins to fail.2 This is usually explained by saying that, when decreasing q below
qm, the memory function splits into two contributions. The first one is related to atomic vibrations in the local atomic
environment, which induce a loss of correlation usually on the 10−13 s time-scale, with almost no temperature de-
pendence. This contribution is often called the microscopic decay. The second contribution is required to describe the

2 See, for example, Fig. 6.2, page 229 of Ref. [11]. There, the S(q,E) of liquid Cesium (T = 308 K) at q = 6 nm−1 is shown to be only badly
described by a single-exponential memory function.
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relaxation of the density fluctuations that takes place at longer times characterized by the characteristic time τ , and is
usually temperature dependent. This second process generally corresponds to the structural relaxation [13].

As a consequence of this conceptual picture, and beginning with the classical molecular dynamics study by
Levesque et al. on the Lennard–Jones liquid near its triple point [14], it is customary to represent the function Kl(q, t)

as the sum of two exponentials. The characteristic time of the microscopic decay turns out to be, however, much faster
than the characteristic time of the structural relaxation [14]. As a consequence, and in order to use a model with a min-
imum number of parameters, the microscopic decay is usually represented with a simple Markovian term. As a matter
of fact, this simple approximation has been shown to be detailed enough to well represent basically all the available
experimental data. Summarizing, in the (q,E) range covered by typical IXS experiments, the minimal expression for
Kl(q, t) used in the analysis of the data is the following:

Kl(q, t) = 2h̄Γ (q)δ(t) + h̄
q2

ρ
�2(q)e−t/τ (q), (5)

where Γ (q) represents the very fast decaying contribution to Kl(q, t); τ(q) is the q-dependent time which charac-
terizes the long time tail of Kl(q, t); and �2(q) is the relaxation strength which is related to two further important
quantities, c∞(q) and co(q), i.e. the q-dependent generalizations of the usual limiting frequency and adiabatic sound
speeds, by the relation [15]:

�2(q) = ρ
[
c2∞(q) − c2

o(q)
]
. (6)

In fact, the second term on the right-hand side of Eq. (5) is in principle able to describe the classical phenomenology
of the dispersion and absorption of the sound waves, e.g. the transition of the sound speed from its low-frequency, adi-
abatic value, co(q), to the high frequency, limiting value, c∞(q) [16]. It is as well useful to recall that the requirement
that Eq. (4) correctly extrapolates to the simple hydrodynamics regime imposes the following integral condition:

lim
q→0

∞∫
0

dt Kl(q, t) = h̄q2νl. (7)

Eqs. (4) and (5) simplify considerably when applied to IXS studies of glasses. In fact, in the limits γ ≈1 and
E · τ(q) 	 h̄, which are both appropriate for undercooled liquids and glasses probed at the typical IXS energies and
wavenumbers, the dynamic structure factor, Eq. (2), reads:

S(q,E)

S(q)
= (1 − fq)

2h̄3Ω2(q)Γ (q)

[E2 − h̄2Ω2(q)]2 + [h̄EΓ (q)]2
+ fqδ(E), (8)

where Ω(q) = qc∞(q) and fq = 1 − [ωo(q)/ω∞(q)]2, the latter being known in the literature of glass-forming
systems as the non-ergodicity parameter [13]. Eq. (8) is typically used to analyze IXS data, and is known as the
damped harmonic oscillator model (DHO). Its ability to describe the IXS spectra is demonstrated in Fig. 3, where a
typical example of an IXS spectrum of a glass is reported (open circles) together with the best fitting equation (8) (full
line) and the two distinct elastic and inelastic contributions.

It has finally to be emphasized that the formulation presented here is a generalization of the formalism used at
low q , and thus does not take into account the contribution of transverse excitations which are known to appear in
the spectra of several systems at high q [17,18]. In fact, this effect becomes relevant at q values sufficiently high
that the pure transverse or longitudinal polarization of the modes can no longer be invoked. When such an additional
excitation appears in the IXS spectrum, and in the absence of a model able to fully take it into account, the data
analysis is usually carried out adding up two DHO contributions [17,19–21].

4. Selected results

4.1. High-frequency sound waves in glasses

Glasses exhibit universal anomalies in their thermal properties – see Ref. [22] for a review and for references to
the original papers:
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Fig. 3. Upper panel: IXS spectrum of the glass of glycerol at T = 150 K and q = 2 nm−1 (open circles) together with the best fit obtained using
the DHO model (full line). The elastic and inelastic contributions derived from this model are shown as well after convolution to the instrumental
function (dashed line and dotted line, respectively). Bottom panel: residual of the fit, in standard deviation units. The dashed lines indicate the ±3σ

levels.

(i) The specific heat, CP , at low temperature is approximately proportional to T and, at T = 0.1 K, exceeds that of
the corresponding crystals by a factor of ∼100. Moreover, at temperatures of the order of 10 K a bump appears
in CP /T 3, which corresponds to an excess of low-frequency modes over the Debye density of vibrational states.
This excess of low-frequency modes is also directly observed in the vibrational density of states – which can be
measured for example using neutron scattering [23] – and, in that case, is known as the boson peak.

(ii) The thermal conductivity, κ , is much smaller than in the corresponding crystals and nearly proportional to T 2

below 1 K. Moreover, at the same temperatures where CP /T 3 shows the bump, κ shows a plateau.

These facts contrast with what one would intuitively expect. In a pure dielectric system the low-temperature thermal
properties are governed by the behavior of long-wavelength phonons – for example, thermal properties at 1 K are
determined by acoustic excitations with wavelengths of ∼1000 Å. On such a scale, the regular lattice of a crystal, as
well as the irregular network of a glass, should both appear as an elastic continuum. Then, the Debye model which
leads to a T 3 law for specific heat and thermal conductivity should be applicable in both cases. This, however, is not
observed in glasses.

The origin of these thermal anomalies has been, and still is, studied by looking at the acoustic properties of glasses,
and the overall picture which comes out is quite complex and, by today, still not completely understood [24]. These
studies explain the low-temperature anomalies in CP and κ within the so-called tunnelling model [25,26], i.e. by
assuming the existence of almost degenerate configurations for small groups of atoms and of quantum tunnelling
to permit the atoms to move between the two configurations. This model works formally well to describe the low-
frequency acoustic behavior and the low-temperature thermal anomalies up to few K. At temperatures higher than that,
and in particular in the 
10 K region where the plateau in the thermal conductivity and the bump in the specific heat
appear, additional universal mechanisms have to be invoked which require to study the acoustic properties in the GHz
to THz range. This has triggered a sizeable experimental (e.g. [27,28]), computational (e.g. [29–31]) and theoretical
(e.g. [31–33]) research effort which has improved our understanding of the problem but has not fully clarified it yet.
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Fig. 4. Dispersion relations in vitreous silica. Open and full circles are experimental data measured at T = 1270 K and representing the excitation
energies [h̄Ω(q)] of the longitudinal and transverse branches, respectively [20]. Open triangles and squares correspond to the longitudinal branch
– which is the dominating one at low q’s – and refer to 1050 K [37] and 1375 K [38], respectively. The dashed and full lines are the extrapolation
of the low frequency longitudinal and transverse sound velocity, respectively.

The results obtained by IXS on the acoustic-like excitations of glasses in the THz and sub-THz frequency range
are largely sample-independent and can be summarized as follows. The longitudinal acoustic excitations measured for
different values of the exchanged momentum q are characterized by a polycrystal-like dispersion of their frequency
Ω(q), with in particular a linear dependence on q up to q values of few nm−1 and with a slope corresponding to the
limiting longitudinal sound velocity [34]. The maximum q-value up to which it is still possible to observe acoustic
excitations is an important information to extract from the experimental spectra. The answer is difficult because, on
increasing q , the acoustic excitations become broad and lie on top of the tails of the intense quasi-elastic peak. For
this reason, the S(q,E) spectra have been interpreted in quite different, and sometimes contrasting, ways. A typical
example of this is represented by the prototypical case of vitreous silica. A possible way to interpret the IXS spectra
of permanently densified vitreous silica is by performing the data analysis using a single excitation and by noting that
around and above the boson peak position the inelastic contribution can be described by a non-propagating excitation
quite similar in shape to the boson peak itself [35]. This interpretation is based on the picture that when the acoustic
excitation energy approaches the boson peak position the Ioffe-Regel limit is reached beyond which the concept of
propagation for the acoustic modes looses its meaning [36]. A similar picture appears as well in models trying to
connect the high-frequency acoustic modes to the thermal conductivity and the specific heat in the 
10 K temperature
region [32]. In a different and contrasting view, it is proposed that the inelastic component at high q is actually the
sum of two different excitations. A study of the atomic S(q,E) of vitreous silica – performed on an extended energy
range (up to 115 meV) and with a high statistical accuracy – has shown that the longitudinal mode disperses up to
quite high energies above the boson peak position and that a second excitation becomes more and more evident in
the spectra as q is increased [20], see Fig. 4. This second excitation – in the q range where it is visible – is almost
non-dispersing and is assigned to the transverse acoustic branch [20]. These results have been confirmed as well on
other glasses [19].

An additional result that goes in this same direction has been obtained by developing a new experimental strat-
egy measuring the atomic S(q,E) in vitreous silica varying the exchanged momentum at fixed energy – instead of
scanning the energy at fixed q – thus providing spectra with much better identified inelastic features [39]. In this way
direct evidence has been obtained of longitudinal acoustic excitations in vitreous silica at energies above the boson
peak one. These results obtained on vitreous silica have then been confirmed on other glasses as well [40].

Another relevant parameter that can be extracted from the analysis of the IXS spectra is the broadening, Γ (q),
of the acoustic-like excitations since it gives direct information on the high-frequency acoustic absorption. In the q

region where the acoustic dispersion relation is linear, the broadening of the acoustic excitations had been found to
show a T -independent, q2 (or Ω2) behavior up to q values of the order of few nm−1 [34]. In particular, no indication
of changes of behavior of the longitudinal acoustic modes at the boson peak frequency had been found [27]. It has to
be underlined that the Ω2 behavior found at high frequency does not correspond to that measured at lower frequencies
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Fig. 5. Dependence of the damping Γ (open squares) of the high-frequency acoustic waves on the wave frequency Ω for the Li2O–2B2O3 glass
at T = 300 K, from Ref. [28]. The full blue line describes the Ω2 dependence at high energy, and the dashed blue line is its extrapolation at lower
energies, where it clearly overestimates the experimental data. The lower energy points are much better described by a Ω4 law (full red line).

(for example with Brillouin light scattering) and generally ascribed to anharmonicity. In fact, the origin of the acoustic
loss mechanism at high-frequency is surely non-dynamic [41] though its exact nature is still being discussed on. One
important observation is based on the fact that also a simulated harmonic glass at basically zero-temperature shares
the same main features for Γ (q) as measured in IXS experiments on real glasses [42], thus pointing to the central role
of the topological disorder in the high-q acoustic dynamics. In more recent analyses, the Ω2 dependence of Γ (q) has
been explained in terms of spatial fluctuations of the local elastic moduli [43], claiming an even quantitative agreement
between the model predictions and the measured experimental values.

Recent experimental results which follow the continuous improvement of the technique and the use of better
adapted measuring schemes have, however, shown that at least in permanently densified silica [44] and in the lithium
diborate Li2O–2B2O3 glass [28] the broadening Γ (q) experiences a remarkably rapid increase with Ω (much larger
than Ω2 and compatible with Ω4) as Ω(q) approaches the boson peak position from below, see Fig. 5. These results
have been interpreted in terms of resonance and hybridization of the acoustic waves with the modes embedded in
the boson peak. They do indicate that the longitudinal acoustic waves experience some sort of strong scattering at
frequencies close to those of the boson peak and thus explain the existence of the plateau region in the thermal con-
ductivity of glasses at ∼10 K. Moreover, a correlation has been proposed between the energy position of the boson
peak and this region of strong scattering in glasses [28]. However, the observed rapid increase of Γ (q) with q or,
more precisely, with Ω , can be nowadays expected in quite different frameworks, e.g.: (i) lattice models with force-
constant disorder [29,31], or continuum models with spatially fluctuating elastic constants [33], where it is basically a
harmonic phenomenon; (ii) models that assume an anharmonic coupling between sound waves and weakly interacting
quasilocal modes as the soft potential model [32], where anharmonicity clearly plays a direct role. It is then clear that
more information from the experimental side is needed in order to discriminate among different models.

4.2. Relaxation processes in liquids

The susceptibility spectrum of a liquid system in response to an external perturbation is generally smooth and
characterized by broad peaks. These peaks correspond to relaxation processes which dump the perturbation applied
to the system. Among the various relaxation processes which characterize the dynamical response of a liquid to a
given perturbation, there is one which plays a particularly important role since it is universal – it is present in all
liquids and dense fluids at basically the same frequency independently of the perturbation which is applied: this is
the structural, or α, relaxation process. Its name derives from the fact that it is believed to be related to the collective
structural rearrangement of groups of atoms or molecules in response to an external perturbation (or to local fluctu-
ations). The position ωα of the structural relaxation peak in the loss spectra defines a characteristic time, τ = ω−1

α .
This characteristic time is strongly temperature dependent, being generally proportional to the shear viscosity as
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Fig. 6. Temperature dependence of the relaxation time τ of liquid water kept at ≈ 1 g/cm3 density: IXS results (filled diamonds) [45] are compared
to ultrasound data (filled squares) [46] and to inelastic ultraviolet radiation scattering data (open circles) [47]. The full line describes an Arrhenius
behavior with an activation energy of 3.8 kcal/mol that well represents the data at high temperature but fails at low temperature.

τ ≈ ηs/G∞, where ηs is the shear viscosity and G∞ is the limiting shear modulus. It follows that τ ∼ 1 ps for or-
dinary liquids with a viscosity of the order of 10−3 Pa s and ∼1000 s at the glass transition temperature – for those
liquids that can reach it – where the viscosity is ∼1012 Pa s.

The intervention of the structural relaxation in the dynamical response of a liquid can be rationalized by viscoelastic
models. These models basically describe the obvious kinetic result that if a liquid is studied on a time scale much
longer than τ , one probes its equilibrium, or viscous, properties; and if a liquid is studied on a time scale much shorter
than τ , one probes its out-of-equilibrium, or elastic, properties. The temperature at which this viscoelastic transition
is located obviously depends on the frequency ω used to probe the system and is defined by the condition ωτ(T ) = 1.
This clarifies that, while low-frequency techniques are needed to probe the viscoelastic properties of glass-formers
close to the glass transition temperature, high-frequency probes are required to perform such studies in liquids at
ordinary conditions. This is for example the case of water at room temperature, and of a wide class of other liquids,
where techniques exploring the THz frequency range are needed. This, in turn, explains and justifies the success of IXS
in this kind of studies. Fig. 6 reports, as an example, the comparison of τ values as determined in an IXS experiment
on liquid water kept at ≈1 g/cm3 density [45] with both ultrasound data [46] and with results recently obtained using
inelastic ultraviolet radiation scattering [47]. Fig. 6 clarifies that while IXS is the only probe that provides reliable τ

values in water at high temperature, it becomes less and less sensitive on decreasing the temperature as the structural
relaxation leaves the IXS frequency window.

IXS studies of the structural relaxation in liquids are interesting for several reasons. One reason is that they give
the possibility to probe this relaxation up to the highest possible frequencies where it can be detected. Above the
THz frequency range, in fact the relaxation of an applied perturbation will more likely occur through different paths.
Another source of interest for these studies is that they give an idea of the q value up to which it is still possible to
make use of the continuum hypothesis inherent in the hydrodynamics description of the density–density correlation
function of a liquid. In the case of water, for example, the macroscopic hydrodynamics description is still meaningful
up to q ∼ 2 nm−1 [45], which is a fairly large value. The same result can be rephrased by saying that the atomic
dynamics in water shows a homogeneous character down to a length scale of ≈30 Å. It is important to emphasize that
this result is not specific to water but applies in general to simple liquids [48–50].

Besides the structural relaxation, the microscopic relaxation has also been characterized in some detail in IXS
experiments [48,49,51]. This relaxation is formally related to the dephasing of the different Fourier q-components of
the normal modes of vibration in the disordered liquid structure. The characteristic time associated to this relaxation
channel has been characterized in one favourable case, and has been found to be in the 0.1–0.01 ps range [48],
thus faster then – though not completely decoupled from – the structural relaxation. In supercritical conditions, the
microscopic relaxation has been found to have a collisional nature [51].
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Fig. 7. Temperature dependence of the acoustic absorption in liquid sulfur reported as Γ/q2. The IXS results (filled squares) refer to the
0.4–1.1 THz frequency range [56]. Ultrasound data from Refs. [54,55] (open circles), Ref. [52] (open squares) and Ref. [53] (open diamond)
cover the 6–155 MHz frequency range. The difference between the IXS and ultrasound data corresponds to the glass transition that takes place
in the frequency range comprised between 0.1 GHz and 1 THz. The full line is the zero-frequency, simple hydrodynamics prediction for Γ/q2,
from Refs. [56–58]. The dotted vertical line marks the λ-transition temperature at 432 K. The difference between the ultrasound data and the
zero-frequency ones corresponds to the liquid to rubber transition that takes place at frequencies lower than 6 MHz and only in the high-temperature
polymeric phase.

It is as well important to underline that the description of the high-frequency density-fluctuations dynamics in
terms of two main relaxations – the structural and the microscopic one – seems to have general validity for simple
enough liquids, having been verified in Van der Waals liquids [49] as well as in hydrogen-bonded liquids [50] and in
liquid metals [48]. This is no longer true in liquids that present a more complex phenomenology, since their relaxation
pattern will be more complex as well. For these cases, IXS experiments have proven to provide a valuable information
as well when they are used to extend towards high frequencies the traditional acoustic studies performed in the MHz
to GHz frequency range.

An example of that is provided by the case of liquid sulfur. In fact, sulfur undergoes, at 432 K and room pressure,
a reversible so-called λ-transition between a molecular liquid composed of S8 rings and a complex solution of poly-
meric chains in S8 monomers. In particular, ultrasound studies [52–55] of this liquid–liquid transition had left open the
question of whether the high-temperature polymeric liquid form of sulfur could be considered a viscoelastic system
at all, and what would be the relaxation channels that mirror the λ-transition in the dynamical properties. A recent
IXS study [56], see Fig. 7, has provided high frequency acoustic data that have clarified that viscoelasticity is indeed
present in this peculiar liquid phase though it appears under a more complex form than in simple liquids. Specifically,
the atomic dynamics relaxes in two main steps in time (or frequency):

(i) A first step can be associated to the structural relaxation and is common to both sulfur liquids. In the temperature
range around the λ-transition temperature, this relaxation takes place on the 10 ps time scale and reflects both the
relative motion of the chain segments between entanglement loci and the solvent molecules dynamics.

(ii) A second, slower step corresponds to the slippage of the entanglement loci so that the configurational re-
arrangements of segments separated by entanglements can then take place. This relaxation characterizes the
high-temperature polymeric phase, is strongly temperature dependent and takes place on the 10 ms time scale
close to the transition temperature.

This phenomenology can be summarized by saying that the first relaxation step describes the glass transition
observed as a function of frequency, while the second relaxation step corresponds to a liquid-rubber transition observed
only in the polymeric liquid as a function of frequency. The existence of a rubbery plateau in the polymeric liquid
phase of sulfur clarifies that it basically behaves as an uncross-linked solution of high molecular weight polymers.
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4.3. The non-ergodicity factor

The quasi-elastic peak present in the atomic S(q,E) spectra of disordered systems holds some very interesting
information which complements/extends that which can be obtained from the study of the acoustic excitations. In an
undercooled liquid and in a glass, the quasi-elastic peak width – being proportional to the inverse of the structural
relaxation time – is very narrow as compared to the typical energy resolution function of an IXS experiment, and
cannot be measured. Its area, however, is readily determined and – once normalized to the static structure factor S(q)

– gives the so-called effective non-ergodicity factor fq – a central quantity in the mode-coupling description of the
liquid-to-glass transition [59]. In its basic version, this theory deals with the dynamics of density fluctuations in the
early stage of supercooling, and the glass transition is described as an ergodic to non-ergodic transition occurring
at a critical temperature Tc and signaled by a singular behavior of the long-time limit of the normalized density
correlator – the non-ergodicity factor. A zero value of the non-ergodicity factor means that a given particle will
eventually escape, on a long enough timescale, from the cage of its nearest neighbors, and the system is ergodic.
A finite value of the non-ergodicity factor, conversely, corresponds to a frozen structural relaxation which prevents
the particles to escape their cages. Thus, the non-ergodicity factor is zero in the liquid phase but positive in the glassy
state, and it changes discontinuously as the temperature crosses Tc. The effective non-ergodicity parameter which
is measured in scattering experiments corresponds to the normalized density correlator calculated not at t = ∞ but
at t = h̄/�E, where �E is the experimental energy resolution. The effective non-ergodicity factor is expected to
show the same discontinuity as the non-ergodicity factor. However, while it equals the non-ergodicity factor in the
non-ergodic phase, it is expected to keep a non-zero value in the ergodic phase across Tc. Specifically, the peculiar
temperature and wavevector dependences expected for fq are [59]: (i) A square-root temperature behavior below Tc,
fq(T ) = f c

q + hq

√
(Tc − T )/Tc , where f c

q is the critical non-ergodicity parameter and hq the critical amplitude at
a fixed wavevector q; (ii) A dependence on q of f c

q and of hq which are in phase and in anti-phase with the static
structure factor S(q), respectively. In the last two decades both the peculiar T and q behavior of the non-ergodicity
factor predicted by the mode-coupling theory have been tested in Van-der-Waals molecular liquids. The situation is
much less clear for associated and covalent liquids, the ubiquitous class of liquids including water and silica. In these
liquids the local order extends over several neighboring molecules, often giving rise to a non-trivial q behavior of the
static structure factor, and the available results of experimental investigations are often mutually contradictory.

A recent IXS experiment [60] has provided experimental evidence that hydrogen bond clustering can coexist with
the signature of the ergodic to non-ergodic transition predicted by the mode-coupling theory for simple liquids, see
Fig. 8. The system investigated, m-toluidine, is characterized by a spatial organization of the molecules induced by
hydrogen bonds extending over several molecular diameters and giving rise to nanometer size clusters.

Fig. 8. Temperature dependence of the effective non-ergodicity factor fq of m-toluidine for two different values of the exchanged wavevector q ,
from Ref. [60]. The temperature scale has been expressed in terms of the critical temperature Tc = 230 K. The solid lines are the best fits obtained
using the square-root function predicted by the mode-coupling theory [59].
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Fig. 9. Correlation between the parameter α describing the low-temperature behavior of the non-ergodicity factor and the kinetic fragility m. The
original data set from Ref. [62] has been completed with the data for CKN and B2O3 [63,64] and for Ni33Zr67 [65,66].

The non-ergodicity factor is also related to the glass formation process in an additional subtle way through the
concept of fragility [61]. Specifically, the kinetic fragility, m, is defined in terms of the shear viscosity ηs as:

m = lim
T →Tg

d log(ηs)

d(Tg/T )
,

where Tg is the glass transition temperature. Therefore, m is an index of how fast the shear viscosity increases on
approaching the structural arrest at Tg . One interest in this classification lies in the attempt to relate the temperature
behavior of a macroscopic transport property as ηs close to Tg to the microscopic interaction driving the dynamics
of the system. In fact, the value of the fragility is empirically related to the kind of interaction potential among the
particles constituting the system. Prototypical examples of fragile liquids are those composed by units interacting via
isotropic bonds, such as Van der Waals-like molecular liquids. The strong glass-forming liquids, on the other hand, are
those characterized by strong covalent directional bonds that form space filling networks. Hydrogen bonded systems
are often called ‘intermediate’ between strong and fragile liquids.

A recent IXS study [62], see Fig. 9, has shown that, starting from the determination of the non-ergodicity factor
in the low temperature glass, it is possible to identify a parameter that controls how fast the non-ergodicity factor
decreases on increasing the temperature, and this turns out to be proportional to the fragility m. Specifically, the
temperature dependence of fq at low temperatures can be well described within the harmonic approximation for the
vibrational dynamics of the glass; its inverse, f −1

q , depends linearly on temperature and the slope of this line, α, is
directly proportional to the fragility index of the glass. At a first glance, this result defines a new way to determine
the fragility of a system starting from its glassy phase, microscopic properties. However, its real interest lies in the
following observation. If we recall that: (i) the fragility is related to the temperature dependence of the viscosity on
approaching Tg , and thus mirrors the diffusive properties of the system; and (ii) the non-ergodicity factor is only
related to the vibrational properties of the harmonic glassy dynamics, we have to deduce that in a glass the vibrational
properties below Tg are related to the diffusive properties above Tg [62]. Though in the meanwhile a couple of
exceptions to the neat correlation between the low-temperature behavior of the non-ergodicity factor and the fragility
index have been found [64], this result is still very fascinating and will require further studies to be fully understood.

5. Conclusions

The inelastic x-ray scattering technique has given an important contribution over the last ten years to our un-
derstanding of the high-frequency dynamics in liquids and glasses. It is now clear that acoustic-like excitations in
disordered systems are present up to a relevant fraction of the first pseudo Brillouin zone size and show a crystal-like
behavior [34]. At the same time, the damping of these excitations increases roughly as Ω2, i.e. much faster than the
characteristic energy of the excitations themselves which then become quite soon overdamped.
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For both liquids and glasses, however, the most relevant information contained in the measured S(q,E) spectra
lies in the lower portion of the (q,E) range probed by IXS, say q � 2 nm−1 and E � 5 meV. For liquids, this is the
range where simple hydrodynamics still holds, which leaves a reference of fundamental importance for any further
interpretation of the IXS spectra [45]. In glasses, this is the relevant range where the acoustic excitations are strongly
scattered [28], giving rise to some universal properties found in the low-temperature behavior of specific heat and
thermal conductivity of glasses. Unfortunately this most interesting (q,E) range remains difficult for IXS studies
mainly due to the present limitations in terms of energy resolution. However, the strong scientific case to push IXS
studies of disordered systems towards lower and lower energies and wavenumbers is stimulating the development of
new optical schemes to overcome the limitations of the technique. Promising schemes are now available [5], and the
near future will hopefully see the advent of advanced IXS spectrometers pushing down the lowest reachable q and E

values by as much as one decade.
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