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Abstract

We shortly review the basic observational facts concerning the solar dynamo. Then, a brief overview of our current understanding
of the large-scale evolution of the magnetic field of the Sun is proposed, showing, in particular, some successes and difficulties
of the mean-field models. We illustrate the complications of this problem with recent work on stellar dynamos. We also compare
the solar situation to that of the core of the Earth as well as those of laboratory and numerical experiments. To cite this article:
M. Rieutord, C. R. Physique 9 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La dynamo solaire. Nous passons brièvement en revue les principaux faits observationnels concernant la dynamo solaire. Nous
exposons ensuite notre compréhension actuelle de la génération du champ magnétique solaire aux grandes échelles en montrant en
particulier les succès obtenus par les théories de champ moyen, mais aussi les difficultés qui surgissent quand tous les aspects du
problème sont pris en compte. Nous illustrons ces complications par les récentes observations de l’activité magnétique d’étoiles
semblables au soleil, lesquelles montrent la grande sensibilité de certaines caractéristiques des dynamos stellaires aux paramètres
des étoiles. Enfin, nous comparons la situation solaire à celle du noyau terrestre, des expériences de laboratoire et des expériences
numériques actuellement possibles. Pour citer cet article : M. Rieutord, C. R. Physique 9 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The understanding of the solar dynamo and, more generally, that of stellar dynamos, is one of the grand challenges
of astrophysics nowadays. Furthermore, a full knowledge of the solar dynamo would open interesting applications,
like the prediction of the solar magnetic activity. This is a key parameter of the “space weather”, which is important
for any space mission. Besides, such models would also be a useful input for the determination of the solar irradiance,
which has an obvious influence on the Earth’s climate.

The question is, however, so closely related to that of a theory of turbulence, that it is likely that we have to solve
the latter to understand the former. Despite this daunting perspective, astrophysicists have tried to decipher the solar
dynamo and, surprisingly, found some simple and robust rules that must be met by the models. These results leave the
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impression that we are not far from a self-consistent view of solar magnetism, but the devil is in the details: any close
inspection of a given model stumbles over either an inconsistency or an ad hoc assumption.

Notwithstanding these difficulties, the solar dynamo (and more generally astrophysical dynamos) is a field of
intense research as testified by the numerous reviews that have recently appeared (e.g. Ossendrijver [1], Charbon-
neau [2], Brandenburg and Subramanian [3], Proctor [4], Tobias and Weiss [5]), and which mention at least six
hundred papers altogether!

Although I have not worked recently on the subject (my contribution was in the first direct numerical simulation
of a dynamo based on compressible convection, (see Brandenburg et al. [6]), I nevertheless accepted the challenge of
writing this short review with the hope that it will give an outside and synthetic view of the subject that may be useful
to those of us who are not directly involved in this complicated, but fascinating, topic.

The followings will first present the most striking landmarks of observational constraints, followed by a summary
of the current understanding of the general features of the solar dynamo. I then bring other stars on the stage in
order to point out their potential merits for our understanding of the problem. Then, the geodynamo, numerical and
experimental dynamos are compared to the solar situation, before some perspectives conclude this contribution.

2. A (very) short review of observational facts

The solar dynamo has its most obvious expression through the variations of the sunspot number and the famous
butterfly diagram, which we show in Fig. 1. This diagram shows, as a function of time and latitude the number of
sunspots. It gives the evidence of the dynamo wave which propagates from the mid-latitudes to the equator.

A detailed examination shows that the oscillation is not strictly periodic; cycle duration varies between 7 and 14
years with a mean value of 11 years. The diagram also shows a clear modulation of the cycles at a time scale of a
hundred years (this is the so-called Gleissberg cycle with a 88 yrs period). Another modulation of ∼200 yrs appears
in the cosmogenic indicators (14C, 10Be) of the Earth atmosphere, which are sensitive to the Sun’s magnetic field (e.g.
Beer et al. [7]).

Observations of sunspots have also shown that they usually appear in pairs where the leading spot is of opposite
polarity to the trailing one. Moreover, the polarities of leading and trailing spots reverse from one hemisphere to the
other. They also reverse from one cycle to the next.

From these observations, known as Hale’s sunspot polarity law, it has been inferred that the emergence of a sunspot
pair is the signature of the rise of a magnetic flux tube coming from the toroidal magnetic field inside the convection
zone of the Sun. The reversal of the polarities between two consecutive cycles indicates that the true period of the
solar dynamo oscillation is 22 years in the mean. Furthermore, the fact that the leading sunspot is always closer to
the equator than the trailing one (Joy’s law), can be nicely interpreted in the model of a buoyantly rising flux tube
(D’Silva and Choudhuri [8]).

Finally, longitudinally averaged magnetograms clearly show the large-scale dipolar magnetic field, which reverses
during the sunspot maximum (see Dikpati et al. [9]).

Fig. 1. The butterfly diagram during 140 years (data from the Greenwich Sunspot Database). This is the number of sunspots (the colour in log
scale) as a function of the latitude of emergence and time.
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3. Current understanding

3.1. Physical conditions of the solar dynamo

The structure of the Sun is well known (to some extent, of course!). The most stringent data come from helioseis-
mology with the profiles of the sound velocity. Standard solar models typically tune three parameters (the initial mass
fraction of helium and metals, and the ratio of the convective mixing-length to the pressure scale height) to make a
model as close as possible to the Sun that we see now, i.e. after 4.6 Gyrs of evolution (e.g. Basu et al. [10]). Current
precision is around a percent. Hence, the physical conditions under which the solar dynamo operates are rather well-
known. Conductivity and viscosity are those of a plasma whose mass fraction of hydrogen is 0.71, helium 0.27 and
metals 0.02. In numbers, the solar plasma is almost as if of pure hydrogen (the mean charge of ions is 〈Z〉 ∼ 1.1).
Magnetic diffusivity η and dynamical viscosity μ are dominated by electron–ion collisions and plasma physics, in the
fluid régime, says (Spitzer [11]):⎧⎪⎪⎪⎨
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where me and mi are the masses of electrons and ions, respectively; kb is Boltzmann constant and T the temperature;
ε0,μ0 are the usual electromagnetic constants, e the electric charge and Z the charge number of ions; γ (Z) is a

non-dimensional function with γ (1) � 0.58. lnΛ is the usual Coulomb logarithm with Λ = 8π(ε0kbT )3/2

Ze3√ne
, where ne is

the number density of electrons (from Delcroix and Bers [12]). The heat transport is dominated by photon diffusion,
therefore we use the heat radiative conductivity χrad = 16σT 3/3κρ where κ is the mean Rosseland opacity and σ

Stefan constant. From these expressions we can estimate the kinetic and magnetic Prandtl numbers as well as the
kinetic and magnetic Reynolds numbers. For the latter, a velocity and a length scale are also necessary. We take them
from the standard mixing-length model of solar convection.

To summarise the values, we plot these numbers as a function of the fractional radius of the Sun (see Fig. 2). It
turns out that the solar dynamo works at small Prandtl numbers and (very) high Reynolds numbers. It is now useful to
compare them with the same numbers for the Earth’s core and the VKS experiment (Monchaux et al. [13], Berhanu
et al. [14]).

Table 1 shows that the solar dynamo shares with the VKS laboratory experiment and the geodynamo a low magnetic
Prandtl number and a high kinetic Reynolds number, while the main difference comes from the magnetic Reynolds
number. This latter number is quite similar in VKS and geodynamo, but much lower than the Sun’s. This means that
the Sun (and stars) harbours a very large number of magnetic scales that we cannot find in the geodynamo and present
laboratory experiments.

Fig. 2. Left: Kinetic (solid line) and magnetic (dashed line) Reynolds numbers in the solar convection zone as a function of the fractional radius.
Middle: The kinetic (solid line) and magnetic (dashed line) Prandtl numbers in the whole Sun. Right: The kinematic viscosity (solid line) and
magnetic diffusivity (dashed line). The vertical line separates the radiative (RZ) and convective zones (CZ).
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Table 1
Values of the numbers in the core of the Earth and in VKS

Numbers Earth’s core VKS

Pm 5 × 10−7 10−5

Re 7 × 108 5 × 106

Rem 360 49

3.2. The mean-field approach

The foregoing discussion has shown that the solar dynamo is operating at very high Reynolds numbers, and for
this reason a large number of dynamic and magnetic scales are expected to contribute to it. However, our quick review
of the observations shows that the solar dynamo has energy in large spatial scales, which evolve slowly compared to
those of the turbulent convection; at first glance, their behaviour is rather simple and should be amenable to a simple
theory . . . .

Thus mean-field approaches have been favoured and have had some successes although they still stumble on in-
consistencies or ad hoc assumptions.

The mean magnetic field, usually taken as the longitudinally-averaged field 〈 �B〉 has two components: the toroidal
and the poloidal ones. It evolves according to

∂〈 �B〉
∂t

= �∇ × (〈�v〉 ∧ 〈 �B〉 + 〈�v ∧ �b〉 − η �∇ × 〈 �B〉) (2)

where we used the Reynolds decomposition of turbulent fields ( �B = 〈 �B〉+ �b, etc.). In this evolution equation, difficul-
ties come from the mean electromotive force Ei = 〈�v ∧ �b〉i , which needs a closure of the turbulence to be related to
other mean-fields. Since the pioneering work of Steenbeck et al. [15], this is usually done through an expansion over
the derivatives of the mean-field, namely

Ei = αij 〈Bj 〉 + βijk∂j 〈Bk〉 + · · · (3)

In this expression the third order pseudo-tensor β is related to the turbulent diffusion of the magnetic field, while the
second order pseudo-tensor α provides the famous alpha-effect at the heart of mean-field dynamos. Notwithstanding
the conditions of use of expansion (3) (for instance the separation of large and small scales), this expression of the
mean electromotive force �E has proved to be a very useful paradigm for deciphering the solar dynamo (a more detailed
introduction may be found in Moffatt [16]).

Early work on the solutions of (2) using (3) have discovered the now classical α − Ω and α2 dynamos. In these
works, like Roberts [17], the α,β tensors follow simple prescriptions and the large-scale velocity field is just a dif-
ferential rotation (or zero). The mean-fields appear as a solution of a linear eigenvalue problem that depends on the

so-called dynamo numbers Cα = αR
β

and CΩ = �ΩR2

β
. The instability turns out to be usually oscillatory in the α −Ω

case and steady in the α2 case (this is the case when no differential rotation is present and where the α-effect regen-
erates the toroidal and poloidal field). As shown in Roberts [17], the α − Ω case is reminiscent of the solar dynamo:
the toroidal and the dipolar fields oscillate periodically, showing an equatorward propagation of the activity belts in
properly tuned cases.

3.3. The difficulties of the linear régime . . .

In the kinematic régime where the non-linear feedback of the Lorentz force is neglected, the α,β tensors can be
estimated from the underlying turbulence. Setting τ as the typical turnover time scale, it turns out that

α ∼ −τ

3
〈�v · �∇ × �v〉, and β ∼ τ

3
〈v2〉 (4)

showing in particular that α is related to the local kinetic helicity, and of opposite sign to it (Moffatt [16], Charbon-
neau [2]).

A first difficulty already comes at this linear level. As noticed by Parker [18], downward motions (Vz < 0) concen-
trate background vorticity, which is positive in the northern hemisphere ( �∇ × �v)z > 0, hence the α-effect is positive
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in the northern hemisphere. α −Ω mean-field models have shown however that this implies a negative radial gradient
of Ω , i.e. ∂rΩ < 0, for the dynamo wave to propagate, as observed, to the equator.

A popular model for the solar dynamo argues that, for the build-up of the toroidal field, one needs the interface
between the radiative and convective zones, namely the tachocline, where strong fields can be stored and eventually
emerge as Ω-shaped flux ropes (e.g. Tobias and Weiss [5]). However, within this region or just above, helioseismology
shows that ∂rΩ > 0 in the latitude band −30◦ < λ < +30◦, thus implying a poleward propagation of the dynamo
wave. In this respect, helioseismology would suggest to take into account a layer at r ∼ 0.95R� where ∂rΩ < 0, but
the small thickness of this layer, the latitude extension of activity belts and the storage of the toroidal field raise new
problems (see Brandenburg [19] and Brandenburg and Käpylä [20]).

Other models attribute an important role to the meridional circulation like the Babcock–Leighton one (but see
Charbonneau [2] for a complete discussion).

3.4. . . . and the non-linear régime

Once the dynamo instability is obtained for a given set-up, one faces the question of how this instability saturates
and at which level. As the alpha tensor is the key parameter of the instability, a natural way of incorporating the
feedback of the Lorentz force in the mean-field model is to devise an alpha-quenching mechanism.

Various scenarios have been proposed for the quenching mechanism but the resulting form of the alpha-coefficient
is always something like

α = α0

1 + 〈 �B〉2/B2
eq

where B2
eq = μ0〈ρv2〉 is the equipartition field. Such a recipe just expresses the fact that a strong enough mean-field

suppresses small-scale flows responsible of the alpha effect. In the case of the Sun, the Ω-effect (the differential
rotation) is also important and could also support some feed-back. This possibility is usually not considered since
the toroidal field, i.e. the main component of the solar magnetic field, cannot reduce the shear that makes it growing.
Moreover, observations indicate a very slight modulation of the differential rotation with the magnetic cycle (these
are the torsional oscillations, e.g. Ulrich and Boyden [21]).

Thus non-linear effects should concentrate in the α coefficients. However, some authors (like Vainshtein and Cat-
taneo [22]) argued that the quenching should rather be like

α = α0

1 + Rem〈 �B〉2/B2
eq

which was actually observed in a numerical experiment by Cattaneo and Hughes [23]. Such a quenching, called
catastrophic alpha quenching after Blackman and Brandenburg [24], is extremely strong in the solar case where
Rem � 108.

The understanding of this catastrophic quenching has motivated much work (cf. Brandenburg and Subrama-
nian [3]). It turns out that it is the consequence of the conservation of magnetic helicity

∫
(V )

�A · �B dV , where �A
is the vector potential. As shown for instance in Moffatt [16], such a quantity is conserved in ideal MHD, when either
no flux is allowed through the boundaries, or these are periodic. The role of the conservation of magnetic helicity has
thus been intensively studied as a possible source of alpha quenching.

First studies, as reviewed by Pouquet [25], have demonstrated that the inverse cascade of the magnetic helicity and
the non-linear feedback of the Lorentz force come into the alpha effect through the current helicity 〈 �j · �b〉, so that the
kinematic expression of alpha in (4) should be written

α = −1

3
τ

(
〈�v · �∇ × �v〉 −

〈 �b · �∇ × �b
μ0ρ

〉)

when non-linear feedback is important. Following this line of research, Brandenburg and collaborators have devised
a dynamical equation for α (e.g. equation 9.15 in Brandenburg and Subramanian [3]) which reproduces the algebraic
catastrophic quenching observed by Cattaneo and Hughes [23].

Together with the catastrophic α-quenching appeared the catastrophic β-quenching, thus a catastrophic reduction
of the turbulent diffusion (e.g. Vainshtein and Cattaneo [22]). Such a quenching, even if it favours the amplification of
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the magnetic field, has also catastrophic consequences in the models since the turbulent diffusion controls the period
of the dynamo oscillation (e.g. Roberts [26]): a strong reduction would imply unrealistic long time scales. Hence, here
too the solar dynamo does not support the catastrophic quenching.

The foregoing discussion shows that the role of the various helicities in the solar dynamo needs to be well studied;
α is likely not a simple function (e.g. Courvoisier et al. [27], Sur et al. [28]). It is urgent to understand how stellar
dynamos escape to these catastrophic quenchings: what is the role of inhomogeneities, of open boundaries, which
allow magnetic helicity losses via coronal mass ejections, etc.

4. The Sun and other stars

The solar dynamo is however only a particular, well detailed, case of the general stellar dynamo. One may thus
wonder what other stars tell us about the generation of magnetic fields. As may be guessed, the data on stellar magnetic
fields are much less numerous than those of the Sun. Broadly speaking, stellar magnetic fields are detected in three
ways: directly, through the polarisation of many spectral lines, indirectly through the chromospheric emission (UV
and X rays) or photometrically by the transit of spots on the stellar discs. In the best cases, where the magnetic field is
detected directly through spectropolarimetry, and the star is rotating, Doppler imaging can be used to reconstruct the
magnetic field on the large fraction of the stellar surface (Donati et al. [29]). This technique is, however, very recent
and the time basis of such data is still very short compared to that available for the Sun. With the indirect indicators
that we mentioned, data are less detailed but stars have been observed on a longer time scale.

Typically, stellar observations tell us about the intensity of the magnetic field, the magnetic flux, the time variations
of the field. These magnetic quantities may then be related to global parameters of the stars, namely: (i) to the depth
of the convection zone, which conditions the possible existence of a tachocline and controls also the vigour of the
convection; these are direct consequences of the mass and the metallicity of the star; (ii) to the rotation rate; and
(iii) to the differential rotation.

A promising way of research is the investigation of solar twins, i.e. stars which are very similar to the Sun except
for one parameter. The work of Petit et al. [30] applies this idea to the rotation rate. An interesting result of this study
is to show that the star HD146233 (18 Sco), which is almost not distinguishable from the Sun except for its rotation
period (22.7 days instead of 24.7), has a magnetic cycle period of 7 years. This result indicates that the magnetic
field oscillation is likely a sensitive observable of the dynamo. As it is related (in mean-field models) to the turbulent
diffusion, we see that some details of the turbulent convection are quite influential (actually, the intrinsic variability
of the Sun’s magnetic cycle also points in this direction). On the other hand, the case of HD190771 (a young sister of
the Sun, which has the same mass, but is likely only 2 × 109 yrs old, and rotates in 8.8 days) displays a strong toroidal
field as well as a strong differential rotation, underlining the well-known link between these quantities (see Petit et
al. [30]).

It is clear that, when a large data base of the magnetic activity of stars is complete, very interesting constraints will
be given to stellar dynamos. Presently, stars do not bring very stringent cases, but this is just a question of time.

5. Hints from other dynamos

5.1. The geodynamo

In view of the difficulties faced at modelling the solar dynamo, it may be useful to compare it to the geodynamo
where a lot of data are also available. Unfortunately the geodynamo operates in a rather different régime. Indeed:

• As shown by Table 1, the magnetic Reynolds number is much lower, meaning much fewer magnetic scales;
• From the drift of the Earth magnetic dipole, velocities of 10 km/year are thought to be typical of the fluid core;

compared to the rotational velocity this means a very small Rossby number (∼10−6), much smaller than the
Sun’s;

• The fluid of the core, liquid iron, is much less compressible than the Sun’s plasma;
• If, as often admitted, the turbulence is driven by a solutal convection forced by the light elements released by the

crystallisation of the inner core, the associated Prandtl number is likely much larger than unity;
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• The boundary conditions are different: solid boundaries limit the liquid core of the Earth; the magnetic diffusivity
is continuous at the inner core boundary, while it has a sharp variation at the bottom of the solar convection zone;

• The shell is thicker: the ratio of inner radius to outer radius is 0.35 for the core and 0.7 for the Sun.

Besides all these differences, two similarities remain: the flow is turbulent (high kinetic Reynolds number), and in
both cases the flow occurs in a spherical shell.

The main differences are of course the range of the magnetic Reynolds number, and even more, that of the Rossby
number (in the Sun Ro � 0.1). This suggests that the Coriolis force plays a dominant role and that the geodynamo is
in a magnetostrophic state where the Lorentz force balances the Coriolis force (see the contribution of Dormy and Le
Mouël in this volume [31]).

5.2. The laboratory experiments

The development of the sodium technology has allowed the design of laboratory experiments showing the dynamo
effect with a fluid flow. If the first successful experiments used rather constrained flows (see the contributions of
Gailitis et al. [32] and Müller et al. [33] in this volume), the recent success of the VKS experiments opens new
windows on natural dynamos.

The numbers shown in Table 1 show that the VKS dynamo operates in a range of parameters close to that of the
Earth’s core, namely low Pm and low Rem. The results of Berhanu et al. [14] are quite appealing for the geodynamo.
As far the solar dynamo is concerned, the connection is not so direct as the Rem is very large there.

We have seen in Section 3 that the most promising way of studying the solar dynamo is through the mean-field
theories. This means that we need to determine the mean-field coefficients describing the effects of the small scales
(to make short). The recent work of Brandenburg and collaborators has shown that these coefficients may be ob-
tained from extra-equations determining their temporal evolution (in a homogeneous model). Thus, these studies are
following the tracks of studies of pure hydrodynamic turbulence. Indeed, quite some time ago now, Launder and
Spalding [34] proposed mean-field equations for non-homogeneous HD turbulence, where the mean-field coefficients
are evaluated through the computation of the turbulent kinetic energy (K) and turbulent dissipation (ε), yielding the fa-
mous K-ε model (see also Mohammadi and Pironneau [35]). Such a model has been fruitful because non-dimensional
coefficients used in modelling third order correlations have been calibrated by experiments.

Therefore, an interesting use of experiments for stellar dynamos, will be in the determination of the parameters
controlling the alpha-effect or the turbulent diffusion, or any quantity that may be used in the modelling of the small
scales. Compared to pure HD turbulence, MHD turbulence includes an inverse cascade of magnetic helicity. Things
may thus be more difficult. Not surprisingly, we suggest the building of bigger experiments to achieve higher Rem,
allowing a scan of a greater range of parameters with a dynamo and including more magnetic scales.

5.3. The numerical experiments

Before concluding this short review, let us do a little tour of the numerical simulations of the solar and stellar
dynamos. These numerical experiments concentrate in two kinds of work: those around the ASH code, developed in
Boulder Colorado and initiated by P. Gilman and G. Glatzmaier at the beginning of the 1980s (Gilman and Glatz-
maier [36]), and those, more recent, of W. Dobler and collaborators developed with the Pencil Code.1 The first code
addressed mainly the solar case, extending only recently to other types of stars (see Brun and Toomre [37], Brun et
al. [38]), while the second focused on general stellar dynamo with noteworthy results on fully convective stars (e.g.
Dobler et al. [39]). Such simulations should be termed as Large-Eddy Simulations (LES) as they never reach the real
values of the parameters. Rather, small-scales are represented by enhanced diffusion coefficients. Despite the drastic
simplifications that are used, these simulations are able to catch some observed features of the stellar dynamos (for
instance the steady dipolar field of a completely convective, rapidly rotating star, e.g. Dobler [40]). But, again the
devil is in the details: recently, Browning [41], using the ASH code for the same fully convective stars, finds that the
differential rotation in these models is solar like (fast equator, slow pole), while Dobler et al. [39] find it anti-solar!

1 http://www.nordita.org/software/pencil-code.
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Regardless of these difficulties, such global simulations are likely to be a key to decipher stellar dynamos. However,
they are presently lacking good subgrid-scale models, which make the comparison of their results to real stars rather
delicate.

Another way of progress is to make Direct Numerical Simulations of a small chunk of fluid. Like experiments, these
simulations teach us about the behaviour of mean-field coefficients or of the subgrid scales (e.g. Rieutord et al. [42],
Courvoisier et al. [27], Brandenburg and Käpylä [20], Sur et al. [28]). Such a line of research is complementary of
laboratory experiments as numerical experiments can explore other ranges of parameters and give a detailed output
on all the fields.

6. Conclusions/outlook

The solar dynamo operates at very large kinetic and magnetic Reynolds numbers and therefore both the magnetic
and velocity fields contain a large number of interacting scales. Despite much progress in the recent years, no sat-
isfactory self-consistent model has yet emerged. Mean-field approaches have allowed us to understand many sides
of the problem, but the successes are always partial. At the heart of the solar dynamo is the interaction of small and
large scales and the inverse cascade of the magnetic helicity. An additional difficulty of the solar case is the strong
variations of the turbulence from the top to the bottom and from the pole to the equator. The situation is far from
homogeneous and in the end models will have to be cast into a sophisticated LES. But for this aim to be reached,
numerical experiments, laboratory experiments and observations of other stars are essential guides.
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