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Abstract

We provide a unified theoretical framework based on a regular perturbation analysis, capable of both explaining most known
results, and of deriving new ones, on system optimization in dispersion-managed long-haul terrestrial optical transmission systems
with small-to-moderate nonlinearity. To cite this article: A. Bononi et al., C. R. Physique 9 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Analyse unifiée des systèmes de transmissions optiques gérés en dispersion de non-linéarité faible basée sur une approche
perturbative. Nous proposons une représentation théorique unifiée, basée sur une analyse perturbative régulière des équations non-
linéaires de propagation des systèmes de transmissions optiques gérés en dispersion, dans le cadre d’un régime de non-linéarité
faible à modérée. Cette représentation permet d’expliquer la plupart des résultats connus, et d’obtenir de nouvelles règles en matière
d’optimisation des systèmes optiques terrestres de longue portée. Pour citer cet article : A. Bononi et al., C. R. Physique 9 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Long-haul, high bit-rate fiber optic links and networks are today the backbone of the Internet physical infra-
structure. Large optical powers are needed for such long-distance communications over many wavelength division
multiplexed (WDM) channels, in order to overcome the accumulation of optical noise generated by optical amplifiers.
Hence the optical medium becomes nonlinear. The mitigation of optical nonlinearity and chromatic dispersion is the
objective of the so-called dispersion-managed (DM) optical transmissions [1]. A typical DM WDM terrestrial link is
composed of a bank of modulated lasers, multiplexed onto a pre-compensation fiber and boosted to high power for
transmission along a line of N possibly different spans, each composed of a long transmission fiber (typically between
50 and 100 km depending on the application), with in-line compensation, typically implemented by a dispersion com-
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pensating fiber within a dual-stage amplifier that recovers the span losses, and with a final post-compensating fiber
at the receiver [2]. Many empirical design rules for terrestrial DM systems, sometimes explained by ad-hoc elemen-
tary analytical models, have been established after years of experimentation and simulation [3–8]. It is the purpose
of this article to show that these design rules, applicable to weakly nonlinear DM systems, can be readily and intu-
itively explained within a single framework based on a regular perturbation analysis. Such a framework is the result
of our original synthesis of several previous studies [9–11,16,15,12–14], mostly inspired by the work of Ablowitz on
the so-called DM nonlinear Schrödinger equation (DM-NLSE) for periodic DM systems [16,15], and by the work
of Wei [14] which effectively exploited a variational approach proposed in [17,18] that allows the DM-NLSE to be
extended to nonperiodic DM links, such as those used in today’s heterogeneous optical networks.

The paper is organized as follows. Section 2 gives a brief introduction to the nonperiodic DM-NLSE and its DM
kernel [14]. Section 3 extends the study of the first-order logarithmic perturbation (LP1) of Forestieri et al. [20,19]
to the present DM case. Section 4 extends Wei’s time-domain DM kernel analysis by using probability theory tools
that facilitate comprehension of a widely-used pre-compensation optimization rule [6–8]. Section 5 exploits the LP1
solution to derive a new post-compensation optimization rule. Section 6 extends the work of [14,16,21] by giving
novel results on inter-pulse interactions in quasi-linear DM systems [22]. Finally, Section 7 extends the nonperiodic
DM-NLSE to the WDM case, and derives new and most general expressions of the cross-phase modulation (XPM)
filters originally introduced in [23,24].

2. Single-channel DM-NLSE

The nonlinear Schrödinger equation (NLSE) for a single channel A(z, t) (in
√

W ) propagating along a single-
mode fiber optic link in the retarded normalized time t (physical time, normalized to the symbol interval T , in a frame
moving at the group velocity, where R = 1/T is the baud rate of the transmitted digital signal) can be written in the
engineering notation and in the Fourier transform domain as [25]:

∂Ã(z,ω)

∂z
= g − jω2β2R

2

2
Ã(z,ω) − jγ

∞∫∫
−∞

Ã(z,ω + ω1)Ã(z,ω + ω2)Ã
∗(z,ω + ω1 + ω2)

dω1

2π

dω2

2π
(1)

where for any function g(t) we define its Fourier transform (with engineering sign convention) as g̃(ω) =∫ ∞
−∞ g(t)e−jωt dt , where j is the imaginary unit, ω = 2πf , with f the frequency normalized to the baud rate; where

g(z) is the net gain/attenuation coefficient per unit length, β2(z) is the group velocity dispersion (GVD) coefficient,
γ (z) is the nonlinear coefficient, and all such parameters are z-varying functions, with span k ending at coordi-
nate zk , k = 1, . . . ,N . In the following, we will define the average of any function f (z) over the interval [0, z] as
〈f 〉z � 1

z

∫ z

0 f (s)ds. When z equals the total link length L we will simply write 〈f 〉L ≡ 〈f 〉. The function

G(z) = e
∫ z

0 g(s)ds = ez〈g〉z , G(0) = 1

is the net line power gain from 0 to z. Hence G(z) = P(z)
P (0)

, where P(0) is a reference signal power at the input of the
line, and P(z) is the corresponding power at coordinate z. In the numerical computations in this paper we will always
take P(0) as the peak power. The modulated input field M(t) is passed into a pre-compensating fiber, so that the field

at the input of the line is Ã(0,ω) = M̃(ω)ej ω2
2 ξpre , where ξpre � −�preβ2,preR

2 is the normalized cumulated dispersion
in the pre-compensation fiber of dispersion coefficient β2,pre and length �pre. Now make the change of variable, [14]:

Ã(z,ω) = √
P(0)e

lnG(z)+jC(z)ω2

2 Ũ (z,ω)

where C(z) � ξpre + ξin(z) is the total normalized cumulated dispersion up to z, where ξin(z) � −R2
∫ z

0 β2(s)ds is the
normalized cumulated dispersion along the line (i.e. the in-line dispersion). Differentiating and plugging in (1) one
gets the nonperiodic DM-NLSE for general DM systems as:

∂Ũ(z,ω)

∂z
= −jΦNL

∞∫∫
−∞

γ (z)G(z)e−jC(z)ω1ω2

L〈γG〉 Ũ (z,ω + ω1)Ũ (z,ω + ω2)Ũ
∗(z,ω + ω1 + ω2)

dω1

2π

dω2

2π
(2)

where the nonlinear phase is defined as ΦNL � P(0)L〈γG〉.
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3. Regular and logarithmic perturbations

Treating ΦNL as a small parameter in (2), the first-order regular perturbation (RP1) solution of (2) on the link
[0,L] is (see e.g. [26]): Ũ (L,ω) = Ũ0(ω) − jΦNLŨ1(L,ω), where Ũ0(ω) ≡ Ũ (0,ω) = M̃(ω)/

√
P(0) is the initial

condition, the perturbative term is

Ũ1(L,ω)
�=

∞∫∫
−∞

η̃(ω1ω2)Ũ0(ω + ω1)Ũ0(ω + ω2)Ũ
∗
0 (ω + ω1 + ω2)

dω1

2π

dω2

2π
(3)

and the DM kernel is defined as

η̃(w) �
∫ L

0 γ (s)G(s)e−jC(s)wds∫ L

0 γ (s)G(s)ds
= 〈γGe−jCw〉

〈γG〉 (4)

When γ (z) is constant with z, the kernel simplifies to that given by Wei [14]. If in (4) one uses the difference
ΔC = −R2

∫ z

0 Δβ2(s)ds with respect to the link average value instead of C, one gets the Ablowitz kernel for periodic
systems [15].

For example, for a single uncompensated span with transmission fiber nonlinear coefficient γ , loss α, dispersion
coefficient β2, and “long” length zA 	 1

α
, from (4) one gets: η̃1(w) = 1

1+j ST w
, having defined the strength as, [3,5],

ST � −β2
α

R2, which represents the accumulated dispersion over the span effective length 1
α

. If instead the link is
composed of N identical “long” spans, with transmission fiber parameters as above, with lumped amplification at the
span end that recovers the span losses, with in-line dispersion per span ξs ≡ ξin

N
and pre-compensation ξpre, then from

(4) one easily gets

η̃(w) = e−jξprew

[
1

N

N−1∑
k=0

e−jξskw

]
η̃1(w) = e−j (ξpre+ N−1

2 ξs )w

[
1

N

sin(
Nξs

2 w)

sin(
ξs

2 w)

]
η̃1(w) (5)

If one adds at the receiver a post-compensating fiber with cumulated normalized dispersion ξpost, one finally gets
the RP1 approximate field at the receiver in the time domain as ARP1(L, t) = A0(L, t) − jΦNLA1(L, t), where

Ã0(L,ω) = √
P(L)ej

ξtotω
2

2 Ũ0(ω) is the linear term, and Ã1(L,ω) = √
P(L)ej

ξtotω
2

2 Ũ1(L,ω) the RP1 term, and

we introduced the total (or residual) dispersion ξtot
�= C(L) + ξpost = ξpre + ξin + ξpost, where for brevity we write

ξin(L) ≡ ξin. Being the first term of a polynomial expansion in the small parameter ΦNL, the RP1 solution is valid at
small nonlinear phases, and has thus a serious energy-divergence problem at practical values of ΦNL. A better fit with
the actual output field at practical nonlinear phases is provided by the first-order logarithmic perturbation (LP1) [19,
20,27]:

ALP1(L, t) = A0(L, t) exp

{
−jΦNL

A1(L, t)

A0(L, t)

}
(6)

which is calculated from the same first two terms of the RP solution.
We next present some numerical results to give an idea of the precision of the RP1/LP1 approximations. To facilitate

interpretation of all numerical results, Appendix A summarizes the conversions from dimensionless to physical units.

3.1. Numerical checks on LP1, RP1 for single on-off keying channel

We considered an N = 20 span DM link with 100 km spans, with in-line linear dispersion compensation at each
span end, full in line compensation (ξin = 0), without pre and post-compensation. No optical/electrical filtering was
applied at the receiver. A single non-return to zero (NRZ) on-off keying (OOK) channel was transmitted with raised-
cosine supporting pulses in power with rolloff 0.4 and extinction ratio of 20 dB. Fig. 1 shows the received normalized
power vs. normalized time, for both RP1/LP1 theory and split-step Fourier method (SSFM) simulation [25] calculated
with 32 samples per bit and representing the true result. In Fig. 1, the top row shows the case of R =10 Gb/s, with
a practical phase of ΦNL = 0.6π , while the bottom row the case of R = 40 Gb/s, and a smaller phase ΦNL = 0.3π

(since the tolerable nonlinear phase decreases with bit rate). Transmission fiber was large effective area (LEAFTM)
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Fig. 1. Received Power vs. time for RP1 (dash), LP1 (solid), SSFM (dash-dot). DM system: 20 × 100 km OOK, ξin = ξpre = ξpost = 0. Ext. ratio
20 dB. Left column: leaf fiber. Right column: SMF fiber. Top row: R = 10 Gb/s, ΦNL = 0.6π ; Bottom row: R = 40 Gb/s, ΦNL = 0.3π .

(DT = 4 ps/nm/km) in the left column, and standard single mode (SMF) (DT = 16 ps/nm/km) in the right column.
We first note the power divergence of the RP1 method for larger nonlinear phases. We then note that LP1 is much
closer to the true SSFM results, but tends to over-emphasize the pulse high frequencies, especially at larger nonlinear
phases. In the R = 40 Gb/s case we also note that at the larger strengths (×16) implied by a ×4 increase in bit
rate also the LP1 approximation starts to have energy divergence problems with sharp spikes, which however occur
when the RP1 solution is well behaved. Hence a modified LP1 solution, robust even at 40 Gb/s, can be devised as:
ALP1,mod(L, t) = min{ALP1(L, t),ARP1(L, t)} in order to remove such sharp spikes. Results similar to ours for LP1 at
10 Gb/s were obtained in a 5 × 100 km NRZ-OOK terrestrial link by Forestieri et al. [20,19]. Their LP1 was obtained
by 5 cycles of the LP algorithm, where the LP1 field out of one span was the input to the next span. The good news is
that our LP1 reproduces the output pulses with similar accuracy, but in a single computation of the LP1 kernel, instead
of the repetition to which both the RP1 method used in [26] and Forestieri’s LP1 are forced.

Finally, note that the computational complexity of a direct calculation of the RP1 double-integral (3) scales as
the square of the number of time/frequency samples NFFT in the Fast-Fourier transform window, instead of the
NFFT logNFFT complexity of the SSFM approach. Hence the RP1/LP1 is mostly a tool of theoretical value, as we
will show in the following sections. However, it was shown in [19] that the complexity of the LP1 method can be
made comparable to that of the SSFM, while higher order LP approximations can be even more efficient than SSFM
in the weakly nonlinear regime.
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4. Time-domain analysis: kernel inversion

Wei [14] states that most of the time-domain treatments of quasi-linear DM systems [22] leading to the analysis
of intersymbol interference, represented by inter-pulse cross-phase modulation (I-XPM) and inter-pulse four wave
mixing (I-FWM), are based on the time-domain version of the RP1 solution with zero total dispersion: ARP1(L, t) =√

P(L)[U0(t) − jΦNLU1(L, t)], where the inverse Fourier transform of Ũ1(L,ω) in (3) is [15]:

U1(L, t) =
∞∫∫

−∞
η(t1t2)U0(t + t1)U0(t + t2)U

∗
0 (t + t1 + t2)dt1 dt2 (7)

where η(t1t2) is the inverse 2-D Fourier transform of η̃(ω1ω2). From (4) we see that the DM kernel η̃(w) is a function
of the single variable w ≡ ω1ω2. For this class of 2-D Fourier transforms, the 2-D inverse transform is a function of
the product τ = t1t2, and can be obtained by first computing the 1-D inverse

J (c) =
∞∫

−∞
η̃(w)e+jwc dw

2π

with respect to variable w, and then the 2-D inverse transform is computed as [14]:

η(τ) =
∞∫

0

J (τ/y)ejy + J (−τ/y)e−jy

y

dy

2π
(8)

From such a form, we find the following properties, valid for any kernel, that will be exploited later:

(i) η(0) = − J (0)
π

Ci(0) = +∞, where Ci(x) is the cosine integral;

(ii) Let Je(c) = J (c)+J (−c)
2 and Jo(c) = J (c)−J (−c)

2 be the even and odd parts of J (c), respectively. Then

η(τ) = 2

2π

[ ∞∫
0

Je

(
τ

y

)
cosy

y
dy + j

∞∫
0

Jo

(
τ

y

)
siny

y
dy

]

The major contribution of Wei [14] to the theory of DM comes from the physical interpretation he gave of the
inverse transform J (c) of η̃(w): the variable c ≡ C(z) is in fact the normalized cumulated dispersion along the line,
and J (c) can be shown to be a nonnegative function proportional to the power along the line, hence its name “Power
Weighted Dispersion Distribution” (PWDD) [14]. Wei rightly gives great emphasis to the PWDD as a powerful intu-
itive tool for DM system optimization. Such a power in DM system optimization was already understood by Minzioni
et al. [28], although not analytically justified in its full generality. Also, concepts similar to the PWDD had been
previously used to establish the analytical models that lead to the well-known pre-compensation optimization rule
[8,6].

We note here that J (c) integrates to 1, since by definition η̃(0) = 1 for any map. Hence in probability theory
parlance J (c) is a probability density function (PDF) associated with a random variable (RV) C, and thus

η̃(−w) =
∞∫

−∞
J (c)e−j (−w)c dc = E

[
ejwC

]
is its characteristic function (CF). It is related to the moments of the RV C by the moment theorem [30]:

η̃(w) = E
[
e−jwC

] =
∞∑

k=0

E[Ck]
k! (−jw)k (9)

and conversely one gets the k-th moment of C as:

E
[
Ck

] = jk dkη̃(w)

dwk

∣∣∣∣

w=0
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Fig. 2. (Left) Power-weighted dispersion distribution J (c) for a DM link with strength ST = 1, span length zA = 4
α , ξpre = −2; ξin = 2; (Right)

Corresponding power gain G(z) and normalized cumulated dispersion C(z) versus z/zA .

Let us now consider some examples of PWDD. For a single uncompensated span of length zA 	 1
α

, with transmis-
sion fiber nonlinear coefficient γ , loss α and dispersion coefficient β2 we already know the DM kernel η̃1(w), whose

inverse transform is J1(c) = 1
|ST |e

− c
ST U(c · sgn(ST )), where the unit step function is defined as U(t)=1 if t � 0,

and zero otherwise. Its support is over positive c for ST > 0 and over negative c otherwise. J1(c) is the PDF of an
exponential RV C1 with average E[C1] = ST .

In the case of a link composed of N identical spans of length zA, with same fiber parameters as above, the DM
kernel was derived in (5). Inversion provides the system PWDD as

J (c) = 1

N

N∑
k=1

J1
(
c − [

ξpre + (k − 1)ξs

])
(10)

i.e., as the average of the PWDD of each span k, which is the uncompensated PWDD J1(c) shifted by the accumulated
dispersion up to its beginning, namely ξpre + (k − 1)ξs . Eq. (10) is an expression of the law of total probability: the
RV C is obtained by choosing “at random” (i.e. equally likely) one of N spans, and then selecting the cumulated
dispersion as a RV Ck = C1 + [ξpre + (k − 1)ξs], where RV C1 has PDF J1(c).

Fig. 2 (left) shows J (c) (thick line) for a DM link composed of N = 10 spans, with strength ST = 1, span length
zA = 4

α
, ξpre = −2; ξin = 2, while Fig. 2 (right) shows the corresponding gain G(z) and “dispersion map” C(z) versus

normalized distance z/zA. In Fig. 2 (left) we also report in thin line the constituent PDFs Jk(c) ≡ J1(c − [ξpre + (k −
1)ξs]) in Eq. (10) for all k = 1, . . . ,N , where the shift due to pre-compensation ξpre and in-line compensation per span
ξs are shown by arrows. By applying the total probability law we easily get the average as: E[C] = ξpre + ST + N−1

2 ξs .

4.1. Optimal DM

Wei claims that optimal DM sets to zero the median of the RV C associated with the PWDD J (c) of the link ([14],
p. 2545). It is known instead that the best choice for weakly nonlinear systems is to let Im(η̃(w)) = 0 [31]. In the
framework of this article, the proof is now simple: Im(η̃(w)) = 0 implies by the moment theorem (9) that all odd
moments E[Ck], k = 1,3,5, . . . , of the RV C are zero. A necessary and sufficient condition for this to happen is that
J (c) is even: such a J (c) corresponds to a so called symmetric map. From property (ii) of (8) we know that an even
J (c) corresponds to a real kernel impulse response η(t1t2), and thus to a purely imaginary nonlinear distortion when
the input field U0(t) is real, as per Eq. (7): the intensity of the field is thus preserved. This concludes the proof.

With long lossy spans made of a single kind of transmission fiber, the overall J (c) cannot be symmetric. When
using a pre-compensation fiber to ameliorate link performance, all that one can do is to shift J (c) by an amount ξpre
so as to minimize | Im(η̃(w))| as much as possible. Since odd moments are typically arranged in decreasing order
(|E[C]| 	 |E[C3]| 	 |E[C5]| 	 · · ·), then the best that one can do with a pre-fiber is to zero out the largest odd mo-
ment: E[C] = 0. This is what we call the “straight-line rule” (SLR) for setting the optimal pre-compensation [31,6–8].
For instance, in the identical N lossy span case, this leads to the choice ξpre = −ST − N−1ξs , which in dimensional
2
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Fig. 3. SSFM-simulated contours of OSNR penalty [dB] @BER = 10−5 vs. ξpre and ξin, with optimized ξpost. NRZ-OOK link with 20 × 100 km,
DT = 8 ps/nm/km, R = 40 Gb/s (i.e. ST = 0.35), and ΦNL = 0.15π . Solid straight line: SLR.

units translates as: Dpre = −DT

α
− N−1

2 Ds [ps/nm], where DT [ps/nm/km] is the dispersion of the transmission
fiber, and Ds [ps/nm] the per-span in-line dispersion. As an example, Fig. 3 shows contours of the penalty [dB] on
optical signal to noise ratio (OSNR) at bit error rate BER = 10−5 versus in-line ξin and pre-compensation ξpre for a
20 × 100 km 40 Gb/s NRZ-OOK link with TeralightTM fiber (DT = 8 ps/nm/km). The analytical SLR is shown to
closely follow the locus of lowest penalty.

5. LP1 response to Gaussian pulse and optimal post-compensation

We now derive a new “optimal” rule for choosing the post-compensation dispersion. To this aim, we investigate
the response of a DM system to a single Gaussian pulse, with peak power-normalized form

U0(t) = e−t2/(2T 2
0 )

where T0 = d/2 is the half-width. Our idea is to exploit the excellent LP1 approximation (6) in the case ξtot = 0, and
further approximate it by a first-order Taylor expansion in t of the argument of the exponential as:

ALP1(L, t) ∼= e−jΦNLU1(0)
√

P(L)U0(t)e
{−jΦNL[U(2)

1 (0)/2+ 2
d2 U1(0)]t2}

where in brief we write U1(L, t) ≡ U1(t), and U(2)(0) is the second derivative of U1(t) at t = 0. The rationale is that
the output pulse looks now like a chirped Gaussian pulse, so that the search for the appropriate extra post-compensating
fiber to be added to the ξtot = 0 system to optimally compress the received pulses and improve performance is made

analytically feasible. Define the complex parameter a ≡ aR + jaI � −U1(0) − d2

4 U
(2)
1 (0). Then one gets

ALP1(L, t) ∼= e−jΦNLU1(0)
√

P(L)e−[1−j2ΦNLb]2t2/d2
eq (11)

where we defined

b � aR

2(1 + ΦNLaI )
, deq � d√

1 + ΦNLaI

(12)

assuming 1 + ΦNLaI > 0. For pure SPM (i.e. when the strength ST → 0) we have that U1(t) = |U0(t)|2U0(t), hence
a = 2, and thus b = 1 and deq = d . With such definitions, we note that, apart for an irrelevant multiplying factor, the
output pulse is approximately still Gaussian with duty cycle deq and linear chirp parameter c ≡ 2ΦNLb. The values of
U1 needed in the calculation of b and deq can be evaluated as

U1(0) =
∞∫

Ũ1(ω)
dω

2π
, and U

(2)
1 (0) = −

∞∫
ω2Ũ1(ω)

dω

2π

−∞ −∞
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Calculations do have a simple form if we approximate η̃1(w) = 1
1+j ST w

∼= e−j ST w , an approximation valid over the

signal frequency range when ST � d2

8 . With such an approximation the needed integrals can be computed in closed
form, as shown in Appendix B:

U1(0) ∼= 1

N

N−1∑
k=0

d2√
48(ξpre + ST + kξs)2 + d4 + j8d2(ξpre + ST + kξs)

U
(2)
1 (0) ∼= − 1

N

N−1∑
k=0

4[3d2 + j4(ξpre + ST + kξs)]
[d2 + j12(ξpre + ST + kξs)]

√
48(ξpre + ST + kξs)2 + d4 + j8d2(ξpre + ST + kξs)

(13)

Let us first check the numerical dependence of the b parameter in (12) on DM. First of all, let’s note from (5) that
the DM kernel can be approximated as

η̃(w) ∼=
[

1

N

sin(
ξin
2 w)

sin(
ξin
2N

w)

]
e−j (ξpre+ST + N−1

2
ξin
N

)w

Thus when we choose the SLR optimal pre-compensation the exponential disappears and the DM kernel is real and
only depends on in-line ξin and not on strength. The terms U1(0) and U

(2)
1 (0) are also purely real, and so is a, while

deq = d and b = a/2, independent of ΦNL. In such a SLR-compensated case, therefore, Eq. (11) reveals that things
go (up to second order in a Taylor expansion of the phase) as if the DM system were a pure SPM block, with an
effective nonlinear phase Φeff

NL = |b|ΦNL. We thus call b the nonlinear phase factor. Fig. 4 (left) shows b in (12)
versus in-line ξin for various span numbers, for a DM system with SLR pre, ξtot = 0 and Gaussian pulses with duty
d = 0.685. Results are independent of nonlinear phase, and of strength as long as approximation 1

1+j ST w
∼= e−j ST w

holds. We note an alternating behavior with increasing N , even N values giving a smaller b than odd N values. We
also note that b can become negative, implying an inversion of the sign of the nonlinear induced chirp with respect
to that of pure SPM. The convergence for increasing N occurs starting at small ξin values, and extending to larger
in-line as N increases. For large enough N the behavior is decreasing monotone. The message from such a result
is very important: the effective nonlinear phase in a SLR pre-compensated DM periodic system tends to vanish for
large in-line dispersion, independently of the strength. This is the essence of the so-called quasi-linear propagation
regime [22]. Finally, for fixed finite ξin, let us take the limits of (13) for vanishing duty cycle: we get limd→0 U1(0) = 0

and limd→0
d2

4 U
(2)
1 (0) = 0. Hence a → 0, and so does b. Thus, low duty cycle pulses suffer less from nonlinear

distortion.
Let us now try to understand how close the above analytical results are to reality. Fig. 4 (center for ξin = 0.2 and

right for ξin = 0.8) shows received phase (rad) vs. normalized time in a DM system with strength ST = 0.022 (D =8
ps/nm/km at 10 Gb/s), N = 50 spans, nonlinear phase ΦNL = 0.3π , SLR pre-compensation, and ξtot = 0, when a
Gaussian pulse with duty d = 0.685 is launched at time t = 3. SSFM simulations are shown in the dashed line, while
the parabolic approximate phase in (11) is shown in the solid line, and it matches well the SSFM phase at the pulse
center. The negative concavity in the right plot corresponds to a negative b.

Since the output pulses in the above zero total dispersion DM system are approximately chirped Gaussian, the value
of the optimal extra post-compensation can now be derived from well known results on the optimal compression of
chirped Gaussian pulses by pure GVD [32]. If we let β2 and � be the GVD and length of the extra post compensation
with normalized cumulated dispersion ξ∗ = −β2�R

2, then maximum pulse compression is obtained when, [32],

−β2�

T 2
0

= c

1 + c2

i.e. when:
ξ∗

(deq/2)2
= 2ΦNLb

1 + 4Φ2
NLb2

so that the optimal overall total dispersion ξtot ≡ 0 + ξ∗ is

ξtot = d2
eq

2

ΦNLb

1 + 4Φ2 b2
(14)
NL
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Fig. 4. (Left): Nonlinear phase factor b versus in-line ξin for various spans N , for a DM system with SLR pre, ξtot = 0 and Gaussian pulses with
duty d = 0.685. (Center + right): Received field phase (rad) vs. time for Gaussian input with duty d = 0.685 and 30 dB of extinction ratio. Solid:
theory (11); dashed: SSFM simulation. DM system data: N = 50 spans, ST = 0.022, SLR pre, ξtot = 0, ΦNL = 0.3π , ξin = 0.2 (center), ξin = 0.8
(right).

Fig. 5. (Left) Optimal ξtot (14) vs. nonlinear phase ΦNL for several values of ξin = 0 (a), ξin = 0.1 (b), ξin = 0.2 (c), ξin = 0.3 (d), ξin = 0.4 (e), for
a DM system with N = 50 spans, SLR pre, and Gaussian pulses d = 0.8; (Center) SP [dB] contours vs. ξtot and ΦNL for ξin = 0.17 and optimal
ξtot vs. ΦNL (14) (circles); (Right) SP [dB] contours for ξin = 0.40 and optimal ξtot (14) (circles).

Fig. 5 (left) shows the optimal ξtot (14) vs. nonlinear phase ΦNL for several values of ξin = 0, 0.1, 0.2, 0.3, 0.4
for a DM system with N = 50 spans, SLR pre-compensation, ξtot = 0 and Gaussian pulses with duty d = 0.8. Such
curves are all ΦNL-scaled versions of the ξin = 0 curve. Fig. 5 (center) shows instead for the same DM line with
ξin = 0.17 (simulated with DT = 8 ps/nm/km at R = 10 Gb/s, i.e. ST = 0.022) the “true” system performance for
OOK modulation, obtained as SSFM-simulated contours of the sensitivity penalty (SP) in decibels at a BER = 10−5

versus ξtot and ΦNL. Fig. 5 (right) shows the same plot for a system with a larger in-line ξin = 0.40. The superposed
curves with circles represent the best ξtot from theory (14), and a reasonable qualitative match with the lowest penalty
contour is observed in both plots (note that at ξin = 0.40 the penalty diverges at much lower nonlinear phases).

6. Inter-pulse interactions

In the previous section we have seen that a single pulse gets less and less distortion from the DM line as its in-line
dispersion ξin increases. It is known that single-pulse distortions decrease also when the strength is increased [15].
However, a large ξin or a large ST give large inter-pulse interactions, hence an increased inter-symbol interference, as
we show next.

Assume the input signal is a pulse amplitude modulation: U0(t) = ∑∞
k=−∞ bkp(t −k), where p(t) is the supporting

pulse with normalized duration (or duty cycle) d , and bk the modulating symbol at the k-th symbol interval. The
supporting pulse field is return-to-zero (RZ), i.e., p(t) = p(0) for |t | � d/2 and zero otherwise, where p(0) is the
peak power. Substituting in (7) one gets, [14],

U1(L, t) =
∞∑

m=−∞

∞∑
n=−∞

∞∑
l=−∞

bmbnb
∗
l

∞∫∫
η(t1t2)p(t + t1 − m)p(t + t2 − n)p(t + t1 + t2 − l)dt1 dt2 (15)
−∞
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To find the symbol indexes (m,n, l) that contribute nonzero terms on the reference symbol interval centered at
t0 = 0 it is easiest to assume [16] that p(t) ∼= dp(0)δ(t), i.e., the supporting pulses have a very small duty cycle
and thus look like delta functions with respect to the time DM kernel. The double integral in (15) becomes η((t −
m)(t − n))δ(t − (m + n − l)), so that the only slots that contribute are those satisfying the “time-matching” condition
m + n − l = t0 ≡ 0. Thus for very low duty cycle pulses the RP1 solution with zero total dispersion drastically
simplifies to: ARP1(L, t) = √

P(L)[b0p(t) − jΦNLU1(L.t)], with, [14],

U1(L, t) = p(t) · d2p(0)2
∑
m,n,l

bmbnb
∗
l η

(
(m − l)(n − l)

)
(16)

for all |t | < 1/2 in the zero-th slot, whose information symbol is b0. Note that, since from property (i) of (8) it is
η(0) = +∞ for any kernel, then the self-phase modulation (SPM) term (m = n = l) and IXPM terms (m = l or n = l)
are incorrectly treated since the corresponding terms in (16) diverge. Hence the perturbation included in (16) is only
that due to IFWM. The energy shed by IFWM on spaces (b0 = 0) generates the so-called ghost-pulses, while on
marks (b0 = 1) it gives rise to the so-called amplitude jitter [16]. It can be shown that, in these ξtot = 0 systems, IXPM
instead gives rise to a purely imaginary (i.e. phase) distortion and thus does not contribute to amplitude jitter [16]. We
will next show how IFWM induced distortions evolve with both in-line dispersion and map strength.

To this purpose, we consider a single channel OOK transmission with a special modulation pattern, where NR

consecutive interfering marks (bm = 1, 1 � m � NR) follow the symbol of interest b0 (we call them post-cursors),
while all remaining symbols are spaces (bm = 0) [21]. At the center t = 0 of the reference symbol, both the “ghost-
pulse” field on a space (b0 = 0) and the field variation on a mark (b0 = 1) can be seen from (16) to be proportional to
the following summation extended to all nonzero indexes m,n, l with m = l and n = l such that bm = bn = bl = 1:

S(NR) �
∑
m,n,l

η
(
(m − l)(n − l)

) =
�NR/2�∑
p=1

η
(
p2) + 2

�NR/2�∑
p=1

NR−p∑
q=p+1

η(pq)

where on the right we have the explicit computation, with p = n − l, q = m − l. One can thus define the following
two quantities to characterize the impact of IFWM on spaces and marks: (i) the normalized ghost-pulse intensity

IG(NR) �
∣∣∣∣U1(L,0)

d2p(0)3

∣∣∣∣2

= ∣∣S(NR)
∣∣2

and (ii) the normalized Mark relative intensity distortion (RID)

ΔIM(NR) � Im

[
U1(L,0)

d2p(0)3

]
= Im

[
S(NR)

]
Fig. 6 shows both IG(NR) (left) and ΔIM(NR) (center) versus the number of consecutive mark post-cursors NR

for a N = 10 span DM system with lossless spans of zA = 50 km each, whose explicit time kernel expression, using
(10), is

η(τ) = 1

2π |CT |
1

N

N∑
k=1

[
E1

(
−j

τ

CT + ξpre + (k − 1)ξs

)
+ E1

(
−j

τ

ξpre + (k − 1)ξs

)]
(17)

with E1(x) the exponential integral, and CT = −β2zAR2 the dispersion cumulated over each span, which plays in
this lossless case the role of the span strength.

The values for three maps are shown: 1) a map without in-line compensation and no pre-compensation [29];
2) a map without in-line compensation and optimal SLR pre-compensation ξpre = −NCT /2 [29], and 3) a map with
in-line dispersion ξin = 0.1CT and optimal SLR pre-compensation ξpre = −CT − N−1

2 ξs . For map 1 we note large
values of both ghost pulse intensity and mark RID, with a long “memory”, i.e. significant IFWM interference from
post-cursors placed several hundred bit times away from the reference bit. In map 2 we chose the optimal SLR pre-
compensation, which significantly decreases the ghost-pulse intensity even in the absence of in-line compensation, and
completely suppresses the mark RID, since in the lossless case the PWDD is exactly symmetric. Finally in map 3 we
note the dramatic reduction of ghost-pulse intensity with respect to the case without in-line, along with the complete
suppression of mark RID with the SLR pre-compensation.
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Fig. 6. (Left) ghost-pulse intensity IG and (center) mark relative intensity distortion ΔIM versus number of consecutive mark post-cursors NR for a
10×50 km lossless link with total strength NCT = 16.8 for the tree maps: 1) ξin = 0, ξpre = 0; 2) ξin = 0, ξpre = SLR; 3) ξin = 0.1CT , ξpre = SLR.
(Right): Asymptotic norm. ghost pulse intensity I∞

G
versus span strength CT . DM lossless system with N = 10 spans, SLR pre-compensation at

ξin/CT = 0.1.

Fig. 6 (right) shows the asymptotic “floor” I∞
G = limNR→∞ IG(NR) versus per-span strength CT , in the DM case

with SLR pre-compensation and in-line ξin/CT = 0.1. We observe an almost monotonic increase with strength,
with a converging behavior at CT → ∞. This implies that, even with in-line compensation, ghost-pulses in-
crease with increasing strength, thus deteriorating performance. The limiting value can be found by noting that
limNR→∞ S(NR) = ∑∞

p=1
∑∞

q=1 η(pq). When |CT | → ∞ the double summation becomes a double integral, since

in that case η(t1t2) becomes infinitely spread in the time domain: lim|CT |→∞ S(∞) = ∫ ∞
0

∫ ∞
0 η(t1t2)dt1 dt2. Now,

since 1 = η̃(0) = ∫∫ ∞
−∞ η(t1t2)dt1 dt2 and η(τ) has Hermitian symmetry, then

∫ ∞
0

∫ ∞
0 Re[η(t1t2)]dt1 dt2 = 1

4 . Since
the map is symmetric, then η(τ) is real and thus lim|CT |→∞ S(∞) = 1/4. Hence the sought asymptotic value is
lim|CT |→∞ I∞

G = ( 1
4 )2 ∼ 0.0625, as visible in Fig. 6 (right). Similar results for mark RID in a lossy DM system

appeared in [16], however without any hint to the asymptotic value.

7. RP1 extension to WDM

When all fiber parameters are the same for all channels the RP1/LP1 single-channel approach simply extends to
the WDM case with minimum channel spacing Δλ as follows. Express the aggregate WDM signal envelope w.r.t.
the reference frequency fr as U(z, t) = ∑Nc

s=−Nc
Us(z, t)e−jsΔωt , where Δω � 2π

ηSd
> 0 is the normalized frequency

spacing, and we defined the fractional bandwidth utilization as ηS
�= R/d

Δf
[bit/s/Hz], where the frequency spacing is

Δf = c

λ2
r
Δλ > 0 and R/d is an estimate of the modulated signal bandwidth. Now plug the Fourier transform Ũ (z,ω)

into the RP1 solution expressed with respect to the retarded time frame of the reference channel r = 0, and single
out the propagation equation for reference channel r = 0, which after a change of variables can be expressed as:
Ũr (L,ω) = Ũ0r (ω) − jΦNLŨ1r (L,ω), with an RP1 perturbation

Ũ1r (L,ω) =
∑
m,n,l

∞∫∫
−∞

η

[(
ω1 + 2π(n − l)

ηSd

)(
ω2 + 2π(m − l)

ηSd

)]

× Ũ0m(ω + ω1)Ũ0n(ω + ω2)Ũ
∗
0l (ω + ω1 + ω2)

dω1

2π

dω2

2π
(18)

which is the sum of SPM (m = n = l = r), XPM (m = r = n = l) and FWM in all remaining (m,n, l) cases such that
m + n − l = r . The total LP1 field is then

ALP1
r (L, t) = A0r (L, t) exp

{
−jΦNL

A1r (L, t)

A0r (L, t)

}
with

Ã0r (L,ω) = √
P(L)ej

ξtotω2

2 Ũr (0,ω)
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the linear term, and

Ã1r (L,ω) = √
P(L)ej

ξtotω
2

2 Ũ1r (L,ω)

the RP1 term. It is possible to prove that all major classical results concerning FWM and XPM can be derived from
the RP1 perturbation (18). As an illustration, we will next show how well-known results on XPM filtering [33,23,24]
can be obtained and generalized.

7.1. XPM filters

Consider now the case of a continuous wave (CW) probe signal U0r (t) = 1 on the reference channel, and a single,
sinusoidally amplitude-modulated pump field U0p(t) = 1 + m cos(ωmt) on channel p = 0, where 0 < m < 1 is the
modulation index, and ωm the sinusoidal modulation pulsation. Plugging the input field Fourier transform into (18),
and keeping only linear terms in m, we get in the time-domain:

UXPM
1r (L, t) = 2 + m

[
Hp(ωm)ejωmt + Hp(−ωm)e−jωmt

]
where the term 2 accounts for the XPM due to the CW component, and we defined

Hp(ωm) �
[
η

[
ωm

(
ωm + p

2π

ηSd

)]
+ η

[
ωmp

2π

ηSd

]]
(19)

The LP1 solution is thus ALP1
r (L, t) = √

P(L) exp{−jΦNL(1 + UXPM
1r (L, t) ⊗ hξtot(t))}, where hξtot(t) is the im-

pulse response of the pure GVD filter with cumulated dispersion ξtot, so that

UXPM
1r (L, t) ⊗ hξtot(t) = 2 + mej

ξtotω
2
m

2
[
Hp(ωm)ejωmt + Hp(−ωm)e−jωmt

]
(20)

The XPM-induced phase of the output LP1 field on probe channel r is thus the imaginary part of the XPM-induced
argument of the exponential

θXPM
r (t) � −ΦNL Re

[
UXPM

1r (L, t) ⊗ hξtot(t)
]

while the intensity normalized to its reference CW power level in absence of XPM is

Ir (L, t)

P (L)
= e2ΦNL Im[UXPM

1r (L,t)⊗hξtot (t)]

hence the XPM-induced relative intensity distortion (RID) is

ΔIXPM
r (t) � Ir(L, t)

P (L)
− 1 = e2ΦNL Im[UXPM

1r (L,t)⊗hξtot (t)] − 1

As shown in Appendix C, retrieving the sinusoidal components at frequency ωm of both phase and intensity (for
intensity, assuming distortions are small), one can express both phase and intensity as filterings of the input pump
power P0p(t) = |U0p(t)|2:

θ̃XPM
r (ω) = P̃0p(ω)HIM-PM,p(ω), Δ̃I

XPM
r (ω) = P̃0p(ω)HIM-IM,p(ω)

where

HIM-PM,p(ω) = −ΦNL

2

[
ej

ξtotω
2

2 Hp(ω) + e−j
ξtotω

2

2 H ∗
p(−ω)

]
HIM-IM,p(ω) = −jΦNL

[
ej

ξtotω
2

2 Hp(ω) − e−j
ξtotω

2

2 H ∗
p(−ω)

]
(21)

For instance, for a DM terrestrial link with N identical “long” spans with precompensation ξpre, in-line ξin and
strength ST = −β2

α
R2, whose kernel is given in (5), denoting with Δω ≡ 2π

ηSd
the normalized channel frequency

spacing, we get from (19)
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Hp(ω) = e−j (ξpre+ N−1
2

ξin
N

)(ωpΔω+ω2) 1

N

sin(
ξin
2 (ωpΔω + ω2))

sin(
ξin
2N

(ωpΔω + ω2))

1

1 + j ST (ωpΔω + ω2)

+ e−j (ξpre+ N−1
2

ξin
N

)(ωpΔω) 1

N

sin(
ξin
2 (ωpΔω))

sin(
ξin
2N

(ωpΔω))

1

1 + j ST (ωpΔω)
.

Long but straightforward calculations show that the pump intensity-modulation to probe intensity-modulation
(IM-IM) filter for a long-haul terrestrial system is identical to the one “heuristically” derived by integrating all the
infinitesimal contributions accounting for the IM-IM pump distortion from input to any point z, then generation of
XPM at z, followed by the PM-IM conversion up to link end, as done in [33,34], which improved on a previous simpler
approach [24,23,35]. The LP1-based filter expressions (21) are new, and have been obtained as a natural extension of
the nonperiodic DM-NLSE to the WDM case. The filter expressions are most general, since they depend on the DM
kernel η(w), and thus they can be quickly and explicitly recomputed for any desired DM link configuration.

8. Conclusions

In this article we have provided a single analytical framework able to simply explain all major design rules de-
veloped for weakly-nonlinear optical DM systems, such as the heterogeneous terrestrial links employed in modern
optical networks. Several results have been provided for the OOK modulation format, although the analysis could be
extended to more advanced modulation formats.

Appendix A

Throughout the paper we use dimensionless units such as the map strength ST and the in-line dispersion ξin. They
relate to the standard dimensional units as:

ST � λ2

2πc
R2 1

α
DT , ξin � λ2

2πc
R2Din

where DT [ps/nm/km] and α [m−1] are the chromatic dispersion coefficient and the attenuation of the transmission
fiber, respectively, Din [ps/nm] is the in-line residual dispersion, c the speed of light and λ the channel wavelength. For
a numerical feeling, a terrestrial link with TeralightTM fiber (DT = 8 ps/nm/km) at R = 10 Gb/s has a strength ST =
0.022. Since ST scales as R2, at 40 Gb/s the strength is 16 times larger, ST

∼= 0.35. A value of ξin = 0.1 corresponds
to Din = 800 ps/nm at 10 Gb/s, while it decreases to 50 ps/nm at 40 Gb/s. The cumulated dispersions within

the pre- and post-compensating fiber follow the same conversion rule as for ξin, namely: ξpre/post = λ2

2πc
R2Dpre/post,

with Dpre/post in [ps/nm]. In terrestrial links with long spans and purely linear compensating fibers, the nonlinear
phase cumulated by a signal of power P [mW] is from (2): ΦNL = NPγ/α, where γ [m−1 mW−1] is the nonlinear
coefficient of the transmission fiber.

Appendix B

Let u s now deal with the calculation of the integrals

U1(0) =
∞∫

−∞
Ũ1(ω)

dω

2π
and U

(2)
1 (0) = −

∞∫
−∞

ω2Ũ1(ω)
dω

2π

The pulse Fourier transform is a real even function:

Ũ0(ω) = √
2πT0e− ω2T 2

0
2 =

√
πd2

2
e− ω2d2

8 (B.1)

We now calculate the RP1 perturbation (3) as:

Ũ1(ω)
�=

∞∫∫
η̃(ω1ω2)Ũ0(ω)3G(ω,ω1,ω2)

dω1

2π

dω2

2π

−∞
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where we defined G(ω,ω1,ω2) � e− d2
4 (ω2

1+ω2
2+ω1ω2+2ω(ω1+ω2)). Therefore the sought integrals become

U1(0) =
∞∫∫

−∞
η̃(ω1ω2)

[ ∞∫
−∞

Ũ0(ω)3e− d2
2 (ω1+ω2)ω

dω

2π

]
︸ ︷︷ ︸

I0

e− d2
4 (ω2

1+ω2
2+ω1ω2)

dω1

2π

dω2

2π

U
(2)
1 (0) = −

∞∫∫
−∞

η̃(ω1ω2)

[ ∞∫
−∞

ω2Ũ0(ω)3e− d2
2 (ω1+ω2)ω

dω

2π

]
︸ ︷︷ ︸

I2

e− d2
4 (ω2

1+ω2
2+ω1ω2)

dω1

2π

dω2

2π

with

I0 =
(

πd2

2

) 3
2 1

d

√
2

3π
e

d2
6 (ω1+ω2)

2
and I2 =

(
πd2

2

) 3
2 4

3d3

√
2

3π

(
1 + d2

3
(ω1 + ω2)

2
)

e
d2
6 (ω1+ω2)

2

For long-span terrestrial systems, whose DM kernel is given in (5), the above integrals do not admit a closed form.
However, at small strengths we can approximate η̃1(w) = 1

1+j ST w
∼= e−j ST w . Since w plays the role of a squared

pulsation ω2, for the previous approximation to make sense we require that, over the main signal spectrum, obtained

from (B.1) as ±ω0 =
√

8
d2 , the above approximation holds, i.e. we require that ST ω2

0 � 1, i.e., ST � 0.125d2. With
such an approximation, the DM kernel becomes

η̃(w) ∼= 1

N

N−1∑
k=0

e−j (ξpre+ST +kξs )w

and thus integration yields the closed form expressions reported in (13).

Appendix C

In this appendix we derive the filters in (21).

C.1. Phase

Given the cosine component

m cos(ωmt) = m
ejωmt + e−jωmt

2

in the pump input amplitude modulation, we now look for the cosine component at frequency ωm in the XPM-induced
output phase. From (20) we have:

θXPM
r (t)

∣∣
@ωm

= −ΦNL Re
[
mej

ξtotω
2
m

2
[
Hp(ωm)ejωmt + Hp(−ωm)e−jωmt

]]
(C.1)

and if we let HAM-PM(ω) be the response of the amplitude-modulation to cross phase modulation (AM-PM) filter,
then the above must also be

θXPM
r (t)

∣∣
@ωm

= m

2

[
HAM-PM(ωm)ejωmt + HAM-PM(−ωm)e−jωmt

]
Hence we rewrite (C.1) as

θXPM
r (t)

∣∣
@ωm

= m

2
(−ΦNL)

[
ej

ξtotω
2
m

2
[
Hp(ωm)ejωmt + Hp(−ωm)e−jωmt

]
+ e−j

ξtotω
2
m

2
[
H ∗

p(ωm)e−jωmt + H ∗
p(−ωm)ejωmt

]]
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from which we recognize that

HAM-PM(ωm) = −ΦNL
[
ej

ξtotω
2
m

2 Hp(ωm) + e−j
ξtotω

2
m

2 H ∗
p(−ωm)

]
Now, for small modulation index m, the intensity of the input modulated signal is |Ar0(L, t)|2 ∼= 1 + 2m cos(ωmt), so
that the IM-PM filter, relating the input intensity modulation (IM) to the output cross-phase modulation, is half of the
above AM-PM filter. This leads to the first filter in (21).

C.2. Intensity

We now look for the cosine component at frequency ωm in the XPM-induced output RID. From (20) we get:

ΔIXPM
r (t)

∣∣
@ωm

= −1 + exp
{
2mΦNL Im

[
ej

ξtotω
2
m

2
[
Hp(ωm)ejωmt + Hp(−ωm)e−jωmt

]]}
∼= 2mΦNL Im

[
ej

ξtotω
2
m

2
[
Hp(ωm)ejωmt + Hp(−ωm)e−jωmt

]]
(C.2)

where in the second line we linearized the exponential assuming a small m. If we let HAM-IM(ω) be the response of
the AM-IM filter, then the above must also be

ΔIXPM
r (t)

∣∣
@ωm

= m

2

[
HAM-IM(ωm)ejωmt + HAM-IM(−ωm)e−jωmt

]
.

Hence we rewrite (C.2) as

ΔIXPM
r (t)

∣∣
@ωm

= m

2j
(2ΦNL)

[
ej

ξtotω
2
m

2
[
Hp(ωm)ejωmt + Hp(−ωm)e−jωmt

]
− e−j

ξtotω
2
m

2
[
H ∗

p(ωm)e−jωmt + H ∗
p(−ωm)ejωmt

]]
from which we recognize that

HAM-IM(ωm) = −j2ΦNL
[
ej

ξtotω
2
m

2 Hp(ωm) − e−j
ξtotω

2
m

2 H ∗
p(−ωm)

]
so that the IM-IM filter, relating the input intensity modulation to the output relative intensity distortion, is half of the
above AM-IM filter.
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