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Abstract

Situations where particles taken from a thermal reservoir are immersed at some initial time in a fluid are considered. The diffusion
model is the Ornstein–Uhlenbeck process. It is proven that particle transport in physical space can be described exactly at all times
with the help of a time dependent diffusion coefficient; the result is, in particular, valid outside of the hydrodynamic regime. The
use of time-dependent transport coefficients in other contexts in also discussed. To cite this article: F. Debbasch, J.-P. Rivet, C. R.
Physique 9 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Coefficients de transport dépendant du temps : vers une description macroscopique des dynamiques à petite échelle. On
considère des situations où des particules extraites d’un réservoir à l’équilibre thermique sont immergées, à un instant donné, dans
un fluide. Le model utilisé est le processus d’Ornstein–Uhlenbeck. On prouve que le transport de particules dans l’espace physique
peut se décrire exactement et à tout instant à l’aide de coefficients de diffusion dépendant du temps. Ce résultat est valide, en
particulier, en dehors du régime hydrodynamique. On discute également l’utilisation, dans d’autres contextes, de coefficients de
transport non constants. Pour citer cet article : F. Debbasch, J.-P. Rivet, C. R. Physique 9 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The first historical descriptions of transport phenomena are purely macroscopic. They are based on the assumption
that fluxes are proportional, with constant coefficient, to the gradients of the associated densities. The prototypical
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transport equation is the diffusion equation; it can be derived from Fick’s law, which states that the matter flux is
proportional to the gradient of the matter density.

All historic macroscopic equations [1–3] can now be derived from microscopic transport equations by assuming
that the local state describing the system varies on space and time scales much larger than a microscopic collision time
between particles and an associated mean free path [4]. These conditions correspond to the so-called hydrodynamic
limit. When either of them is violated, the dynamics prescribed by the macroscopic equations fails to reproduce the
microscopic dynamics fixed by transport equations.

Obtaining macroscopic equations which correctly describe transport outside the range of validity of the hydrody-
namic limit is still a challenging issue [5]. Indeed, a large body of work has been devoted to developing such new
macroscopic descriptions [5–7]. The most popular theories are perhaps those commonly called Extended Thermo-
dynamics [8,9], which can be obtained from the transport equations via Grad expansions [10]. These theories are
however plagued with serious difficulties [8,11]; thus, the problem of building purely macroscopic descriptions of
continuous media with larger application domains than conventional hydrodynamical theories is still an open one.

The aim of this Note is to suggest a possible new approach to this problem. We focus on the simplest transport
phenomenon, namely matter diffusion, and consider situations in which an observer “creates” the system at time t = 0
by immersing diffusing particles in a given fluid. We restrict to situations where the diffusing particles are extracted
from a thermal bath and use the standard Ornstein–Uhlenbeck process [12,13] as fundamental microscopic model. We
prove that the particle current is then exactly proportional to the spatial density gradient, at all times, even for short
times where the hydrodynamic limit is not yet reached. This extension to short times of the usual Fick’s law requires
the proportionality coefficient to be time-dependent. As expected, this time-dependent coefficient tends towards a
constant for long times.

2. The stochastic model

The Ornstein–Uhlenbeck Process is defined by the following system of stochastic differential equations [12,13]:

dx = v dt, dv = −αv dt + √
2D dWt (1)

where Wt is the 3-D Wiener process. The system (1) can be interpreted as the equations of motion of a particle of
mass m under the action of a deterministic force −αv and a stochastic Gaussian force.

Let Π(t,x,v) be the particle distribution in phase-space, normalized to unity with respect to d3x d3p. This distri-
bution obeys the so-called Kramers or forward Kolmogorov equation [13,14]:

∂tΠ + ∇x(vΠ) + ∇v(−αvΠ) = D

m2
�vΠ (2)

In a finite volume V , this transport equation (2) admits the following uniform equilibrium solution:

Πe(t,x,v) = 1

V

(
2πD

m2α

)−3/2

exp

[
−m2α

2D
v2

]
(3)

It is natural to identify this distribution with the Maxwellian associated to the temperature Te of the fluid surrounding
the particle. One thus has the following fluctuation–dissipation theorem [13]:

kBTe = D

mα
(4)

where kB is the Boltzmann constant.

3. Exact resolution of the forward Kolmogorov equation

What follows is inspired by [15–18]. We start from the transport equation (2), and use the fluctuation–dissipation
theorem (4) to rewrite it in terms of the equilibrium temperature Te. We introduce the Fourier transform Π̂(t,k,u) of
the distribution function Π(t,x,v):

Π̂(t,k,u) = 1√
2π

6

∫
6

Π(t,x,v) exp
[−i(k · x + u · v)

]
d3x d3v (5)
R
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If Π̂ does not vanish anywhere, Eq. (2) implies:

∂t (ln Π̂) = (k − αu) · ∇u(ln Π̂) − kBTeα

m
u2 (6)

We now introduce the new function λ(t,k,u) ≡ ∂t (ln Π̂), so that:

ln Π̂(t,k,u) = ln Π̂0(k,u) +
t∫

0

λ(τ,k,u)dτ (7)

where Π̂0(k,u) stands for Π̂(0,k,u). Eq. (6) imposes that λ(t,k,u) verify:

λ(t,k,u) = (k − αu) ·
(

∇u(ln Π̂0) +
t∫

0

∇uλ(τ,k,u)dτ

)
− kBTeα

m
u2 (8)

which, for t = 0, leads to:

λ(0,k,u) = (k − αu) · (∇u(ln Π̂0)
) − kBTeα

m
u2 (9)

Deriving Eq. (8) with respect to t yields the following partial differential equation for λ:

∂tλ(t,k,u) = (k − αu) · ∇uλ(t,k,u) (10)

Let us introduce the new variable p ≡ k − αu and the new function λ̃(t,k,p) ≡ λ(t,k, (k − p)/α). By Eq. (10),
λ̃ satisfies:

∂t λ̃ = −αp · ∇pλ̃ (11)

which implies that λ̃(t,k,p) is to depend on t and p only through the combination pe−αt . According to Eq. (9), the
initial value of λ̃ is:

λ̃(0,k,p) = p ·
(
∇u

(
ln Π̂0(k,u)

))∣∣∣
(k,

(k−p)
α

)
− kBTe

mα
(k − p)2 (12)

where the subscript (k, (k − p)/α) means that the expression between parentheses is to be taken for (k,u) equal to
(k, (k − p)/α). Since the dependence of λ̃ on t and p must only involve pe−αt , an exact expression for λ̃(t,k,p) can
be obtained by changing p into pe−αt in Eq. (12). This yields:

λ̃(t,k,p) = pe−αt ·
(
∇u

(
ln Π̂0(k,u)

))∣∣∣
(k,

(k−pe−αt )
α

)
− kBTe

mα
(k − pe−αt )2 (13)

It is now straightforward to use Eq. (7) to get an exact expression for Π̂(t,k,u) in terms of Π̂0:

Π̂(t,k,u) = Π̂0

(
k,ue−αt + k

α
(1 − e−αt )

)
× exp

[
−kBTe

mα

t∫
0

(
k − (k − αu)e−ατ

)2 dτ

]
(14)

It is convenient to introduce the following time-dependent quantities:

η(t) = kBTe

mα2

(
αt − 3

2
+ 2e−αt − 1

2
e−2αt

)
, μ(t) = kBTe

mα
(1 − e−αt )2, ν(t) = kBTe

m
(1 − e−2αt ) (15)

The expression for Π̂ now takes the simpler form:

Π̂(t,k,u) = Π̂0

(
k,ue−αt + k

α
(1 − e−αt )

)
× exp

[
−1

2
k2η(t) − k · uμ(t) − 1

2
u2ν(t)

]
(16)

which leads to:
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Π(t,x,v) = 1
√

2π
6

∫
R6

Π̂0

(
k,ue−αt + k

α
(1 − e−αt )

)

× exp

[
−1

2
k2η(t) − k · uμ(t) − 1

2
u2ν(t) + i(k · x + u · v)

]
d3k d3u (17)

The particle density n(t,x) ≡ ∫
R3 Π d3v then admits the following integral expression:

n(t,x) =
∫
R3

Π̂0

(
k,

k
α

(1 − e−αt )

)
exp

[
−1

2
k2η(t) + ik · x

]
d3k (18)

Eq. (17) also yields the following expression for the particle current j(t,x) ≡ ∫
R3 vΠ d3v:

j(t,x) =
∫
R3

i∇u

(
Π̂0

(
k,ue−αt + k

α
(1 − e−αt )

)
exp

[
−k · uμ(t) − 1

2
u2ν(t)

])∣∣∣∣
u=0

× exp

[
−1

2
k2η(t) + ik · x

]
d3k (19)

4. Exact generalized Fick’s law

We now focus on initial conditions whose phase space distribution function is factorized into a density distribution
in physical space times a Maxwell–Boltzmann distribution in the momentum space. However, we do not restrict the
discussion to the hydrodynamic regime: the initial density distribution in physical space can thus have space scales
smaller or comparable to the mean free path of the surrounding fluid. Our approach will indeed be particularly useful
in this very case. Practical situations for which this class of initial conditions is relevant are discussed in Section 5.

We thus choose as initial condition the following distribution:

Π0(x,v) = n0(x)

(
m

2πkBT0

)3/2

exp

[
−m(v − v0)

2

2kBT0

]
(20)

where T0 is the temperature of the diffusing particles, and v0 is their initial uniform drift velocity. The form (20) is
clearly very general and can serve as a good approximation to most physically realistic initial conditions. The Fourier
transform of Π0 is:

Π̂0(k,u) = n̂0(k)
1

√
2π

3
exp

[
−1

2
u2 kBT0

m
− iu · v0

]
(21)

where n̂0(k) is the spatial Fourier transform of n0(x). The phase-space distribution function Π(t,x,v) at any positive
time is then, according to Eq. (17):

Π(t,x,v) = 1
√

2π
9

∫
R6

n̂0(k) exp

[
−1

2
k2σ 2(t) − k · uχ(t) − kB

2m
u2T (t) + i(k · x′ + u · v′)

]
d3k d3u (22)

where the quantities σ 2, T , χ , x′ and v′ are defined as follows:

σ 2(t) = kB

mα2

(
Te

(
αt − 1

2
+ 1

2
e−2αt

)
− �T

(
1 − 2e−αt + e−2αt

))
, T (t) = Te − �T e−2αt

χ(t) = kB

mα
(1 − e−αt )(Te − �T e−αt ), x′ = x − v0

α
(1 − e−αt ), v′ = v − v0e−αt (23)

Here, �T = Te − T0 is the difference between the equilibrium temperature and the initial temperature.
For the class of initial conditions under consideration, Eq. (18) leads to an exact expression for the particle density

n(t,x) in terms of a convolution product of the initial particle density n0(x) with the following propagator:

Φ(t,x) = 1√
2 3

exp

[
−

(
x − v0

α
(1 − e−αt )

)2

2σ 2(t)

]
(24)
2πσ (t)
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Fig. 1. mα2

kBTe
σ 2(t), mα

kBTe
χ(t), and T (t)

Te
versus αt for �T = 0 (solid) and �T = Te (dashed).

The quantity v0
α

(1− e−αt ) can be interpreted as the position of a point, initially at x = 0, moving with velocity v0e−αt .
Thus, the propagator Φ involves a uniform drift which is damped exponentially on a time scale α−1, and a diffusive
spreading with growing typical width σ(t).

Eqs. (18) and (19) show that the particle current obeys the following simple relation:

j = −χ(t)∇xn + e−αtnv0 (25)

We identify in the right-hand side of Eq. (25) two contributions to the particle current:

– a diffusion term proportional to the gradient of the particle density with a time-varying coefficient χ(t),
– an ‘advection’ term that damps exponentially, and which is a remnant of the initial mean drift at velocity v0.

The physical meaning of T (t) is more subtle. Indeed, since the distribution function Π(t,x,v) for t > 0 cannot
be an equilibrium solution when spatially non-uniform, it is not trivial to define a time-dependent temperature. The
mean square velocity,1 that can give some sense to the notion of temperature, is a priori position-dependent in the
most general case. However, the space-averaging of the mean square velocity is a well-defined quantity that amounts
to 3kBT (t)/m. The quantity T (t) defined in Eq. (23) can thus be thought of as a space-averaged temperature, charac-
teristic of the distribution Π at time t .

The physically relevant quantities σ 2(t), χ(t) ant T (t) are plotted on Fig. 1. The solid curves correspond to
�T = 0, that is, the initial condition is at thermal equilibrium with the surrounding fluid. The dashed curves cor-
respond to �T = Te, that is, T0 = 0, so that they describe situations with vanishing initial velocities.

5. Discussion and conclusion

We have investigated particle diffusion through the Ornstein–Uhlenbeck process and considered initial conditions
whose phase-space distributions factorize into the product of an arbitrary spatial density by a Maxwell–Boltzmann
distribution in momentum space. These initial conditions generate a particle current in physical space which has been
shown to be exactly proportional at all times to the density gradient. The proportionality coefficient is time-dependent
and relaxes toward the standard Fick value. No Chapman–Enskog expansion is performed, so, no scale separation
hypothesis is needed. Consequently our approach is still valid outside of the hydrodynamical regime, to which the
usual approach in terms of the diffusion equation is restricted. Namely, situations with space scales comparable or
even smaller than the mean free path fall within the scope of our theory.

This class of exact solutions encompasses a lot of experimental situations of practical interest. Our approach is
indeed valid when the system {diffusing particle + surrounding fluid} is created at some reference time t = 0 by
injecting locally and suddenly particles into a fluid, provided these particles are taken out of a reservoir where they
are at global equilibrium. In this case, the initial condition is necessarily factorized with no correlation between
physical and momentum space. Moreover, the initial density profile is then likely to have well-defined sharp edges

1 With uniform damped drift v0e−αt subtracted.
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with thickness comparable to the mean free path. The usual model based on the standard diffusion equation cannot
address the short-time regime of this problem, since the density distribution only reaches the hydrodynamic limit after
the small scales have been smoothed out by the diffusion process.

This result suggests that transport equations with time-dependent coefficients may be helpful to model the short-
time non-hydrodynamic evolution of continuous media systems which are “created” or “prepared” at a given reference
time t = 0, by putting into contact two media which are not at equilibrium with each other, even though each of theses
media may be separately in an equilibrium state. For example, fall into this category the sudden contact of two pieces
of matter at different initial temperatures, or the mixing layer at the outlet of an injection nozzle.

Note finally that relativistic transport phenomena cannot be described in a coherent manner by partial derivatives
equations with constant coefficients [19,11,20]. A relativistic extension of the work presented in this Letter may
contribute to solving this problem.
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