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Abstract

A software package has been designed to simulate nuclear magnetic resonance spectra and images. Combining the product
operator matrix with the non-linear Bloch equations, the software can efficiently simulate classical and quantum effects including
scalar coupling, dipolar coupling, translational diffusion, chemical shift, radiation damping, transverse relaxation, and longitudinal
relaxation. One of the most unique features of the software is its ability to incorporate effects of inter- and intra-molecular multiple
quantum coherences in complex multiple-spin coupled systems, which are difficult with other existing software packages. The
software, written in Visual C++, has a friendly graphical user interface and is easy to use. To cite this article: C. Cai et al., C. R.
Physique 9 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

SPROM – Un programme performant pour les simulations RMN/IRM de cohérences quantiques multiples inter- et intra-
moléculaires. Un progiciel a été développé pour simuler les spectres et les images de résonnance magnétique nucléaire. Combinant
la matrice opérateur de produit et les équations de Bloch non-linéaires, le logiciel simule efficacement les effets classiques et quan-
tiques, notamment le couplage scalaire, le couplage dipolaire, la diffusion translationnelle, le décalage chimique, l’amortissement
radiatif, la relaxation transverse et la relaxation longitudinale. Un des aspects les plus originaux de ce logiciel est sa capacité à
incorporer les effets de cohérences quantiques multiples inter- et intra-moléculaire dans les systèmes complexes de spins multiples
couplés, ce qui est difficile avec les progiciels existants. Doté d’une interface graphique conviviale, lee logiciel, écrit en Visual
C++, est facile d’utilisation. Pour citer cet article : C. Cai et al., C. R. Physique 9 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Numerical simulation is powerful in handling complicated systems for which analytical methods are excluded or
difficult to follow [1–3]. Nuclear magnetic resonance (NMR) spectra and magnetic resonance imaging (MRI) result-
ing from complex pulse sequences can be predicted by computer simulations before experiments [4,5]. Computer
simulations provide guidance for selecting proper experimental parameters for optimal results and reduced experi-
mental times [6–9]. Furthermore, they may help to identify the potential problems occurring in experiments when
experimental results are not in agreement with theoretical predictions.

In spin dynamic calculations, macroscopic effects of relaxation, molecular diffusion, chemical shift, inhomoge-
neous magnetic field, radiation damping field, and long-range dipolar field can all be incorporated in the Bloch
equations [10]. These equations play an important role in NMR studies [11], but they fail when scalar couplings,
which are microscopic quantum effects, exist in spin systems as well. On the other hand, the density matrix formalism
can be used to deal with complex quantum-mechanical behavior of an ensemble of spins [12], but it cannot handle
macroscopic effects such as radiation damping, diffusion, and relaxations.

In the past quite a few simulation software packages have been developed, including BlochLib [13], Qsim [14],
among many others. However, none of them can conveniently and efficiently simulate macroscopic and quantum
effects at the same time. To fill this gap, a simulation package is introduced in this Note, which we dub Simulation
with PRoduct Operator Matrix or SPROM. By adopting the PRoduct Operator Matrix (PROM), Mmat, to describe
scalar couplings among multiple spins, the SPROM program can deal with scalar couplings in the framework of
the non-linear Bloch equations [15]. The program is written in Visual C++ and provides a friendly graphical user
interface (GUI). Preliminary tests show that the program is convenient and efficient at simulating several different
effects in liquid spin-1/2 NMR and MRI experiments [16–19].

2. Theories and algorithms

2.1. Dynamical equations

Deville first introduced the concept of classical dipolar field, and proposed the non-linear Bloch equations with
an additional dipolar field term [20]. After that, Jeener proposed an iterative scheme for solving the modified Bloch–
Redfield equations or Torrey’s equations [21]. If the superscript i represents the i-th type of spin, the motion equation
of the magnetization vector M(i)(r, t) in a frame rotating at the Larmor frequency is given by:

dM(i)(r, t)
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where γ is the magnetogyric ratio; x̂, ŷ, and ẑ are unit vectors along three orthogonal coordinate axes; ŝ is a unit
vector along the direction of the gradient applied for modulating the dipolar field, and G(ŝ, r) is the strength of this
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where τ
(j)
r = 1/(2πηM

(j)

0 Qγ ) is the characteristic time of radiation damping, η is the filling factor, Q is the probe

Q-factor, and 〈M(j)
x (t)〉 and 〈M(j)

y (t)〉 are the average magnetizations along the x and y directions respectively. The

detailed calculation method of B
(j)
d (r, t) can be found in Refs. [15,16].

Eq. (1) is a set of differential equations involving partial derivatives. In order to describe the detected NMR signal
at time tfinal, it must be integrated from t = 0 to tfinal, which was done with a fifth-order Cash–Karp Runge–Kutta
formalism [22] in this work.

2.2. Product operator matrix

PROM is a subset of the density matrix, which is simple and efficient for studying complex multi-spin-1/2 sys-
tems [15]. If I and S represent two kinds of spins scalar coupled with each other, a PROM of the InSm spin-1/2
system can be built with a 4 × 4 × · · · × 4︸ ︷︷ ︸

n+m

coherence matrix, where n and m are the numbers of I and S spins

respectively. The element of the PROM is represented by Mmat(L1a,L2a, . . . ,Lia, . . . ,L(n+m)a), where Lia rep-
resents a specific component (such as Iix, Iiy , Iiz, or Six , Siy, Siz) of the i-th spin operator or unit element E.
Since the base operator, 2q−1I1aI2a · · · InaS1aS2a · · ·Sma , corresponds to a coherence term, where q is the number
of spin operators in the product operator, Mmat(L1a,L2a, . . . ,Lia, . . . ,L(n+m)a) can be considered as the magnitude
of the base operator. For example, Mmat(I1x, I2x, . . . , Inx, S1x, . . . , Smx) represent the magnitude of coherence term
2n+m−1I1xI2x · · · InxS1xS2x · · ·Smx , and Mmat(I1x,E, . . . ,E, . . . ,E) represents the intensity value of I1x term. The
elements of the product operator matrix corresponding to Iix , Iiy , and Iiz (or Six , Siy , and Siz) can be treated as
specific components of a general ‘magnetization vector’ M(i). The evolution of M(i) under chemical shift, RF field,
inhomogeneous background field, dipolar field, radiation damping, and diffusion can be described by the modified
Bloch equations shown in Eq. (1). Relaxation is not included except for the single-quantum term due to the complex-
ity of relaxation in the case of intra-molecular MQCs [23]. Scalar couplings are independently introduced into the
PROM. According to the properties of scalar couplings, four matrix operation rules can be deduced:

Mmat(I1a, I2a, . . . ,E, . . . , Ina, S1a, S2a, . . . , Sjx , . . . , Sma)
2IizSjz←→ Mmat(I1a, I2a, . . . , Iiz, . . . , Ina, S1a, S2a, . . . , Sjy , . . . , Sma)

Mmat(I1a, I2a, . . . ,E, . . . , Ina, S1a, S2a, . . . , Sjy , . . . , Sma)
2IizSjz←→ Mmat(I1a, I2a, . . . , Iiz, . . . , Ina, S1a, S2a, . . . , Sjx , . . . , Sma)

Mmat(I1a, I2a, . . . , Iix , . . . , Ina, S1a, S2a, . . . ,E, . . . , Sma)
2IizSjz←→ Mmat(I1a, I2a, . . . , Iiy , . . . , Ina, S1a, S2a, . . . , Sjz, . . . , Sma)

Mmat(I1a, I2a, . . . , Iiy , . . . , Ina, S1a, S2a, . . . ,E, . . . , Sma)
2IizSjz←→ Mmat(I1a, I2a, . . . , Iix , . . . , Ina, S1a, S2a, . . . , Sjz, . . . , Sma)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3)

Eq. (3) provides the evolution behavior of the matrix elements due to the scalar coupling operator 2IizSjz. Similar
coherence matrixes and scalar coupling processes can be obtained for different weakly coupled systems such as AMX
spin-1/2 system. More detailed descriptions can be found in our previous paper [15].

2.3. Diffusion simulation

Eq. (1) includes a diffusion term of D
(i)
T ∇2M(i)(r, t). SPROM provides three kinds of numerical methods for simu-

lations of diffusion: Torrey’s method (solving directly the non-linear Bloch equations) [22], Monte Carlo method [24],
and finite difference method [25].

For the Torrey’s method, the diffusion term in Eq. (1) was treated in Fourier transformation space to reduce the
computing time. Since the calculation of the bulk diffusion operator D

(i)
T ∇2 is reduced to multiplication −D

(i)
T k2

in Fourier space, the Torrey’s method is usually used in the situation where the dipolar field cannot be localized. In
the case of ‘anomalous diffusion’ where molecular displacements during successive time intervals are correlated, the
Torrey’s method (diffusion operator D

(i)
T ∇2) does not work [26].

The Monte Carlo method is most flexible and intuitive, but most time-consuming for complex spin systems under
multiple pulse sequences. It was used in some special cases reported previously [24].
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Compared to the Monte Carlo method, the finite difference method can save computing time substantially and
has higher precision in normal NMR simulations. A simple equation of finite difference method for 1D diffusion
implemented in SPROM can be expressed as [27]
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j + Dj−1,j

�t
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where Mn
j is the magnetization at the j -th position along a special axis and at the n-th time step; Dj,j+1represents the

effective diffusion coefficient between the j -th and (j + 1)-th element. In the implemented finite difference method
in SPROM, every element of the PROM was operated directly through Eq. (4), with Mn

j replaced by Mmat [16].

2.4. Overview of the calculations

In this section, only the part of the calculation related to PROM is described. In the simulation, PROM is evolved
until the simulation is completed. At each step, dipolar field is calculated first through the magnetization vector ob-
tained from the PROM. The PROM is then evolved under the effects of chemical shift, relaxation, radiation damping,
and dipolar coupling implemented in a fifth-order Cash–Karp Runge–Kutta formalism. The effect of diffusion is cal-
culated independently by finite difference method or incorporated in the non-linear Bloch equations. Finally, PROM
is evolved under the effects of scalar coupling by Eq. (3).

3. Basic features and settings

3.1. Basic features

The SPROM was developed with Visual C++ development tools (Microsoft, WA, USA). It can be run as a stand-
alone application in any personal computer (PC) with Microsoft Windows operation system (Windows 2000 or later).
All operations of SPROM are performed via an easy-to-use GUI similar to general Windows application programs.
Since the core calculation code is written in standard C code, it is easy to parallelize or translate to other operation
systems.

The main functions of SPROM include: (1) simulation of 1D and 2D spectra of the InSm (or ABX) spin-1/2 system
in solution NMR, (2) simulation of MR images in coupled spin systems, and (3) input and output graphical interface.
Fig. 1 provides examples of two designed pulse sequences and the corresponding sequence diagrams output from the
SPROM software.

To begin a simulation, one first inputs spectral parameters and defines spin systems, then constructs pulse se-
quences. Outcomes of the simulation will then be presented as spectra or images. The whole process is intuitive and
simple.

3.2. Spin system parameters

All spin system parameters such as the equilibrium magnetization intensity M0, gyromagnetic ratio γ , chemical
shifts ω, longitudinal relaxation time T1, transverse relaxation time T2, translational self-diffusion coefficient D, and
scalar coupling constants J , can be assigned in the software package. The number of simulated spin systems is not
limited. It only depends on your demand and computing time allowed, since a system with a large number of spins
requires longer computing time.

3.3. Pulse sequences

After the spin system parameters are input, a pulse sequence needs to be constructed. A pulse sequence design
is put under three basic components in SPROM: ‘RF Pulse’, ‘Evolution’, and ‘Acquisition’. Flip angle, duration and
phase, saturation pulse, related gradient strength, and frequency offset of a RF pulse can all be set under ‘RF pulse’
space. Free evolution or gradient pulse can be set under ‘Evolution’ space. A pulse sequence ends with ‘Acquisition’
space, in which the receiver phase can be set. SPROM can easily implement three advanced performances: phase
cycling, multi-tasks, and batch processing.
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Fig. 1. (a) Pulse sequence for selecting intra- and inter-molecular MQC signals. The first RF pulse is non-selective, and the other three RF pulses are
frequency-selective for I , I , and S spins respectively; (b) Diagram of the pulse sequence in (a) given by the SPROM software; (c) Pulse sequence
for inter-molecular MQC signal in magnetic resonance imaging. The second RF pulse is selective for I and the others are non-selective (spatially
selecting gradients were omitted for clarity); (d) Diagram of the pulse sequence in (c) given by the SPROM software.

3.4. Drawing results

Once the simulation is completed, the results can be drawn by SPROM software. These results include general
2D spectra, 1D spectra, array spectra, and gray-scale images. SPROM software provides three types of map for 2D
spectra: gray map, color map and contour map. 2D spectra can be rotated by any angle. This function is especially
useful for high-resolution intermolecular multiple-quantum coherence (MQC) 2D spectra in inhomogeneous field.
The project of 2D spectrum along the direct and indirect dimensions can also be performed.

4. Simulation examples

To demonstrate the feasibility of the SPROM program, some NMR spectra were simulated for a 500 MHz NMR
spectrometer, as given in Fig. 2. The sample is CHCl2CH2Cl (IS2 spin system) solution in acetone-D6, where the
protons in –CH and –CH2 are denoted as I and S respectively. The scalar coupling constant between spins I and S

is 5.8 Hz. The sample concentration is M IS
0 = 0.015 A/m, and the effects of the radiation damping were neglected.

The pulse sequence shown in Fig. 1(a) with n = −2 was used. Fig. 2 shows that the inter-molecular double-quantum
coherence (DQC) cross-peak from I spins is a quartet with intensity ratio of 1:3:3:1 along the F1 axis and a triplet
with intensity ratio of 1:2:1 along the F2 axis, while the signal from S spins is a doublet with intensity ratio of 1:1
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Fig. 2. Expansions of experimental (a) and simulated (b) 2D DQC spectra of CHCl2CH2Cl sample from pulse sequence of Fig. 2(a) when
τ = 1/J m s. (a.1) and (b.1) are signals of I spins, and (a.2) and (b.2) are signals of S spins.

Fig. 3. Simulated images of a sample with two concentric tubes. The pulse sequence shown in Fig. 1(c) with n = −2 was used with different
dipolar correlation distance rd . The inner tube contains c1 spin system (0.353 mm id, 0.561 mm od) and the outer tube contains c2 spin system
(0.820 mm id). For (a), c1 represents I spins and c2 represents S spins, for (b), c1 represents S spins and c2 represents I spins. (1) rd = 1.280 mm,
(2) rd = 0.588 mm, (3) rd = 0.294 mm, (4) rd = 0.196 m.

along the F2 axis and a doublet with intensity ratio of 1:1 along the diagonal. The complex splitting patterns were
caused by the joint effects of the inter- and intra-molecular DQCs. In the case, theoretical deduction for the analytical
signal expression is very convoluted, while the simulation result is much intuitive. The simulated results are in good
agreement with experimental observations.

MRI has been under development over the past two decades and has become one of the most widely used medical
imaging modalities [28]. The roles of dipolar coupling between distant spins in water and tissues were realized more
recently, and a wealth of their possible applications has emerged [29,30]. In Fig. 3, a sample with two concentric
tubes containing spins I (ωI = 0 Hz) and S (ωS = 55 Hz) respectively was tested. The inner and outer diameters of
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the inner tube were 0.353 mm and 0.561 mm, respectively. For Fig. 3(a), the inner tube contained spins I and the
outer tube contained spins S. For Fig. 3(b), physical locations of I and S were interchanged relative to Fig. 3(a).
The other parameters were: T1 = 2 s, T2 = 1 s, and diffusion coefficient D = 2.0 × 10−9 m2 s−1 for both spins. The
pulse sequence shown in Fig. 1(c) with n = −2 was used. A simple phase cycle (x, y,−x,−y) was applied to the
first π/2 RF pulse, along with a receiver phase cycle (x,−x, x,−x). Fig. 3(a) shows that in the region of the outer
tube, the intensity of the image signal decreases with reduction of the dipolar correlation distance rd , and the signal
is mainly concentrated in the region closed to the inner tube. The reduction of signal intensity in the outer tube is due
to reduction of the strength of the dipolar field produced in the inner tube. When rd is smaller than the wall thickness
of the inner tube, there is almost no signal in the region of the outer tube. These results indicate that the effects of
inter-molecular dipolar couplings can cross the wall of tube with an effective range decided by the dipolar correlation
distance. Similar conclusions can be extracted from Fig. 3(b), coincident with Ref. [31].

All above simulations were performed on a PC (AMD XP 2500+, 512MB memories). The computing time varied
from several minutes to several hours, depending on the complexity of the spin systems and pulse sequences.

5. Conclusion

In conclusion, SPROM is a powerful and efficient tool for simulating classical and quantum effects in solution NMR
and MRI. It can be applied to complex weakly-coupled spin-1/2 systems under the effects of complex pulse sequences.
Simulation with SPROM can aid in analyzing experimental results from complex systems and identifying optimal
parameters for experiments, thus saving substantial experimental time. Programmed with Visual C++, SPROM has
an easy-to-use GUI and great extensibility. It will be freely available for those interested.
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