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Abstract

We report on the influence of the hyperfine interaction on the optical orientation of singly charged excitons X± in self-assembled
InAs/GaAs quantum dots. All measurements were carried out on individual quantum dots studied by micro-photoluminescence
at low temperature. We show that the hyperfine interaction leads to an effective partial spin relaxation, under 50 kHz modulated
excitation polarization, which becomes, however, strongly inhibited under steady optical pumping conditions because of dynamical
nuclear polarization. This optically created magnetic-like nuclear field can become very strong (up to ∼4 T) when it is generated
in the direction opposite to a longitudinally applied field, and exhibits then a bistability regime. This effect is very well described
by a theoretical model derived in a perturbative approach, which reveals the key role played by the energy cost of an electron spin
flip in the total magnetic field. Finally, we emphasize the similarities and differences between X+ and X− trions with respect to
the hyperfine interaction, which turn out to be in perfect agreement with the theoretical description. To cite this article: O. Krebs
et al., C. R. Physique 9 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Interaction hyperfine dans des boîtes quantiques auto-assemblées InAs/GaAs : polarisation dynamique des noyaux versus
relaxation de spin. Nous présentons nos travaux sur l’influence de l’interaction hyperfine dans l’orientation optique des excitons
mono-chargés X±, dans des boîtes quantiques auto-assemblées InAs/GaAs. Toutes les mesures discutées ont été effectuées sur des
boîtes quantiques uniques étudiées par micro-photoluminescence à basse température. Nous montrons que l’interaction hyperfine
conduit à une relaxation partielle de spin, lorsque la polarisation de l’excitation est modulée à 50 kHz, relaxation qui est fortement
atténuée dans des conditions de pompage optique stationnaire en raison de la polarisation dynamique des noyaux. Le champ
magnétique effectif qui en résulte peut devenir très fort (jusqu’à ∼4 T) lorsqu’il est généré dans la direction opposée à un champ
magnétique appliqué longitudinalement, et présente alors un régime de bistabilité. Cet effet est très bien décrit par un modèle
théorique obtenu dans une approche perturbative, qui révèle le rôle clé joué par l’énergie de retournement de spin d’un électron
dans le champ magnétique total. Enfin, nous examinons les similitudes et différences entre trions X+ et X− vis à vis de l’interaction
hyperfine, lesquelles sont en plein accord avec notre description théorique. Pour citer cet article : O. Krebs et al., C. R. Physique
9 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Manipulating quantum coherence in condensed matter at the nanometer scale is a very exciting challenge. In
this respect the spin degree of freedom of electrons trapped in semiconductor quantum dots (QDs) presents many
interesting features. It is weakly coupled to the fluctuating environment of a quantum dot, ensuring long coherence
and relaxation times [1–3], can be investigated by optical methods [4,5], and has recently proven to be coherently
controllable by an r.f. field [6,7]. Yet a major issue for such coherent manipulation originates from the hyperfine
interaction with the nuclear spins of the host material [8,9], which acts as a random magnetic field, and is thus a
source of spin dephasing. This is particularly true for a III–V’s-based quantum dot, since all nuclei have a non-zero
spin in these materials. Another related aspect is the dynamical polarization of the nuclei [10–13] which occurs when
the electron spin polarization is maintained out of equilibrium thanks to an efficient optical pumping. Depending on
the external magnetic field, this process may give rise to a large magnetic-like field which affects the electron spin
dynamics. In this article, we present our recent investigations of optical orientation of singly charged excitons (trions)
in InAs/GaAs quantum dots which have revealed the prominent role played by the electron-nuclei hyperfine coupling.

2. Optical spectroscopy of singly charged excitons in InAs/GaAs quantum dots

We have studied InAs self-assembled quantum dots grown by molecular beam epitaxy on a (001)-oriented semi-
insulating GaAs substrate. These quantum dots which are formed in the Stranski–Krastanov mode, are lens-shaped
with a typical 20 nm diameter and a 4 nm height. Two types of samples were fabricated and investigated: (i) charge-
tuneable QDs embedded in the intrinsic region of a n-i-Schottky diode; (ii) singly charged QDs due to residual p-type
doping. The charge-tunable samples consist of a single QD layer grown 25 nm above a 200 nm-thick n-GaAs layer
and covered by GaAs (25 nm)\Al0.3Ga0.7As (120 nm)\GaAs (5 nm). In this case the QD charge is controlled by an
electrical bias applied between a top semi-transparent Schottky contact and a back ohmic contact. This is schematically
illustrated in Fig. 1(a). We used metallic shadow masks evaporated on the sample surface with 1 µm-diameter optical
apertures to select spatially single QDs. This technique was however not systematically employed because in most
cases the QD density was low enough to enable us the study of individual spectral lines in the low energy tail of the
QD distribution.

The μ-photoluminescence spectroscopy of individual InAs QDs was carried out in a standard confocal geometry
with an optical excitation provided by a cw Ti:Sapphire laser. Most of the experiments reported here were performed
with a magneto-optic cryostat working in the Faraday geometry, namely with the magnetic field applied parallel to
the optical axis. In this case, a 2 mm focal length aspheric lens (N.A. 0.5) was used to focus the excitation beam and
to collect the PL from the sample, while the relative positioning of the sample in all three directions was achieved by
piezo-motors. This very compact microscope was installed in the cryostat insert ensuring thus an excellent mechanical
stability as required for the study of individual quantum dots. The PL beam was dispersed by a double spectrometer
of 0.6 m-focal length and detected by a nitrogen-cooled CCD array camera.

The optical selection rules of the ground interband transition are determined by the heavy character of the confined
hole. In these flat and biaxially strained quantum dots, the hole ground state can be considered as a pure heavy-
hole well separated from the light-hole states. It is described by the projection of its angular momentum mz = ±3/2
along the growth axis z, while its envelope wave-function retains a S-like character. As a result it gives rise to pure
selection rules for the optical recombination of an electron-hole pair (named further exciton), namely the | ± 1〉 ≡
|sz = ∓1/2,mz = ±3/2〉 states emit σ± circularly polarized photons while the | ± 2〉 ≡ |sz = ±1/2,mz = ±3/2〉
states are not coupled to light. As usually done, we thus define the circular polarization of the photoluminescence
(PL) signal collected along the z axis by:

Pc = Iσ+
PL − Iσ−

PL

Iσ+ + Iσ− (1)

PL PL
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Fig. 1. (a) Schematics of the band profile along the growth direction of a n-Schottky structure, illustrating the photoluminescence of positive or
negative trions depending on the applied gate voltage Vg . (b) Contour plot of the PL intensity from a single InAs QD at T ≈ 10 K versus the
detection energy and applied gate voltage. Excitation energy is 1.34 eV. (c) PL spectra at Vg = −0.24 V showing the difference of linewidth for the

ground (X+) and hot (X+�
) positive trions. (d) PL spectra at Vg = +0.3 V measured in two orthogonal linear polarizations (x and y) showing the

mirrored fine structure splitting δ1 of the neutral biexciton (2X0) and exciton (X0).

where Iσ±
PL is the PL intensity measured in σ± polarization. Such a measurement enables us to directly monitor

either the electron spin polarization for positively charged trions X+, or the hole spin polarization for negatively
charged trions X− as shown in Fig. 1(a). For neutral excitons (denoted X0), the | ± 1〉 bright states are generally split
by the electron-hole exchange into linearly-polarized states because of the lack of perfect rotational symmetry. The
corresponding splitting δ1 amounts to a few tens of µeV, so that the circular polarization averages to zero over the
radiative lifetime τr � h̄/δ1 because of the quantum beats between the | + 1〉 and | + 1〉 states. Noteworthily, this
effect does not take place for the trions X± because in this case an unpaired carrier (electron or hole) interacts with
a pair of carriers (holes or electrons) in a singlet configuration, which cancels out the exchange interaction. The spin
degeneracy of the ground trion states is actually a consequence of the Kramer’s degeneracy expected for a half-integer
spin system in zero magnetic field. The charge control of a quantum dot, or at least its determination is therefore a
crucial aspect of optical orientation in self-assembled quantum dots.

Fig. 1(b) shows an example of such a charge tuning in a single quantum dot. The neutral exciton (X0) and biexciton
(2X0) lines are determined from their fine structure shown in Fig. 1(d). The negative trion X− is formed when the
built-in electric field is reduced so that the dot gets filled with one or two resident electrons provided by the n-GaAs
layer [4,14]. Less intuitive, positive trions can be also generated in such sample thanks to the optical charging of the
QD valence state with a resident hole. This complex is formed by decreasing the gate voltage, namely increasing the
internal electric field, until the neutral exciton line (X0) vanishes (see Fig. 1(b)) and by using “intra-dot” excitation
conditions to photo-create holes in the QD [15]. Here a spectral line X+�

, identified as a hot trion (namely a trion X+
with one hole on a Ph orbital) is also visible. As emphasized in Fig. 1(c), it features a Lorentzian lineshape of
115 µeV width much larger than the ∼25 µeV linewidth measured for X+ (limited here by the spectral resolution), as
a consequence of the short lifetime (∼10 ps) of the final state, namely a single hole in an excited level.
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3. Spin relaxation induced by the hyperfine coupling

Due to the P symmetry of the Bloch wavefunctions in the valence band, the coupling of the nuclei with holes
can be generally neglected because the Fermi contact interaction vanishes. This indeed leads to very distinctive spin
dynamics between X+ and X− trions, as it will be shown below. The Hamiltonian describing the hyperfine interaction
of a conduction band electron (spin Ŝ

e = 1
2 σ̂ ) with the N nuclear spins of a quantum dot is given by [8,10]:

Ĥhf = ν0

∑
j

Aj

∣∣ψ(rj )
∣∣2

Î j · Ŝe
(2)

where ν0 is the two-atom unit cell volume, rj is the position of the nuclei j with spin Ij , Aj is the constant of
hyperfine interaction with the electron and ψ(r) is the electron envelope wave-function. The sum runs over the N

nuclei interacting significantly with the electron (i.e. in the effective QD volume defined by V = (
∫ |ψ(r)|4 dr)−1 =

ν0N/2). To zeroth order, the role of the hyperfine interaction is equivalent to an effective magnetic field Bn acting on
the electron spin:

Bn = ν0
∑

j Aj |ψ(rj )|2〈I j 〉
geμB

(3)

where μB is the Bohr magneton and ge is the effective electron Landé factor in the QD. Under certain conditions
that will be discussed further, this magnetic field can reach a considerable strength up to a few Tesla in InAs QDs,
which obviously affects in turn the spin dynamics of a confined electron. Moreover, even when conditions are met
to keep its average value to zero, it still presents statistical fluctuations due to the finite number N ∼ 105 of involved
nuclei, which typically amounts to a few tens of milli-Tesla. This yields electron spin precession in a characteristic
time T� ∼ 500 ps which is responsible for spin dephasing in an ensemble of charged quantum dots. This effect was
evidenced in Ref. [16] for an ensemble of p-doped QDs for which the photoluminescence of positive trions X+ (one
electron with two holes) directly monitors the average electron spin component 〈Ŝe

z 〉.
For X+ trions, the nuclear field Bn can be considered as frozen because its correlation time T2 ≈ 10−4 s (deter-

mined by the dipole–dipole interaction between nuclei) is much longer than the excitonic radiative lifetime of the
trion τr ≈ 0.8 ns. When the nuclear field fluctuation δBn(t) = 〈Bn(t)〉τr is parallel to the optical axis z along which
the spin is optically written, no relaxation occurs. The apparent spin relaxation of X+ results from the random orien-
tation of δBn(t) over the integration time of the measurement. In the experimental studies reported here the condition
for assuming such a random nuclear field orientation is fulfilled since the integration time (∼1–10 s) is a few orders
of magnitude longer than T2. As a result, the time-integrated circular polarization of a single X+ line excited with
circularly polarized light is given by:

Pc = 2
∫ 〈

Ŝe
z (t)

〉
exp(−t/τr )/τr dt (4)

where 〈Ŝe
z (t)〉 is the electron spin evolution averaged over the distribution of random nuclear fields. Using the expres-

sion derived in Ref. [9] for 〈Ŝe
z (t)〉 with a characteristic r.m.s. nuclear field �B ≈ 30 mT, we find that for an initially

photocreated spin Se
z (0) = 1/2 the maximum degree of polarization which can be reached amounts to P max

c = 53%. It
is noteworthy that the average spin evolution described by 〈Ŝe

z (t)〉 in Ref. [9] does not decay to zero, but to 1/3 of its
initial value in the time of a few T�. This is due to the non-zero nuclear field fluctuation component along z leading
to the average projection factor

∫
cos2 θ = 1/3. Here, taking into account the X+ finite lifetime τr simply reduces the

effective spin relaxation from 2/3 to about one-half.
Fig. 2 presents typical results of optical orientation for an X+ complex under quasi-resonant excitation, namely

with a laser energy at +35 meV above the X+ emission line. This resonance in the excitation spectrum can be reason-
ably ascribed to a LO-phonon assisted excitation of the trion in its ground state, which offers almost ideal conditions
for spin conservation. The first observation is that the degree of circular polarization that can be achieved under cir-
cularly polarized excitation is actually much higher than the above-mentioned theoretical maximum, with Pc ∼ 80%
in zero magnetic field. This surprising result is elucidated by replacing the fixed laser polarization by a 50 kHz-
modulated polarization between σ+ and σ−. The latter is provided by a photo-elastic modulator, while the signal
of σ+ polarized PL is measured by a Si-avalanche photodiode with time-gating synchronized to the modulation. In
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Fig. 2. (a) PL spectra of a single X+ line measured in zero magnetic field at T = 5 K under circularly polarized excitation and detection as indicated.
The laser energy was set to an excitation resonance at 1.38 eV likely associated to 1LO-phonon assisted transition as shown in the PLE spectrum.
Solid lines are the Lorentzian fits of the experimental data. (b) Circular polarization of the X+ PL intensity as a function of a longitudinal magnetic
field. Excitation polarization is either fixed (σ+ and σ−) or modulated at 50 kHz between σ+ and σ− by a photo-elastic modulator. (c) Schematics
of the spin relaxation induced by the nuclear field fluctuations δBn(t) depending on the mode of excitation (fixed or modulated polarization).

zero magnetic field, we observed a dramatic drop of the PL circular polarization for X+, from ∼85% (under steady
σ+ excitation polarization) down to ∼55%. This striking result points toward the building of a nuclear polarization
under constant excitation polarization, giving rise to a non-zero average nuclear field Bn parallel to the optical axis.
The direction of electron spin precession of X+ acquires thus a finite component along z so that the spin relaxation
vanishes for |Bn| � �B as illustrated in Fig. 2(d). Under σ+/σ− alternative excitation, such a nuclear polarization
cannot settle because its characteristic risetime T1e is much longer than the modulation period of 20 µs [8,17]. To
support this interpretation we have measured the dependence of Pc on a longitudinal magnetic field Bz allowing the
progressive suppression of hyperfine-induced spin relaxation (HSR) [9,16]. Fig. 2(b) shows that for |Bz| � 200 mT
the circular polarization of X+ is restored at ∼85%, i.e. to the same level as under steady polarization excitation.
Qualitatively, this confirms that the drop of Pc in zero-magnetic field is really due to an effective random magnetic
field of the order of a few tens of milli-Tesla. Yet, the half-width of the polarization dip amounts to ∼80 mT which
is about 3 times larger than the expected nuclear field fluctuations �B , whereas the reduction of Pc at Bz = 0 T is
actually only 35% instead of the expected 50%. These observations seem rather contradictory because they would
respectively indicate a higher or smaller value for �B . A complete description of HSR is certainly still required, in-
cluding e.g. the possible spin cooling due to the electron Knight field [8], the quadrupolar interactions between the
nuclei [18], as well as a possible small disequilibrium between the effective σ+ and σ− excitation intensities. All in
all, the most striking result is that HSR is very efficiently suppressed by the nuclear field that it gives rise to under
fixed excitation polarization.

In this regime, the building of a significant nuclear polarization requires in principle a small external magnetic field
to inhibit the nuclear depolarization due to the dipolar interaction between nuclei in the time T2 ∼ 100 µs [8]. In InAs
QDs, this requirement seems to be raised because of the strong effective magnetic field produced by a spin polarized
electron (or Knight field) on the QD nuclei. Due to the weight of the envelope function in Eq. (2), this field is actually
non-uniform, but its typical strength given by Be ∼ 2〈Se

z 〉Ã/h̄γ̃nN amounts to ∼10 mT. This turns out to be quite
sufficient to inhibit the nuclear depolarization in zero external field [12,17,19], and probably explains the weak dips
of Pc visible in Fig. 2(b) for the measurements under fixed polarization. These dips which are indeed shifted by a
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Fig. 3. (a) Zeeman shift of both σ± components of the X+ line for both σ± excitation polarizations. (b) Overhauser shift of X+ with respect to a
linear Zeeman splitting measured for both σ± excitation polarizations.

positive or negative magnetic field depending on the sign of excitation polarization (σ+ or σ−) could result from a
reduction of the nuclear field when Bz = −Be, yielding thus a more efficient HSR.

To demonstrate that a significant nuclear field Bn is optically induced in the QD, the electron spin splitting due
to the nuclear field δn = geμBBn, also called Overhauser shift, can be straightforwardly measured by polarization
resolved PL spectroscopy [11,10,12,20–23]. Such measurements are reported in Fig. 3 for the same X+ trion as in
Fig. 2. The splitting between the σ+ and σ− PL components is then given by δZ − δn where δZ = (gh − ge)μBBz

is the Zeeman splitting for the electron-hole pair involved in the X+ transition. The finite nuclear field is revealed by
the shift of X+ zero splitting to a finite magnetic field which is either positive or negative depending on the excitation
polarization. The Overhauser shift δn that can be deduced from both these measurements is reported in Fig. 3(b). The
strength of nuclear field |Bn| = |δn/geμB | amounts to ∼200 mT in zero external field for a characteristic electron
Landé factor |ge| = 0.5. This agrees with the strong inhibition of HSR in steady excitation polarization regime. More
spectacular is the dependence of δn with the applied magnetic field revealed by this plot. Under a given excitation
polarization, the optically generated nuclear field either increases linearly with the applied field in one direction, or
remains almost constant in the opposite direction. This behavior points toward a non-linear mechanism for the optical
generation of nuclear polarization. As we will see in the next section, the key parameter to explain this asymmetry
and this non-linear dependence is the total electron spin splitting |ge(Bz + Bn)| which represents the energy cost of
each electron-nucleus flip-flop, and which obviously depends on the respective sign of the external and nuclear fields.

4. Dynamical nuclear polarization

4.1. Theoretical model

The optically induced spin polarization of the nuclei results from successive electron-nucleus “flip-flops” mediated
by the hyperfine interaction. To derive from Eq. (2) a tractable expression for the nuclear polarization dynamics
we first assume a uniform electron wavefunction ψ(r) = √

2/Nν0 spanning over N nuclei in the quantum dot. The
flip-flop term included in the Hamiltonian (2) reads then Ĥff = 1

2N
(Î+Ŝe− + Î−Ŝe+). By treating this coupling as

a random time-dependent perturbation (with zero mean), one can derive straightforwardly the expression for the
electron-induced relaxation time T1e of a given nuclear spin [24,8,11]:

T1e =
(

Nh̄

Ã

)2 1 + (Ωeτc)
2

2feτc

(5)

where h̄Ωe = geμB(Bz + Bn) is the electron spin splitting, τc is the correlation time of the perturbation Ĥff , and
fe is the fraction of time that the QD contains an unpaired electron. In the above expression, we also introduced
a nucleus-independent hyperfine interaction constant Ã, since the Aj ’s vary weakly among the different isotopic
species of InAs QDs. The expression obtained for T1e is thus independent on the nuclear species which enables us to
derive in the approximation of high nuclear spin temperature [24] a simple rate equation for the average nuclear spin
〈Iz〉 = ∑

j 〈Îj,z〉 in a quantum dot:

d〈Iz〉 = − 1 [〈Iz〉 − Q̃
(〈
Ŝe

z

〉 − 〈
Ŝe

z

〉
0

)] − 〈Iz〉 (6)

dt T1e Td
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Fig. 4. (a) PL intensity contour plot of a X+ positive trion as a function of longitudinal magnetic field and energy detection at T = 2 K. The
excitation is either σ− or linearly polarized, and the sweep direction of the magnetic field Bz is indicated by horizontal arrows for each plot.
(b) Overhauser shift of the X+ line determined from the trion σ+/σ− splitting in (a) after subtracting the theoretical Zeeman splitting assumed to
be perfectly linear in magnetic field. The dashed line corresponds to the electron Zeeman splitting |ge|μBBz . (c) Circular polarization of the trion
under σ− excitation for both directions of the magnetic field sweep. In (b) and (c) the solid lines correspond to a fit by the model of dynamical
nuclear polarization.

where Q̃ = ∑
j Ij (Ij + 1)/(NS(S + 1)) is a numerical factor estimated to ∼15 in actual In1−xGaxAs QDs containing

a fraction x ∼ 0.5 of Gallium, 〈Ŝe
z 〉0 is the average electron spin at thermal equilibrium, and Td is an effective time

constant introduced here to described the losses of nuclear polarization. Such term is quite necessary because, in
its absence, the stationary solution of Eq. (6) driven by the average electron spin 〈Ŝe

z 〉 would lead to a much higher
nuclear polarization than observed in our experiments with trions. Different mechanisms likely contribute to this
effect, e.g. the dipolar interaction between nuclei responsible for fast depolarization in a very weak field and for a
slower field-independent spin diffusion, or the quadrupolar coupling with local electric field gradients which could
be the prominent term in InAs QDs because of the local anisotropic strains. Besides, the temporal fluctuations of the
Knight field ∝ (Ŝe

z − 〈Ŝe
z 〉) are susceptible to enhance these depolarization mechanisms [10,25].

Eqs. (5) and (6) clearly show the feedback of the nuclear field on its effective building rate (Td + T1e)/TdT1e

via the electron spin splitting h̄Ωe. The latter originates from the difference in energy of the electron-nucleus levels
involved in flip-flop transitions, which is indeed principally determined by the Zeeman electron splitting in the total
field Bn + Bz. The related issue of energy conservation in spin flip-flop processes is sorted out by the level broadening
h̄/τc associated to the finite correlation time of the hyperfine coupling [26], as illustrated in the inset of Fig. 4. The
dependence of T1e on h̄Ωe is directly responsible for the strong asymmetry on the magnetic field dependence (see
Fig. 3): if the external field Bz is applied parallel to the nuclear field, the splitting h̄Ωe increases accordingly, limiting
considerably the strength of Bn, even though the depolarization rate T −1

d is reduced in the same time. On the opposite,
if the magnetic field is applied antiparallel to Bn the electron splitting is reduced and the nuclear polarization rate
increases. This gives rise to a positive feedback on Bn such that |Bn| > |Bz|. This relation holds until a critical field
for which the polarization losses −〈Iz〉/Td which are proportional to Bn overcome the maximum polarization rate
(at Ωe = 0). Eventually, the feedback due to the electron spin splitting is the cause of strong non-linearities as a
function of external parameters (magnetic field, electron spin polarization, excitation power, . . . ) giving rise generally
to spectacular bistability regimes [21,23,22,26,27].
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4.2. Non-linearity and bistability in magnetic field

Fig. 4 presents Overhauser shift measurements of a positively charged quantum dot similar to those discussed in
Section 3. The three top panels show the X+ PL spectra plotted on a color scale from −1 T up to 4 T under σ−
or linearly polarized excitation. As indicated by arrows the magnetic field was either increasing or decreasing. For
each field value the PL spectrum was recorded with σ+ and σ− analyzer which enables us to measure the effective
Zeeman splitting δZ − δn with high precision even in the weak field region. Under σ− excitation the σ− PL branch
is much more intense than the upper σ+ branch, which indicates a successful circular polarization of X+ achieved
thanks to a quasi-resonant excitation (at 1.38 eV). More remarkable, the X+ splitting exhibits abrupt changes at 2.8 T
and 1.8 T for an increasing or decreasing field respectively, which clearly indicates a bistability of the nuclear field.
On the opposite, the Zeeman splitting under linearly polarized excitation appears quite linear in Bz, proving that no
significative nuclear field is created in this case. This result is not that obvious because with 〈Ŝe

z 〉 = 0 we still maintain
a discrepancy to the electron spin thermal equilibrium 〈Ŝe

z 〉0 which can become important in a strong magnetic field.
This linear Zeeman splitting δZ was subtracted to the trion splittings measured in all three cases in order to extract
the Overhauser shift δn. The results are reported in Fig. 4(b) with a theoretical fit provided by the model introduced
above. To reproduce the behavior at weak field we had to include an explicit field dependence of the depolarization
time Td corresponding to the reduction of nuclear spin relaxation by the nuclear Zeeman effect. Since it is reasonable
to assume a quadratic dependence, we took the following phenomenological expression:

1

Td

= 1

T ∞
d

+ 1

T 0
d

1

1 + (Bz/B0)2
(7)

The theoretical fit in Fig. 4(b) was realized by solving numerically the differential equation (6) for a magnetic field
Bz(t) varying at the experimental sweep rate of 5 mT/s. This essentially amounts to solve Eq. (6) in the stationary
regime, with yet an inherent processing of the hysteresis. We assumed the following QD parameters N = 5 × 104,
Ã = 50 µeV, Q = 13. The electron g factor ge = −0.48 could be determined from the collapse point of nuclear field at
2.8 T which occurs when h̄Ωe = 0, namely when δn + geμBBz = 0. The optically pumped electron spin 〈Ŝe

z 〉 = 0.45
was estimated from the measured circular polarization Pc ≈ 0.9. Eventually, to fit the bistability regime only two
parameters had to be varied, the correlation time τc and the product feT

∞
d , while the other parameters defining Td in

Eq. (7) (T 0
d and B0) could be adjusted afterwards to improve the fit in the weak field region. We found as best fitting

parameters, within a tolerance better than 10%, τc = 42 ps and feT
∞
d = 1.4 ms, feT

0
d = 230 µs and B0 = 0.4 T.

Note that the thermal spin polarization 〈Ŝe
z 〉0 ≈ 1/2 tanh(geμBBz/2kBT ) plays actually a negligible role in the model

because it remains much smaller than the optically created one. In addition, if we take 〈Ŝe
z 〉 = 0 to treat the case of

linearly polarized excitation, we indeed find that the Overhauser shift which develops in a magnetic field because of
〈Ŝe

z 〉0 does not exceed 2 µeV.
Since the dynamical nuclear polarization (DNP) consists in a transfer of spin from the X+ unpaired electron to

the nuclei, there should be a possible trace of this process on the measured X+ polarization. The flip-flop rate for
the photo-created X+ electron interacting with N nuclei can be deduced from Eq. (6) as T −1

1n = (NQ̃/fe)T
−1
1e . When

it becomes of the same order of magnitude as the radiative decay rate τ−1
r , the PL polarization should be reduced

appreciably. Such an effect is shown in Fig. 4(c) where a net difference of polarization occurs in the domain of
nuclear field bistability, between both branches associated to the increasing or decreasing magnetic field. In particular,
when h̄Ωe gets closer to zero a pronounced reduction of Pc (up to ≈20%) develops until the maximum of nuclear
field at 2.8 T, then disappears as soon as the latter vanishes. Yet, the minimum estimate of T1n with the above fitting
parameters gives ∼7 ns which is actually significantly larger than τr ∼ 1 ns and therefore fails to explain quantitatively
this strong reduction. To reproduce the sharp dip of polarization in Fig. 4(c), we need to consider more specifically
the hyperfine induced spin relaxation in the vicinity of h̄Ωe = 0 as discussed in Section 3. This effect seems indeed
very similar to the Lorentzian dip of Pc observed with modulated excitation polarization at zero magnetic field (see
Section 3). Here, the same spin dephasing occurs when the total field Bz + Bn vanishes at h̄Ωe = 0. By adding to
T −1

1n this first order spin relaxation mechanism as a decay rate ∝ 1/(1 + (h̄Ωe/geμB�B)2) the bistability of Pc

can be well reproduced by the spin relaxation term 1/(1 + τr/T1n). Obviously, this simplified approach does not
aim at describing the complete field dependence. In particular, the further decrease of polarization in higher fields
is probably due to the increasing spin polarization of the resident hole due to thermalization, an effect which can be
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observed also under linearly polarized excitation (see Fig. 4(a)) and which is not taken into account in the simulation.
In the weak field region there is another smooth dip which can be ascribed again to the feedback of h̄Ωe (qualitatively
well reproduced), while the very narrow dip at Bz ≈ 0 T has no clear origin for the moment. It probably results from
very specific experimental conditions (e.g. this could be due to electron-hole exchange in the excitation process). This
feature was actually not observed for other investigated quantum dots in contrast to the bistability of Pc , an effect
which demonstrates that the hyperfine induced spin relaxation can survive up to strong magnetic fields (Bz � �B )
because of the dynamical nuclear polarization.

4.3. Negative trions

A negative trion X− consists of an unpaired confined hole with two conduction electrons in a singlet configuration
(see Fig. 1(a)). Its optical polarization is thus determined by the hole angular momentum (mz = ±3/2), and therefore
should be essentially unsensitive to the nuclear spin system. Under circularly polarized excitation we indeed observe
that the PL polarization of X− remains unchanged when we switch from steady to modulated laser polarization
in contrast to X+ trions (see Section 3). Dynamical nuclear polarization (DNP) is yet quite possible because after
emission of a circularly polarized photon the quantum dot contains a single electron with a well defined spin. This
yields a finite disequilibrium (〈Ŝe

z 〉 − 〈Ŝe
z 〉0) during a certain fraction of time fe. Since this remaining electron has a

spin orthogonal to the electron recombining with the polarized hole (see Fig. 1(a)) the nuclear field generated by X−
should be opposite to that generated by X+ under the same excitation polarization. This effect was clearly evidenced
in charge tuneable quantum dots allowing to form either X− or X+ trions [11,12]. Fig. 5 reports on the bistability
of the nuclear polarization achieved under optical orientation of a negative trion in such a sample at a gate voltage
Vg = +0.5 V. In the contour-plot of the PL spectra two sets of lines corresponding to two different QDs are visible. The
optical excitation is now σ+ to generate a nuclear field antiparallel to the applied field Bz. The PL emission exhibits
a high circular polarization Pc ≈ 80%. When the magnetic field is increased, the Zeeman splitting shows an abrupt
change around 3.8 T and 3.5 T for X−

a and X−
b respectively, indicating the sudden collapse of nuclear polarization as

in the case of positive trions. When the field is decreased this nuclear field reappears at 2.2 T (X−
a ) and 1.6 T (X−

b ). As
in the case of X+, we obtain a marked bistability regime of the Overhauser shift which could be fairly well fitted with
the same DNP model (Eqs. (5), (6)). We took the same QD parameters N = 5 × 104, Ã = 50 µeV, Q = 13 as for X+,
and ge = −0.58 (−0.6), 〈Ŝe

z 〉 = 0.4 (0.35), τc = 27 (39) ps, fe = 0.05 (0.002), T ∞
d = 0.51 (0.76) s, T 0

d = 0.1 (0.3) s,
B0 = 0.4 (0.2) T for the X−

a (X−
b ) trion. Note that the maximum Overhauser shift (125 µeV) achieved for X−

a at 3.8 T
corresponds to a nuclear polarization of about 50%. Since the PL spectra were measured only in linear polarization,
the Overhauser shift could not be determined with high precision in the weak field domain, which is responsible
for the apparent noise in Fig. 5(b), (c). For the same reason, the PL circular polarization could be determined from
Fig. 5(a) only for magnetic fields above 0.6 T by fitting separately the intensity of both σ+ and σ− branches. The
result is reported in Fig. 5(d) for X−

a . In contrast to positive trions, the nuclear field bistability seems not to affect the
PL polarization carried by the hole angular momentum of X−, at least in the limit of the experimental noise (∼5%).
This supports the assumption of negligible hyperfine interaction between hole and nuclei in quantum dots.

5. Conclusion

In this article, we have presented a few recent investigations evidencing strikingly the role played by the hyperfine
interaction in the spin physics of an electron confined in InAs/GaAs quantum dots. Depending on the experimental
conditions, this electron-nuclei coupling gives rise either to significative spin dephasing, or to high nuclear polarization
(up to 50%), or to a subtle competition between both these effects. These conclusions were drawn from rather straight-
forward experiments carried out on different individual quantum dots which reveal themselves as a unique system for
investigating the hyperfine interaction. Indeed, the optical selection rules of the interband transitions enable us to
obtain very high spin polarization (up to 90%) under quasi-resonant excitation, and more important, the polarization-
resolved micro-photoluminescence spectra provide then a direct means for measuring the average nuclear field, with a
precision of ∼70 mT, namely about twice its statistical noise. The charge control achieved with n-Schottky structures
permits one to study separately positive or negative trions, and thus to exhibit a remarkable symmetry: depending on
the type of trions (X+ or X−), the spin polarized electron is either in the initial or final state of the trion transition,
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Fig. 5. (a) PL intensity contour plot of two negative trions denoted X−
a and X−

b
as a function of longitudinal magnetic field and energy detection

at T = 2 K. The excitation is σ+ at an energy of 1.34 eV, and the sweep direction of the magnetic field Bz is indicated by horizontal arrows.
(b), (c) Overhauser shift of the X− lines determined from the σ+/σ− splitting in (a) after subtracting the theoretical Zeeman splitting assumed to
be perfectly linear in magnetic field. The dashed line corresponds to the electron Zeeman splitting −geμBBz , while the solid line is a fit provided
by the model of dynamical nuclear polarization. (d) PL polarization measured for X−

a as a function of magnetic field.

which determines the sign of the nuclear field created along the optical axis under a given excitation polarization. An-
other important outcome is the demonstration of non-linearity and bistability of the dynamical nuclear polarization in
quantum dots as a function of an applied magnetic field. The cause of these spectacular effects is linked to the energy
cost of electron-nuclei flip-flops which can be either reduced or enhanced by the magnetic-like nuclear field itself. The
regime of strong nuclear polarization is achieved when the external magnetic field is completely compensated by the
optically created nuclear field. This internal feedback is very well described by a simple model relying on a uniform
hyperfine interaction inside a quantum dot. The remaining issues, which should be addressed now, mostly concern the
depolarization mechanisms of nuclear spins, specifically in weak magnetic fields. This seems to us quite necessary to
draw up a comprehensive description of an electron spin in InAs quantum dots.
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