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Abstract

The Taylor–Green flow is a model flow sharing many properties with the von Kármán flow, in which experimental turbulent
dynamo action has recently been achieved. We present here recent numerical results on the Taylor–Green dynamo instability, both
in the linear and non-linear regime. Various properties are considered, such as the influence of turbulence, the energy transfer
between different scales, the spatial structure of the neutral mode, the nature of the bifurcation and the saturation mechanisms. We
also discuss the role of the velocity fluctuations on the dynamo onset. To cite this article: Y. Ponty et al., C. R. Physique 9 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Étude linéaire et non linéaire d’une dynamo produite par un forçage de Taylor–Green. Un écoulement turbulent forçé par
un tourbillon de type Taylor–Green, partage de nombreuses propriétés avec l’écoulement de von Kármán dans lequel une dynamo
turbulente a été récemment mise en évidence expérimentalement. Nous présentons des résultats récents de dynamos numériques
engendrées par des tourbillons de Taylor–Green dans les régimes linéaire et non linéaire. Nous discutons certaines de ses propriétés
comme l’influence de la turbulence, le transfert d’énergie entre différentes échelles, la structure du mode neutre, la nature de la
bifurcation et les mécanismes de saturation. Nous discutons également le rôle joué par les fluctuations de vitesse sur le seuil de la
dynamo. Pour citer cet article : Y. Ponty et al., C. R. Physique 9 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Dynamo action, the self generation of magnetic field by a conducting moving fluid, is considered to be the main
source of magnetic fields in the universe [1]. Over the past decades, experimental efforts have been devoted to the
understanding of this magnetic induction [2–7] and dynamo action. To date, three groups have successfully achieved
dynamos in liquid sodium laboratory experiments [8–11].

In parallel, several groups have been studying the problem using numerical methods. Ideally, one should build
realistic simulations of the dynamos (natural or laboratory) taking into account the precise geometry, the effect of
the fluid and magnetic boundary conditions. This is currently achieved using finite element, finite volume or finite
difference mesh schemes [12–14]. However, it is possible to study numerically some aspects of experimental dynamo
behaviour with simple three-dimensional periodic boundary conditions. We review here several numerical results
obtained using the Taylor–Green forcing in a periodic box.

2. Numerical method

Incompressible turbulent flows have been intensively studied in a periodic space, a classical mathematical frame-
work for theories [15] as well as for numerical simulations of isotropic and homogeneous turbulence [16,17]. In this
geometry, the pseudo-spectral numerical method is the most precise global numerical method for a fixed mesh size. In
the present work, we use the pseudo-spectral method initiated by the work of Orszag and Patterson (1971) [16]. The
success of this method is essentially due to the high accuracy and the efficiency of the Fast Fourier Transform.

2.1. Basic equations

We consider the incompressible magnetohydrodynamic equations (1), (2)

∂v
∂t

+ v · ∇v = −∇P + j × B + ν∇2v + F (1)

∂B
∂t

+ v · ∇B = B · ∇v + η∇2B (2)

together with ∇ · v = ∇ · B = 0; a constant mass density ρ = 1 is assumed. Here, v stands for the velocity field,
B the magnetic field (in units of Alfvén velocity), j = (∇ × B)/μ0 the current density, ν the kinematic viscosity, η the
magnetic diffusivity and P is the pressure. The forcing term F is the Taylor–Green vortex (TG) [18],

FTG(k0) = F0

[ sin(k0x) cos(k0y) cos(k0z)

−cos(k0x) sin(k0y) cos(k0z)

0

]
(3)

As direct numerical simulations (DNS) are rapidly limited, different sub-grid models have been used in order to
reach the highest possible kinetic Reynolds numbers: (i) Large Eddy Simulation (LES) for the hydrodynamic field
[19] with no model in the induction equation [20,21]; (ii) modelling of the full MHD system with a filtering, using the
‘alpha model’ [22,23]; and (iii) using a dynamical spectral LES scheme [24,25].

2.2. Non-dimensional numbers

In our code, the dimensional form of the MHD (1), (2) equations is computed, and dimensionless numbers are
calculated a posteriori, using the numerical output. We define the Reynolds numbers as Rv = LV

ν
and Rm = LV

η
with

a characteristic velocity V , length scale L and the viscosity ν or the magnetic diffusivity η. There are several possible
choices for these characteristic quantities. For the velocity, one may use the root mean square (r.m.s), the average in
time or the maximum of the velocity field. Similarly, for the length scale one may use the size of the box, the integral
scale of the fluid or the Taylor micro-scale. In the studies reported here, several different choices have been made and
we will give the corresponding definitions in each particular case.
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Fig. 1. (a, l.h.s. fig) Variation with Reynolds number of the velocity fluctuations for the dynamic flow Vrms = 〈√2Ev(t)〉t (filled symbols and solid
lines) and its time-average, V̄rms = √

2E〈v〉 (open diamonds); (b, middle fig) snapshot of the velocity inside one fundamental Taylor–Green box,
shown in volume rendering of the kinetic energy, and some field line trajectories. (c, r.h.s. fig) volume rendering of the kinetic energy for the time
average velocity (imaging made with Vapor [29]).

3. Dynamo action in the Taylor–Green flow

When k0 is set to one in Eq. (3), the Taylor–Green flow lies within a fundamental box of volume (π/2)3, so that
there are 8 fundamental boxes inside the 2π -periodic computational domain (note that the different fields are able to
cross these virtual frontiers, these boxes are permeable). Inside each fundamental box, the Taylor–Green vortex has
hydrodynamic properties similar to the experimental von Kármán vortex [26]. Such a forcing generates a numerical
dynamo with a magnetic Prandtl number of order one [27,28]. Note that the Taylor–Green vortex (Eq. (3)) by itself
cannot produce a kinematic dynamo, because it is a 2-dimensional flow. Dynamo instability is only obtained in the
full 3D flow created by the non-linear term of the Navier–Stokes equation.

3.1. Mean flow dynamo

With the Taylor–Green forcing, a mean flow develops with superimposed turbulent fluctuations covering all spa-
tial and temporal scales. However, one observes that the level of velocity fluctuations saturates in the limit of large
Reynolds numbers – see Fig. 1(a) – as the flow is forced with a constant force F0 and only the fluid viscosity is
changed.

Fig. 1(b) shows volume rendering of the velocity field for the instantaneous velocity field. At all investigated kinetic
Reynolds numbers, the time-average of the velocity converges to a well-defined mean flow, shown in Fig. 1(c). The
r.m.s. speed of the mean flow is shown by the open diamonds, Fig. 1(a), that remaining after taking the time average
(the distance between the filled and the open diamonds) corresponds to velocity fluctuations, that for large Reynolds
number have an approximately constant level. It is also observed that this time-averaged velocity field varies very
little with the Reynolds number [30], even at high Rv .

The dynamo capacity of this time-average flow can be analysed in kinematic dynamo computations. Fig. 2(a)
shows a typical evolution of the growth rate of magnetic energy (starting from a seed field). One observes two regions
of magnetic Reynolds numbers with positive growth rates – i.e. dynamo branches [31,32,30]. The first dynamo mode
evolves at larger scales than the fundamental TG box – Fig. 2(b); it operates in a range of magnetic Reynolds numbers
20 < Rm < 50. The second dynamo mode develops within the fundamental box – Fig. 2(c) – for magnetic Reynolds
numbers in excess of about 180. Its shape is similar to the one obtained in kinematic simulation for the Von Kàrmàn
time-averaged velocity field [33,34].

3.2. Kinematic dynamo regime at high Reynolds number

In this section, we study dynamo action from the dynamical velocity fields in the numerical simulations. The
Reynolds number is computed using the average in time – labelled 〈·〉t – of the root mean square velocity, and the
integral scale is calculated from the one-dimensional energy spectra Ev(k),



752 Y. Ponty et al. / C. R. Physique 9 (2008) 749–756
Fig. 2. (a, l.h.s. fig) Growth rates for the kinematic dynamo generated by mean flow versus the magnetic Reynolds number; (b, middle fig.)
kinematic eigenmode of the first dynamo window (at low RM ); (c, r.h.s. fig) kinematic eigenmode of the second dynamo window (at large RM ).
Both eigenmodes are shown in volume rendering of the magnetic energy, and some magnetic field line (imagery made with Vapor [29]).

Fig. 3. (Evolution of the critical magnetic Reynolds numbers in kinematic runs. The dashed line connects simulations using a time-averaged velocity
field, while for the solid line the full dynamical field is used. At the largest RV values, a LES sub-grid modelling of the velocity small scales is
used (LES [21], LES B [25]).

Rv = 2π

ν

〈√
2Ev(t)

〉
t

〈∑ Ev(k,t)
k

dk

Ev(t)

〉
t

(4)

At very low Reynolds number, the flow is laminar with weak temporal velocity fluctuations. The low-Reynolds
number flow is very close to its time-average, and the dynamo is found to operate in the vicinity of the kinematic
dynamo of the time-averaged flow. High Reynolds number flows are obtained when the hydrodynamic viscosity
is decreased while keeping constant the forcing amplitude F0. One observes that the flow destabilises rapidly and
turbulence sets in.

The threshold for linear dynamo instability have been computed numerically for TG forcing over the past years
[21,31]. The results are summarised in Fig. 3. Using both Direct Numerical Simulations (DNS) and modelling of the
turbulent small-scales, high kinetic Reynolds number have been reached. We have observed, for the first time, that
while turbulence tends to increase the threshold compared to the laminar case, the critical magnetic Reynolds number
saturates to a value of about 170, for Rv’s in excess of 1000. Note that increasing kinetic Reynolds numbers with a



Y. Ponty et al. / C. R. Physique 9 (2008) 749–756 753
Fig. 4. (a, l.h.s. fig) Energy spectra of the velocity of TG flow below threshold (DNS, black line), above threshold in the saturated regime (red line)
and for the time average velocity field (blue dashed line) – point A in the bifurcation curve; (b, middle fig.) bifurcation curves and hysteresis cycles;
(c, r.h.s. fig) volume rendering, magnetic streamline and a plane representation of the magnetic energy in the saturated regime, at point A in the
bifurcation curve.

constant magnetic Reynolds number corresponds to situations with a decreasing Prandtl number, a situation that tends
to approximate the case of liquid metal experiments. Here, the lowest magnetic Prandtl number is around 10−2.

One can also compare in Fig. 3 the variation of the critical magnetic Reynolds numbers Rc
m with the Reynolds

number in the first and second kinematic dynamo windows. At low Rv , the dynamo threshold for the dynamical prob-
lem lies within the low Rm dynamo window for the time-averaged flow. For Rv larger than about 200, the dynamical
dynamo threshold lies in the immediate vicinity of the upper kinematic dynamo branch (high Rc

m mode of the time-
averaged flow). At this stage, it is unclear whether the effect of the fluctuations in the dynamical runs is to increase
the threshold of the first kinematic window, or decrease the threshold of the second one.

3.3. Saturation of the Taylor–Green dynamo

When the non-linear regime is reached, the Lorentz force has modified the velocity field. Its influence at all scales
of motions can be seen in Fig. 4(a). Fluctuations at all scales have been reduced [35].

In some cases, the Lorentz force alters so strongly the flow that the MHD flow jumps to another attractor. This
attractor may not be able to sustain the dynamo as observed in [36]. In the TG case we have observed that the changes
in the flow induced by the Lorentz force generate sub-criticality in the bifurcation [37]. As seen in Fig. 4(b), once
the dynamo is generated (say, at point A in the figure), it can be sustained when the magnetic Reynolds number is
decreased way below the linear threshold (until point B in the figure).

The way in which the Lorentz forces actually alters the velocity field and its dynamics will require further studies.
As a first step, we show in Fig. 4(c) that for the Taylor–Green forcing, the saturated time averaged magnetic energy is
concentrated inside horizontal tubes and located in the (z = π/2 and z = 3π/2) planes, where the differential rotation
is strongest. Inside these two planes, the magnetic tubes are aligned along the diagonal, in the largest scale.

3.4. Energy transfer

A complete study of locality or non-locality of the energy transfer has been performed for the different MHD
regimes in references [38–40]. A shell-to-shell study of energy transfers has led to the following picture. The energy
flux in hydrodynamic turbulence was found to be dominated by local interactions for very large Reynolds numbers;
energy is injected at large scale by the Taylor–Green forcing and transferred at small scale through the local energy
cascade – this is also valid for pure magnetic energy transfers. More surprising are the transfers of energy between
the kinetic energy and the magnetic energy: for a given magnetic energy shell, non-local transfers from all the hydro-
dynamic scales have been observed, with a peak around the forcing scale. In the non-linear regime, a given magnetic
energy shell transfers energy to smaller hydrodynamic scales. This non-local behaviour certainly deserves further in-
vestigations. From a technical point of view, it indicates that the separation between large- and small-scale dynamos
can be artificial, and that the interpretation of the role of fluctuations cannot be easily reduced by local and phenomeno-
logical arguments. Indeed, the analysis showed (for Reynolds numbers large enough) the coexistence of large- and
small-scale dynamo action in the Taylor–Green flow, and it indicated that fluctuations in the large scale flow can be a
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Fig. 5. Evolution of the growth rate Λ versus Rm for different noise intensity and correlation time in stochastic simulations at Rv = 6. The dotted
line is growth rate at δ = 1 (no noise): (a) for a Markovian noise at kI = 1, δ = 1.5; (b) for a Markovian noise at kI = 16, δ = 1.7: square τc = 0;
box τc = 0.03; black square τc = 0.3.

source of small-scale magnetic fields. It also showed the necessity to have a well resolved hydrodynamic simulation,
where all the non-linear interactions can be computed in a realistic way.

4. Turbulence and stochastic noise

In [32,30], direct and stochastic numerical simulations have been used to explore the influence of turbulence on the
dynamo threshold. In the spirit of the Kraichnan–Kazantsev model, turbulent fluctuations are modelled by noise, with
given amplitude, injection scale kI and correlation time τc. The addition of a stochastic noise to the mean velocity
significantly alters the dynamo threshold and increases it for any noise at large scale. For small scale noise, the results
depends on the correlation time and on the magnetic Prandtl number.

For the purpose of these studies, the magnetic Reynolds number is defined as.

Rm = 1

η

〈√
2/3Ev(t).

3π

4Ev(t)

∑
EV (k, t)/k dk

〉
t

(5)

and the level of noise δ = Ev/E〈v〉 is the ratio of the full kinetic energy and the kinetic energy of the average in time
velocity. The noise amplitude is chosen so as to mimic the fluctuation level in full dynamical simulation shown in
Fig. 1.

In Fig. 5, the magnetic growth rate – defining the dynamo windows – is seen to be modified by the addition of
noise on the Taylor–Green mean flow, especially when the noise is injected at large scale and with long correlation
time. Whether these results can be extended to real velocity fluctuations is still an open problem under investigation.

5. Conclusion

Simulation of dynamo action using the TG forcing has allowed to address some issues regarding the effect of
turbulence on dynamo generation. One result is that the threshold for onset is lower when the underlying flow has a
well-defined mean structure, compared to random forcing [21,41]. Another finding is that, even though the threshold
for turbulent flow is higher than for the laminar base flow, it tends to saturates in the limit of high kinetic Reynolds
numbers (correspondingly in the low Prandtl number limit).

The role of turbulent fluctuations at small scale is still to be clarified. Adding stochastic noise to the TG flow
increases the threshold for dynamo action, but in the case of real hydrodynamic fluctuations the threshold is observed
to be close to the kinematic high mode – Fig. 3. On the other hand, studies of scale interactions in MHD flows
have shown that fluctuations of the large scale flow and at intermediate scales can act as a dynamo source for small
scale magnetic fluctuations, while small scale fluctuations enhance the Joule dissipation of the field. It has also been
observed in the VKS experiment that the self-sustained dynamo is of the α −ω type [10], so that turbulent fluctuations
are essential.
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Some information about the mechanisms which drive the dynamo saturation in the non-linear regime have been ob-
tained. In particular, the shell-to-shell energy transfer analysis reveals the non-locality of the energy transfer between
the fluid and the magnetic field. This must be taken into account in further studies and models.

Finally, the observed subcriticality in the Taylor–Green dynamo may be is promising for experiments and modelling
of natural dynamos (it has been observed in numerical models of the geodynamo as well [42–44]), and indications of
subcriticality have been observed in the VKS experiment [45].

We still need much effort to reach realistic numerical simulations at high Reynolds numbers inside bounded do-
mains. In the mean time, studies in open periodic boxes and pseudo-spectral method remain a convenient numerical
tool to study the turbulent dynamo.
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