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Abstract

In this introductory article we attempt to provide the theoretical basis for developing the interaction between X-rays and matter,
so that one can unravel properties of matter by interpretation of X-ray experiments on samples. We emphasize that we are dealing
with the basics, which means that we shall limit ourselves to a discussion of the interaction of an X-ray photon with an isolated
atom, or rather with a single electron in a Hartree–Fock atom. Subsequent articles in this issue deal with more complicated – and
interesting – forms of matter encompassing many atoms or molecules. To cite this article: J. Als-Nielsen, C. R. Physique 9 (2008).
© 2008 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Rayons X et matière – les interactions fondamentales. Cet article introductif vise à fournir les bases théoriques pour le
développement de l’interaction entre rayons X et matière, de telle sorte qu’il soit possible de révéler les propriétés de la matière
par des expériences de rayons X sur des échantillons. Nous soulignons que nous nous intéressons aux fondements, ce qui signifie
que nous nous limitons à une discussion de l’interaction entre un photon X et un atome isolé ou plutôt avec un seul électron dans
un atome de Hartree–Fock. D’autres articles de ce numéro traitent de formes plus complexes – et plus intéressantes – de la matière,
constituées de nombreux atomes ou molécules. Pour citer cet article : J. Als-Nielsen, C. R. Physique 9 (2008).
© 2008 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Cross sections

We shall limit the discussion to two phenomena that can happen when an X-ray photon interacts with an electron
in a Hartree–Fock atom: the X-ray photon can be elastically scattered by the electron bound in the atom, or the
X-ray photon can be absorbed by the atom, maintaining energy conservation by emission of the electron from the
atom. The ability to absorb, or to scatter, is given quantitatively by the corresponding cross sections, to be defined as
follows. Consider one atom in an X-ray beam with a flux of Φ0 photons/sec/cm2. The absorption rate, W4π , will be
proportional to Φ0, and that defines the absorption cross section σα of the atom:

W4π = σaΦ0 (1a)
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The subscript 4π is a reminder that we do not specify the direction of the expelled electron – it may come out anywhere
within the total solid angle of 4π .

Similarly, the number of photons scattered through the solid angle element �Ω , will be proportional to Φ0, as well
as to �Ω :

W�Ω = dσ

dΩ
Φ0�Ω (1b)

Both the absorption cross section σa and the scattering cross section, dσ/dΩ , have the dimension of area, and this
is commonly given in units of the barn, 10−24 cm2.

The order of magnitude of the scattering cross section can be derived by a simple classical consideration. The
incident X-ray beam, considered as an electromagnetic wave, will have an energy density proportional to the square
of the electrical field Ein. Considered as a beam of photons, the photon flux Φ0 will be the photon number density times
the photon velocity c; however, the photon number density is the energy density divided by the photon energy h̄ω,
so one can write the flux Φ0[photons/area-unit/sec] = α · E2

in where α is a constant that we do not need to evaluate
explicitly. The electric field in the incident beam will drive the electron, bound in the atom, to oscillate with the same
frequency which we can, and will, assume to be much higher than any of the ‘eigenfrequencies’ of the bound electron.
An oscillating electron radiates. In the far field, at distance R, the radiation field Erad will give an intensity through
the area R2�Ω which is α · E2

radR
2�Ω , (which is independent of R because Erad decays as 1/R) so the scattering

cross section is simply

dσ

dΩ
=

[
EradR

Ein

]2

The radiated field will be proportional to the charge (−e) and to the acceleration. But since Newton we have known
that acceleration is the ratio between force, here (−e)Ein, and mass m, so Erad/Ein must be proportional to e2/m, or
to the length (in c.g.s. units) r0 = e2/mc2 – the Thomson length of the electron, which is 2.82 × 10−5 Angstrom. The
scattering cross section for one electron is therefore of the order r2

0 . The discussion can be refined by noting from the
classical theory of radiation that the radiated field is proportional to the observed acceleration of the charged particle.
In other words, if the observer is at the direction of the acceleration, that is in the direction of the incident field, i.e.
the polarization direction, then he will not observe any acceleration at all, but if he is within the plane perpendicular
to the incident field he will see the full acceleration. In general, as seen by inspection, he will see the fraction ε · ε′
of the full acceleration, where ε, and ε′, are unit vectors in the direction of polarization of the incident and scattered
wave, respectively. By this heuristic argument we have obtained the result(

dσ

dΩ

)
1 electron

= (r0ε · ε′)2 (2)

We note that the scattering cross section as derived here does not depend on the X-ray energy, presumably because
we assumed that it was much higher than any transition energy within the atom. If we consider the entire atom of
Z electrons and assume they all radiate in phase, the scattering cross section would be proportional to Z2. Since the
dimension of the electron cloud in an atom is of the same order of magnitude as the X-ray wavelength, the electrons
do not radiate in phase. With the electron cloud density being ρ(r), the resulting, effective radiating charge is easily
shown to be

∫
ρ(r)ei(k−k′)·r dr, where k and k′ are the wavevectors of the incident and scattered waves. This integral,

or Fourier transform of the charge density, is called the formfactor f (Q = k − k′) of the atom, and it approaches Z as
k → k′. The resulting scattering cross section of an atom is thus(

dσ

dΩ

)
1 atom

= [
f (Q)r0(ε · ε′)

]2 (3)

In contrast to this discussion of the elastic scattering of X-rays, there is no semi-classical way to obtain the order of
magnitude of the absorption cross section. Phenomenological, the absorption cross section varies roughly with the
X-ray energy as (h̄ω)−3 and with atomic number as Z4.

2. Outline of QM scheme

The main purpose of the rest of this article is to lay out the quantum mechanical (QM) evaluation of X-ray cross
sections, so that the reader will understand how both the scattering and absorption cross sections are derived from
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one and the same scheme of calculation. This scheme was developed about 80 years ago and is therefore described in
many text books. It is included here only for completeness of the issue. The difficulty in comprehending the scheme
lies mainly in the elaborate nomenclature, and in order not be lost in that, it may be worthwhile first to describe the
overall idea in the development in terms of a series of items.

1. We shall relate cross sections, as defined above, to quantum mechanical transition probabilities W . Here we
remind the reader about Fermi’s golden rule, which gives W in terms of a matrix element Mif = 〈f |Hint|i〉, with
the nomenclature i for initial, and f for final states, and the density of final states. Hint is the interaction potential
which allows the transition from one stationary state of an electron in the isolated atom to another stationary state
by interaction with the X-ray photon field. Instead of going into more detail and long formulae at this point, we
refer to Table 1, where this step in the scheme is spelled out.

2. Next, we must discuss Hint. With no ELM field the Hamiltonian for a free electron is simply p2/(2m), and for
the electron in the Hartree–Fock potential ϕ(r) it is p2/(2m) − eϕ(r). With an electric field the Hamiltonian is
p2/(2m) − eϕ(r) + Hint with

Hint = (e/m)p · A + e2/(2m)[A · A] (4)

Here A is the vector potential of the ELM field from which the magnetic field B is given by B = ∇ × A, and p
is the electron momentum, because that Hamiltonian will produce the correct Lorentz force −e(E + v × B). We
refer the reader to the Appendix for the details.

3. How does one evaluate the matrix element Mif = 〈f |Hint|i〉? Here there are two points to consider. First, how
do we explicitly write down the initial and final states and second, how do we derive the operator Hint in a form
that is consistent with the notation of these states? The states have two components, one for the ELM field and
one for the electron in the Hartree–Fock atom. For the electron we shall use |0〉e for the initial state, which is the
electron in the ground state. The final electron state is denoted e〈1| if the electron is expelled from the atom as a
photo-electron. For elastic Thomson scattering the final state is identical to the initial state, i.e. e〈0|. The initial
state of the ELM field is a plane wave with wavevector k and linear polarization ε. The minimal intensity is one
photon in this state. For elastic Thomson scattering the wavevector and polarization are changed to k′ and ε′,
respectively, whereas for photo-absorption the one photon in the initial sate is changed to zero photon occupation.
Consequently, we write the initial and final ELM state for Thomson scattering as

|i〉X = |0〉|0〉 · · · |1〉 · · · |0〉|0〉 · · ·
X〈f | = 〈0|〈0| · · · 〈0| · · · 〈1|〈0| · · · (5)

where the different place of the occupation number ‘1’ in the final state indicates that the wavevector, polarization
changed from (k,ε) to (k′,ε′). For photoabsorption the initial state is still |i〉X , and the final state has zeros on
all occupation numbers. The full initial (final) state to be inserted into the matrix element is

|i〉 = |i〉X|0〉e and 〈f | =X 〈f |e〈0| for scattering or 〈f | =X 〈f |e〈1| for absorption

We are now ready to discuss the operator form of Hint.

2.1. The operator form of Hint

The initial ELM state is one standing wave with wavevector k, polarization ε, confined in a box of volume V , cf.
the drawing in Table 1. With one photon in this state, the energy will be h̄ωk, and the energy density h̄ωk/V . The
classical vector potential will be of the form

A(r, t) = εA0[ei(k·r−ωt) + c.c.] = εA02 cos(k · r − ωt) (6)

The electric field is derived from E = −∂A/∂t , and the time-averaged energy density is ε0〈E · E〉 = ε0A
2
02ω2, using

that the time average of sin2 ωt is 1
2 . To determine A0 the classical expression for the energy density is equated with

the quantum form of h̄ωk/V , resulting in

A0 =
√

h̄

2ε0V ωk

(7)
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Table 1

Comment Elastic scattering Absorption

Figure

Definition of
cross sections

dσ

dΩ
= W�Ω

Φ0�Ω
σa = W4π

Φ0

Fermi’s Golden rule W�Ω = 2π

h̄

∫
|Mif |2ρ(εf )δ(εf − εi )dεf W4π = 2π

h̄

∫ |Mif |2ρ(εpe)δ
(
εpe − (εi − εB)

)
dεpe

Density of states ρ(εf ) = V

(2π)3
k2
f

dkf

dεf
�Ω ρ(εpe) = 2 · V

(2π)3

dq
dεpe

Wavevector vs. energy k2
f

dkf

dεf
= 1

(h̄c)3
ε2
f dq = q2(sin θ dθ dϕ)dq

Cross section vs. Mif
dσ

dΩ
=

(
V

2π

)2 1

(h̄c)4

∫
|Mif |2ε2

f δ(εf − εi )dεf σa = 2

(
V

2π

)2 1

h̄c

∫
|Mif |2δ

(
εpe − (εi − εB)

)
q2(sin θ dθ dϕ)dq

The operator form of A must contain creation, a†, and annihilation, a, operators of photon-states with wavevector k
obeying relations such as

a†|0〉 = 1|1〉; a|1〉 = 1|0〉; a†a|1〉 = 1 · |1〉 (8)

We are thus led to the time-independent operator form of A from expressions (6)–(8):

Â =
∑
k,ε

Âk,ε where Âk,ε = ε
[
h̄/(2ε0V ωk)

]1/2[akeik·r + a
†
ke−ik·r]

Returning to the operator form of the interaction as given in Eq. (4), one must examine whether Â and the operator
form p̂ of the electron momentum p commute. Since p̂ is proportional to ∇ , the differential operator, we get p̂(Âψ) =
Â(p̂ψ) + cst · ψ(∇ · A)op, and if the gauge is chosen so that ∇ · A = 0, then, indeed, the two operators do commute.
With this gauge we can therefore assert the operator form of Hint from (4) by just imagining an operator ‘hat’ over the
vectors p and A.

2.2. QM evaluation of the Thomson cross section

It is clear that the term in Hint linear in A leads to absorption because the operator ak operating to the right will
annihilate the incident photon, and by closure X〈0||0〉X = 1. The term quadratic in A, containing two sums, can lead
to elastic scattering because the term ak in the first summation over k, will annihilate the incident photon by operating
to the right, but a

†
k′ from the other summation will create an outgoing photon with wavevector k′ in operating to the

right. The resulting matrix element is then

MThomson
if = e2

2m
ε

[
h̄

2ε0V ω

]1/2

· ε′
[

h̄

2ε0V ω′

]1/2

e

〈
0|ei(k−k′)·r|0〉

e

= e2h̄ ε · ε′
′ 1/2 e

〈
0|ei(k−k′)·r|0〉

e
2mε0V [ωω ]
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The last factor is indeed the Fourier transform of the charge density of the electron in ground state, or, considering all
the electrons in the atom, it translates into the atomic formfactor f (Q) (with Q = k − k′) as anticipated already in
Eq. (3). Also the polarization term ε · ε′ is recognized. From Table 1 we have

dσ

dΩ
=

(
V

2π

)2 1

(h̄c)4

∫
|Mif |2ε2

f δ(εf − εi)dεf

which, together with εf = εi = h̄ω, indeed leads to expression (3) for the Thomson cross section.

2.3. QM evaluation of the absorption cross section

With the comfortable assurance that the QM scheme outlined above leads to the correct scattering cross section,
we shall now proceed to discuss the absorption cross section as evaluated by the same scheme. Again we have to
evaluate the matrix element Mif , and to this end we first consider the ‘bra’ e〈1|X〈0| operated upon by (p̂ · ε)akeik·r.
The occupation number operator a is annihilating when operating on a ‘ket’, but in operating on a ‘bra’ it acts as a
creation operator, so X〈0|ak =X 〈1|. If we take e〈1| as a free-electron state with wavevector q, then e〈1|p̂ = h̄qe〈1|.
Unfortunately this simple result is not the correct answer, because the photo-electron is not a free electron, since
it is moving in the Coulomb field of the ion left behind after the electron is expelled from the atom. Nevertheless,
for the sake of simplicity we shall first pretend that a free electron wavefunction is accurate enough, and proceed to
obtain

Mabsorbtion
if = e

m
(h̄q · ε)

[
h̄

2ε0V ω

]1/2

e

〈
1|eik·r|0〉

e

= eh̄

m
(q · ε)

[
h̄

2ε0V ω

]1/2 ∫
ψ∗

e,f eik·rψe,i dr

= eh̄

m
(q · ε)

[
h̄

2ε0V ω

]1/2 1√
V

∫
e−iq·reik·rψ1s dr (9)

In the last equation we have substituted the normalized free-electron wave function for ψe,f and, just for illus-
tration, assumed that the electron being expelled is a K-electron with wavefunction ψ1s . The integral is then simply
the Fourier transform of the initial, bound state electron wavefunction, and denoting the Fourier transform by φ(Q),
Q being Q = k − q, we find the squared matrix element for the particular process where the photo electron has a
definite wavevector q (rather than any wavevector consistent with energy conservation) to be

∣∣Mabsorbtion
if

∣∣2 =
(

eh̄

m

)2
h̄

2ε0V 2ω

[
(q · ε)φ(Q = k − q)

]2

By integrating over all directions of q we recall the result from Table 1

σa = 2

(
V

2π

)2 1

h̄c

∫ ∣∣Mabsorption
if

∣∣2
δ
(
εpe − (εi − εB)

)
q2(sin θ dθ dϕ)dq (10)

We note (with satisfaction) that the volume V disappears in the expression for the absorption cross section.
From now on the evaluation is mostly a matter of dry, mathematical manipulation that we shall skip and in stead

refer the reader to the book ‘Elements of Modern X-ray Physics’ [1, Chapter 6, pp. 208–213]. The notation in this
reference is the same as used here. We state the intermediate result

σa = 32λr0
4

3

[
ω2

A

ωωc

]5/2

for h̄ωK 	 h̄ω 	 h̄ωc (11)

The result has the virtue that it is in closed mathematical form in the stated limit, namely that the incoming photon
energy is much larger than the binding energy h̄ωK of the electron, considered to be a K-electron, but still small
compared to the electron rest mass energy h̄ωc = 2mc2. The remaining undefined parameter in Eq. (11) is h̄ωA. It has
to do with the initial wavefunction ψ1s of the electron, here assumed to be a K-electron. This wavefunction is like the
ground state wavefunction of the electron in a hydrogen atom, characterized by the Bohr radius a0 = 0.53 Å, but since
in our case the electron is in the Coulomb field of charge Z rather than 1, the Bohr radius is Z times smaller and thus
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Fig. 1. The various energies (from [1]).

considerably smaller than the X-ray wavelength. The inverse length, κ = Z/a0, is a wavenumber, and the parameter
ωA is defined in terms of this wavenumber by h̄ωA = h̄cκ , so ωA is proportional to Z and h̄ωA 
 h̄ω. Fig. 1, taken
from the reference [1] may be the easiest way to grasp the definitions of h̄ωvarious.

It is interesting to note from (11) that the absorption cross section presumably is much larger than the scattering
cross section since λr0 
 r2

0 , tacitly guessing that the ω2
A/(ωωc) is of order unity.

Unfortunately, the energy dependence as well as the dependence on Z is not quite right in Eq. (11). The exper-
imental facts are σa ∝ (h̄ω)−3Z4 whereas Eq. (11) predicts ∝ (h̄ω)−2.5Z5. The reason is the simplifying but crude
approximation that the photoelectron is a free electron, rather than moving in the Coulomb potential of the positive
ion left behind when the photoelectron escaped from the neutral atom. But that approximation was only introduced
for mathematical convenience, so if one does it rigorously with the correct photoelectron wavefunction, it turns out
that one gets a result quite similar to Eq. (11), but with a correction factor that indeed repairs the wrong energy and Z

dependence of Eq. (11):

σa,K = 2 · 32λr0
4

3

[
ω2

A

ωωc

]5/2

f (ξ)

ξ =
√

ωK

ω − ωK

; f (ξ) = 2π

√
ωK

ω

e−4ξ arc cot ξ

1 − e−2πξ

(12)

The factor 2 is due to the fact that there are 2 K electrons in the absorbing atom. The formula does not include other
absorption processes than those corresponding to the emission of a K-electron, and it is tacitly assumed that the X-ray
photon energy is sufficient, i.e. h̄ω � h̄ωK . At the threshold h̄ω → h̄ωK+ the discontinuity is easily evaluated to be

σa(h̄ω = h̄ωK) = 2 · 32λr0
4

3

[
ω2

A

ωKωc

]5/2 2π

e4
(13)

In Fig. 2 we show the calculated absorption cross section vs. photon energy for three different atoms.

3. Pertubation theory to second order and resonant scattering

The Fermi Golden Rule referred to so far is derived by perturbation theory only to first order. For completeness we
include the transition probability W to second order:

W = 2π

h̄

∣∣∣∣∣〈f |Hint|i
〉 + ∞∑

n=1

〈f |Hint|n〉〈n|Hint|i〉
Ei − En

∣∣∣∣∣
2

ρ(Ef ) (14)

where the sum is over all possible states |n〉 with energy En. It can now be seen that the A · p term, which is linear in
creation and annihilation operators, via the second term in (14), can produce scattering via an intermediate state |n〉: the
incident photon is first destroyed while the electron makes a transition from the ground state, |0〉e, to an intermediate
state |n〉. The electron then makes a transition from |n〉 to |0〉e while a photon with the same energy as the incident
photon energy is created, i.e. an elastically scattered photon. The second term will particular important when the
photon energy Ei is near the energy difference between the intermediate and ground state of the electron, leading to
what is termed resonant scattering.
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Fig. 2. The photoelectric absorption cross sections of Ar, Kr and Xe plotted on a double logarithmic scale for energies in the vicinity of the K-edges.
The dot-dashed lines represent the results of calculations within the self-consistent Dirac–Hartree–Fock framework. The solid lines are calculated
from Eq. (13) with h̄ωK equal to the experimentally observed values. The extrapolated contribution from the L electrons (dotted lines) was added
to produce the final result. For completeness the cross sections for Thomson and Compton scattering are plotted as the dashed lines. The L edges
of Kr (around 2 keV) and Xe (around 5 keV) have been omitted for clarity.

Appendix A. The Lorentz force

The Hamiltonian H = (p + eA)2/2m − eϕ(r), giving the interacting Hamiltonian of Eq. (4), will produce the
correct Lorentz force, as we shall now see.

We shall use the Lagrangian method ẋ = ∂H/∂px and ṗx = −∂H/∂x:

Hamiltonian H = 1 [
(px + eAx)

2 + (py + eAy)
2 + (pz + eAz)

2] − eϕ (A.1)

2m
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x-component of Lagrangian ẋ = ∂H/∂px = 2{px + e · Ax(r)}/(2m) (A.2)

ṗx = −∂H/∂x or

ṗx = e
∂ϕ

∂x
− 1

2m

[
(px + eAx)e

∂Ax

∂x
+ (py + eAy)e

∂Ay

∂x
+ (pz + eAz)e

∂Az

∂x

]
2

= e
∂ϕ

∂x
− e

[
ẋ

∂Ax

∂x
+ ẏ

∂Ay

∂x
+ ż

∂Az

∂x

]
(A.3)

In the last equation we have inserted ẋ from the first equation (A.2). From (A.2) we derive the Lorentz force component
in the x-direction:

Fx, Lorentz = mẍ = (ṗx + eȦx)

We evaluate Ȧx as follows and insert ṗx from (A.3),

eȦx(r, t) = e

[
∂Ax

∂t
+ ẋ

∂Ax

∂x
+ ẏ

∂Ax

∂y
+ ż

∂Ax

∂z

]
to get

ṗx + eȦx(r, t) = e
∂ϕ

∂x
+ e

∂Ax

∂t
− e

[
ẏ

(
∂Ay

∂x
− ∂Ax

∂y

)
+ ż

(
∂Az

∂x
− ∂Ax

∂z

)]
On the right-hand side, the first two terms are precisely the Lorentz force x-component due to the electric field. In the
squared parenthesis (

∂Ay

∂x
− ∂Ax

∂y
) = (∇ × A)z and (

∂Az

∂x
− ∂Ax

∂z
) = −(∇ × A)y , so the squared parenthesis times the

charge (−e) is indeed (v × B)x , the Lorentz force x-component due to the magnetic field. The y and z components
are derived in the same way, so indeed the stated Hamiltonian produces the correct Lorentz force.
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