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Abstract

An original numerical modelling of Mode Stirred Reverberation Chamber used in Electromagnetic Compatibility is proposed.
This method relies on an analogy between a reverberation chamber and an enclosure whose walls’ conductivity is randomly
characterised. The distribution law of this parameter is obtained by measurements. Applying a stochastic collocation method
enables one to numerically assess electromagnetic field from a low number of empty cavity (without stirrer) simulations. Thus this
approach notably reduces CPU time allowing more complex simulations. To cite this article: P. Bonnet et al., C. R. Physique 10
(2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Simulation numérique d’une chambre réverbérante par une méthode de collocation stochastique. Cet article propose une
méthodologie originale pour la modélisation numérique de Chambres Réverbérantes à Brassage de Modes utilisées en Compatibi-
lité Electromagnétique. Cette approche repose sur une analogie entre une chambre réverbérante et une cavité dont les parois sont
caractérisées par une conductivité aléatoire. La loi de distribution de ce paramètre est établie à partir de mesures. L’application
d’une méthode de collocation stochastique permet alors de déterminer numériquement le champ électromagnétique grâce à un
faible nombre de simulation d’une cavité sans brasseur. Cette méthodologie conduit ainsi à une amélioration importante en temps
de calcul autorisant des simulations plus complexes. Pour citer cet article : P. Bonnet et al., C. R. Physique 10 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Reverberation Chambers (RC or MSRC for mode-stirred reverberation chambers) are efficient tools for Electro-
magnetic Compatibility (EMC) tests [1,2]. They usually provide a simple way to obtain good field uniformity using
an easy-to-build structure at reasonable cost. A reverberation chamber is generally a shielded enclosure with metallic
walls and one or several stirrers. The stirrer, usually in the form of a paddle wheel, varies the chamber’s boundary
conditions to provide a statistically uniform environment. For optimisation or better understanding of the behaviour of
a RC, numerical modelling by frequential [3,4] or temporal methods [5–8] is meeting growing interest. If one observes
suitable comparisons between theory and experimentation, these results nevertheless are obtained at high computing
costs. Indeed, reproducing experimental conditions requires to take into account the revolution of the stirrer. To ob-
tain an ideal stirring, stirrers need to be complex. Unfortunately, for most volumic temporal approaches like those
based upon classical Finite Difference or TLM methods, Cartesian spatial griding reveals as a major difficulty. This
problem may be handled by 3-D frequency techniques (discretisation in surfaces). Nevertheless, previous models are
more expensive in terms of CPU time and an accurate description of the stirrer will lead to impossible insertion of
equipment under test. Thus it may seem interesting to withdraw modelling of the stirrer without altering representa-
tiveness of electromagnetic fields inside the studied MSRC. In this way, accurate probabilistic methods may represent
an alternative to deterministic techniques. In this article, a probabilistic model is developed: the aim is to assimilate
a MSRC with a stirrer to an empty cavity for which the walls conductivity is randomly taken. The probability law of
this random variable will be established from measured results and a formalism is validated at high frequencies. This
conductivity model will then be integrated to solve Maxwell equations with a stochastic collocation method. The use
of such technique enables MSRC simulations with no stirrer, and furthermore real losses observed in MSRC may be
integrated directly in FDTD. This complete process shows that a low number of simulations without any stirrer may
reveals as efficient as a full deterministic description of MSRC in order to settle first order moments of electric field
generated in the working volume.

2. Probabilistic model for MSRC

MSRC enables one to generate an electromagnetic environment characterised by a field distribution considered as
statistically homogeneous and isotropic with random polarisation. In order to achieve EMC tests, it is necessary to do
measurements for N independent configurations. These environments correspond to the different boundary conditions
occurring inside the structure, for a given excitation frequency. When this number N , corresponding to stirrer steps,
tends to infinity, the properties of the internal electromagnetic field in the CRBM are identical whatever the point
considered inside the structure: every direction and every polarisation are equiprobable.

The unpredictable character of the polarisation and the statistical isotropy of the field are obtained in a MSCR
by producing unpredictable modifications of spatial distributions of the field. One of the most important parameters
charactering MSRC is its quality factor. At high frequencies, this parameter corresponds to the partial quality factor
concerning the losses by the Joule effect in the walls of the cavity. Moreover, at frequencies for which the internal
electromagnetic field is statistically uniform, we have [9]

Q = 3V

2Sδ
= ωε0|E0|2V

Ptrans
(1)

where V and S stand for the volume and the area of all the metallic surfaces of the MSRC, δ is the skin depth,
Ptrans represents the power transmitted to MSRC. Conductivity of walls is also linked, for a given frequency, to the
magnitude of total electric field |E0| generated inside working volume of MSRC by

σ = S2f

2916π21011|E0|4/P 2
trans

(2)

The conductivity is a deterministic physical parameter. For a fixed stirrer position, reverberation is a deterministic
process, its evolution in time (EMC test) is both repeatable and reproducible when initial conditions are kept from one
test to the other. In other words, when steps of stirrer and positions of equipment under test are set, measured results
must be equal (with slight differences due to uncertainties of measurement). In fact, the pseudo random characteristics
of data appear “inside” a test, considering each step of the stirrer like an electromagnetic environment; the whole space
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Fig. 1. PDF of the conductivity at 690 MHz in LASMEA MSRC.

distributions of the electromagnetic field are generated over a complete rotation of the stirrer. Ideally, for an infinite
number of steps of the stirrer, one experiment includes one process justifying the use of statistic methods. Nevertheless,
practically, the number of steps is finite; thus, experimental conditions do not fit with ideal characteristics. This is the
reason why theoretical methods must be developed in order to model in an efficient and realistic way a deterministic
EMC test. For a given frequency and for each step of the stirrer, boundary conditions of MSRC are modified; thus
the main assumption relies on “virtual” variation of the conductivity from one position of the stirrer to the other. This
last hypothesis suggests that all uncertainties (any uncontrolled physical phenomena in MSRC) are contained in this
parameter.

It is to be noticed that the probabilistic model proposed in this article does not aim to reproduce field’s behaviour
for each step of the stirrer, but to evaluate second order moments of electromagnetic quantities by a “simple” technique
(no requirement of “heavy” simulations of MSRC, for instance without stirrer).

From Eq. (2) and Hill’s results concerning |E0| [9], it can be established that the conductivity σ which varies with
frequency, follows a χ4

6 distribution and its probability density function (pdf), its mean and its standard deviation
being given by

Pσ (u) =
√

ue− 1
2

√
u/(bf s4)

32(bf s4)
3
2

1R
∗+(u) (3)

mσ = 48bf s4 (4)

sσ = 24
√

6bf s4 (5)

with

bf = S2f

8100πμ0c2P 2
t

and s is the standard deviation of the complex electric field components. In order to assess these results, many measure-
ments of the electric field were obtained in the LASMEA MSRC working volume (sizes: 8.40 m × 6.70 m × 3.50 m).
In the frequency range from 250 MHz to 1 GHz with a 10 MHz frequency step, |E0| was measured for 80 points and
51 positions of the stirrer. Consequently, from (2), 4080 values of conductivities are available for each frequency of
the study. Theoretical and experimental pdf match well as shown on Fig. 1 at 690 MHz (similar results are obtained
from 400 MHz and up to 1 GHz).
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3. Choice of the output

3.1. Coefficient of variation

From previous measurements, the aim is to numerically reproduce the experimental setup and to assess the mean
value of the electric field magnitude over a full revolution of the stirrer for a given number of points located inside
the working volume of the chamber. The output of interest is the coefficient of variation (CV) defined by the ratio
of standard deviation and mean of the total electric field magnitude. The advantage given by this parameter is that it
remains independent from the power transmitted to MSRC.

Moreover, contrary to experiments where only magnitude of field components may be obtained (with the help of a
triaxial sensor), it is possible to get real and imaginary parts of field numerically. In order to have at one’s disposal a
theoretical value for the coefficient of variation, the case of an empty chamber is considered.

It can be shown that the modulus |Êp| of every component Êp of the total electric field Ê follows a Rayleigh
distribution of order 2 with scaling factor whose coefficient of variation is given by

CV|Êp | =
s
e|Êp |

√
2 − π/2

s
m|Êp |

√
π/2

≈ 0.5227 (6)

where s
e|Êp | and s

m|Êp | are two coefficients > 0 ideally equal [10].

It can also be shown that the magnitude ‖Ê‖ of the total electric field Ê follows a Rayleigh distribution of order 6
with scaling factor whose coefficient of variation is given by

CV‖Ê‖ =
s
e‖Ê‖

√
6 − 225π/128

s
m‖Ê‖15

√
2π/16

≈ 0.294 (7)

where s
e‖Ê‖ and s

m‖Ê‖ are also two strictly positive coefficients ideally equal [10].
Obviously, the coefficient of variation of the electric field in a real MSRC is different from that generated inside

an ideal chamber (presence of various losses due to the frame and uncertainties in measurements). These losses and
uncertainties will have an impact on the scaling factor of the coefficient of variation.

3.2. Application to LASMEA MSRC

From previous measurements, the coefficient of variation of LASMEA MSRC was obtained from 80 sensors
equally distributed inside the working volume. Since each value of the electric field magnitude may be related to
one value of the conductivity from (2), the inner electric field may be established numerically to simulate a lossy
cavity without stirrer. From the large number of numerical methods available to handle the problem, a combination of
FDTD technique and a Surface impedance Boundary Condition (SIBC) [11] modelling (insertion of conductivities)
has been chosen. Results given on Fig. 2 show a comparison between coefficient of variation at 620 MHz obtained
respectively from: (i) measurements; (ii) numerical results simulated for 51 conductivities (linked to 51 positions of
the stirrer) coming from measured |E0| at one point and (2); and (iii) simulations achieved for 4080 available values
of conductivity.

Results given by 51 and 4080 simulations (those requiring important CPU time) are close to the approached theo-
retical value. However, this methodology does not take into account the law of probability of conductivity, which is
the reason why the study is orientated towards a probabilistic approach for more realistic and efficient simulations.

4. Simulation of MSRC by a stochastic collocation method

The use of Monte Carlo type methods for the simulation of a cavity with walls having a random conductivity is
also possible. However, this method being easy to implement, and making use of possible deterministic codes, exhibits
very slow rates of convergence (∼ N−1/2, if N is the number of simulated realisations). This is why, over the last few
years, other numerical methods have appeared, among which, the stochastic collocation method [12].
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Fig. 2. Coefficient of variation for 80 points into the working volume.

When applied to Maxwell’s equations, this enables a direct computation of the statistics of the electric field and the
magnetic field in the cavity. Moreover, a limited number of collocation points – and thus simulations – is sufficient to
get the convergence of results.

4.1. Resolution of Maxwell’s equations by a stochastic collocation method

For every point (x, y, z) of an homogeneous and isotropic domain, and at any time t , Maxwell’s linear equations
can be written:⎧⎪⎨

⎪⎩
ε
∂E
∂t

− ∇ × H + σE = 0

μ
∂H
∂t

+ ∇ × E = 0
(8)

where σ is the previously defined random variable, which follows a χ4
6 probability distribution with parameters given

by Eq. (3).
The electric fields and the magnetic fields are functions of this random variable and they are denoted, respectively,

by E(t;x, y, z;σ) and H(t;x, y, z;σ). Here, the values of interest are the second order statistics of the electric field
E(t;x, y, z;σ), and more specifically of its spectral dual Ê(f ;x, y, z;σ). The idea is to approximate the stochastic
fields E(t;x, y, z;σ) and H(t;x, y, z;σ) by projecting them onto a Lagrange basis, i.e.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E(t;x, y, z;σ) �
n∑

i=0

Ei (t;x, y, z)Li(σ )

H(t;x, y, z;σ) �
n∑

i=0

Hi (t;x, y, z)Li(σ )

(9)

where n � 0 is a given integer number and, Li (0 � i � n), are Lagrange polynomials of degree n defined by

Li(u) =
n∏

j=0

u − σj

σi − σj

(10)

where σj , 0 � j � n, are the collocation points associated with the probability density function (pdf) of σ .
These polynomials possess the important property

∀(i, j) ∈ {0, . . . , n}2, Li(σj ) = δij (11)
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where δij is the Kronecker delta.
The n+1 points σj (0 � j � n), are obtained from the pdf of σ [12]. For reason of simplicity, the n-approximations

(En,Hn) of the fields (E,H), such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

En(t;x, y, z;σ) =
n∑

i=0

Ei (t;x, y, z)Li(σ )

Hn(t;x, y, z;σ) =
n∑

i=0

Hi (t;x, y, z)Li(σ )

(12)

are denoted by (E,H) again in the following. The unknowns of the problem are the n + 1 couples (Ei (t;x, y, z),

Hi (t;x, y, z)) (0 � i � n), denoted by (Ei ,Hi ).
Setting En = E and Hn = H into the relation (12) and inserting these relations into Eq. (8), we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑
i=0

(
ε
∂Ei

∂t
− ∇ × Hi + σEi

)
Li(σ ) = 0

n∑
i=0

(
μ

∂Hi

∂t
+ ∇ × Ei

)
Li(σ ) = 0

(13)

Taking σ = σj in the above equations and using (11), we get (for 0 � j � n)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑
i=0

(
ε
∂Ei

∂t
− ∇ × Hi + σj Ei

)
δij = 0

n∑
i=0

(
μ

∂Hi

∂t
+ ∇ × Ei

)
δij = 0

(14)

and therefore
⎧⎪⎪⎨
⎪⎪⎩

ε
∂Ei

∂t
− ∇ × Hi + σiEi = 0

μ
∂Hi

∂t
+ ∇ × Ei = 0

(15)

with 0 � i � n.
We are now led to solve n + 1 deterministic problems, for which efficient numerical methods exist. The same

previous SIBC-type methods used for deterministic FDTD simulations was employed.
Once these equations have been solved, the n+1 functions (Ei (t;x, y, z),Hi (t;x, y, z)), 0 � i � n, are known and

the approximate stochastic solution (En,Hn) given by Eq. (12) is entirely specified. Then, after a Fourier transform,
we obtain its dual spectral (Ên, Ĥn) such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ên(f ;x, y, z;σ) =
n∑

i=0

Êi (f ;x, y, z)Li(σ )

Ĥn(f ;x, y, z;σ) =
n∑

i=0

Ĥi (f ;x, y, z)Li(σ )

(16)

where Êi and Ĥi denote the Fourier transforms of Ei and Hi , respectively. The couple (Ên, Ĥn) is an n-approximation
of the dual spectral (Ê, Ĥ) of the exact solution (E,H) of Eq. (8). It is denoted by (Ê, Ĥ) in the following.
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4.2. Computation of statistics of the stochastic field

4.2.1. Computation of the mean
By definition, the mean of the random field Ê is given by

mÊ(f ; r) =
∫
R

Ê(f ; r;u)Pσ (u)du (17)

where r denotes the triplet (x, y, z).
Using Eq. (16), this mean is approximated by

mÊ(f ; r) � mÊn
(f ; r) =

∫
R

Ên(f ; r;u)Pσ (u)du

=
n∑

i=0

Êi (f ; r)Ii (18)

where

Ii =
+∞∫
0

√
ue− 1

2

√
u/(bf s4)

32(bf s4)
3
2

Li(u)du (19)

The above integral is evaluated using Gauss–Laguerre quadrature rule to obtain

Ii =
m∑

j=0

ψjLi(σj ) (20)

with

ψj = 1

2


(m + 3)uj

m!(m + 1)2[L2
m+1(uj )]2

, uj = σ
1/2
j

2s2b
1/2
f

(21)

and where in practice m = n.
The points σj , 0 � j � n, are the collocation points associated with the pdf of σ , 
 is the Gamma function and

Lm+1 is the (m + 1) order Laguerre polynomial.
Using the property (11) of Lagrange polynomials, we get Ii = ψi and the n-approximation (18) of the mean takes

the form

mÊn
(f ; r) =

n∑
i=0

ψiÊi (f ; r) (22)

4.2.2. Approximation of the covariance matrix
By definition, the covariance matrix of the field Ê is given by

CÊ(f, r) =
∫
R

Ê(f ; r;u)Ê∗(f ; r;u)Pσ (u)du − mÊ(f ; r)m∗
Ê
(f ; r) (23)

where ∗ is the symbol of the transpose conjugate.
Using (16) and (18) this matrix is approximated by

CÊ(f, r) � CÊn
(f, r) =

∫
R

Ên(f ; r;u)Ê∗
n(f ; r;u)Pσ (u)du − mÊn

(f ; r)m∗
Ên

(f ; r)

=
n∑ n∑

Êi (f ; r)
(
Êj (f ; r)

)∗
Iij − mÊn

(f ; r)m∗
Ên

(f ; r) (24)

i=0 j=0
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where mÊn
(f ; r) is given by Eq. (18) and Iij by

Iij =
+∞∫
0

√
ue− 1

2

√
u/bf s4

32(bf s4)
3
2

Li(u)Lj (u)du (25)

Similarly, this integral can be evaluated using Gauss–Laguerre quadrature rule and we get

Iij =
m∑

q=0

ψqδiqδjq (26)

where ψq is given by Eq. (21). Taking m = n and inserting Eq. (26) into Eq. (24) we finally obtain the following
n-approximation of the covariance matrix:

CÊn
(f, r) =

n∑
i=0

ψiÊi (f ; r)
(
Êi (f ; r)

)∗ − mÊn
(f ; r)m∗

Ên
(f ; r) (27)

5. Application to LASMEA MSRC

5.1. Computation of the collocation points and convergence

The collocation points must be computed for every frequency because they depend on the scaling factor of the
conductivity pdf which depends on the frequency (19). Fig. 3 shows the evolution of the conductivities as a function
of the frequency for 4 points of collocation. For n = 4, the weights ψi (they are independent on the frequency) are
given in Table 1.

Fig. 3. Frequential evolution of conductivities for 4 collocation points and the corresponding weighted mean.

Table 1
Weights of the collocation points for n = 4.

Conductivity Weights

σ1 0.36
σ2 0.53
σ3 0.10
σ4 2.18 × 103
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Fig. 4. Numerical coefficient of variation according to the number of collocation points used.

Fig. 5. Comparison between experimental and numerical CV of the modulus of the total electric field for 80 points into the working volume.

Note that only 4 points of collocation have been used for the computations, this being sufficient to get the conver-
gence of results (see Fig. 4).

5.2. Simulation results

Fig. 5 shows that the CV of the modulus of Ê is well approximated with only four deterministic computations. We
can see that numerical results get closer to experimental results as the frequency increases, since Hill’s hypothesis are
better satisfied at high frequency. The CV may show fast variations since a small variation on the mean or the variance
of the field can have a dramatic impact on that value. This explains the differences between experimental results and
the results obtained by collocation. Moreover, the mean and the variance of the conductivity used to compute the
collocation points have been obtained from experimental measures and by application of the ergodicity principle.
This assumes that the parameters of the probability law are identical at any point of the working volume, which is not
always true. However, the stochastic collocation gives better results than those obtained with 51 or 4080 values of the
Monte Carlo simulation (see Fig. 2).

Finally, with the stochastic collocation method, we were able to compute the CV with only 4 simulations of the
empty MSRC when standard techniques would have required 51 simulations of the MSRC with a stirrer.
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Table 2
Comparison between experimental and numerical estimates of mcv and σ 2

cv for f = 400 MHz.

400 MHz Experimental (80 points) Collocation (80 points)

m̃cv 0.3572 0.3185

Iβ for β = 90% 0.3510–0.3634 0.3124–0.3245
Iβ for β = 95% 0.3498–0.3646 0.3113–0.3257
Iβ for β = 99% 0.3475–0.3669 0.3090–0.3279

σ̃ 2
cv 0.0336 0.0329

Iβ for β = 90% 0.02959–0.03843 0.02897–0.03763
Iβ for β = 95% 0.02892–0.0395 0.02832–0.03868
Iβ for β = 99% 0.02769–0.04175 0.02711–0.04088

5.3. Confidence interval of the CV of the electric field modulus

In order to quantify more precisely the differences between the two CVs (experimental and collocation) we use the
confidence intervals of the mean and the variance for 80 points.

Let 0 � β � 1 be a real number close to 1 and let ã be a point estimate of an unknown real parameter a. The
confidence interval of a at the confidence level β is defined as the interval Iβ of R such that the probability that Iβ

contains a is equal to β i.e. P(Iβ � a) = β . This interval is of the form: Iβ = [ã − ε, ã + ε], where ε is a real number
such that P(|a − ã| < ε) = β .

Here two parameters are considered: the mean mcv and the variance σ 2
cv of the coefficient of variation of the

modulus of the total electric field. For n sufficiently large, the confidence intervals at the confidence level β of these
parameters can be approximated by

• for mcv

Iβ
∼=

[
m̃cv − tβ

σ̃cv√
n
, m̃cv + tβ

σ̃cv√
n

]
(28)

• for σ 2
cv

Iβ
∼=

[
σ̃ 2

cv − tβ

√
2

n − 1
σ̃ 2

cv, σ̃
2
cv + tβ

√
2

n − 1
σ̃ 2

cv

]
(29)

where m̃cv and σ̃ 2
cv are the values of mcv and σ 2

cv estimated from the n-sample of the CV and tβ is given by

tβ = Φ−1
(

1 + β

2

)
(30)

where Φ is the standard Gaussian distribution function defined by

Φ(x) = 1√
2π

x∫
−∞

exp

(−u2

2

)
du, x ∈ R (31)

These confidence intervals have been computed for the experimental and numerical (collocation) estimates of mcv

and σ 2
cv and for two frequencies (f = 400 MHz, f = 620 MHz) and three values of β (0.90; 0.95; 0.99). The obtained

results are shown in Tables 2 and 3. It can be seen that:

• for f = 400 MHz, the confidence intervals of the numerical and experimental estimates of mcv do not overlap
since the corresponding confidence intervals for σ 2

cv overlap;
• for f = 620 MHz, these confidence intervals overlap in any case (i.e. for the three values of β) for mcv and

overlap only in the case β = 0.99 for σ 2
cv.
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Table 3
Comparisons between experimental and numerical estimates of mcv and σ 2

cv for f = 620 MHz.

620 MHz Experimental (80 points) Collocation (80 points)

m̃cv 0.3271 0.3405

Iβ for β = 90% 0.3205–0.3339 0.3312–0.3498
Iβ for β = 95% 0.3192–0.33517 0.3294–0.35156
Iβ for β = 99% 0.3167–0.33767 0.32596–0.35504

σ̃ 2
cv 0.0364 0.0505

Iβ for β = 90% 0.03205–0.04163 0.0445–0.058
Iβ for β = 95% 0.03133–0.04279 0.04346–0.05937
Iβ for β = 99% 0.03–0.04523 0.04161–0.0627

These results confirm the effectiveness of the collocation method especially for high frequencies. One can imagine
using this approach for more complex MSRC simulations and in particular when an equipment under test is present
in the working volume.

6. Conclusion

In this article, we have presented a new method for the estimation of statistical parameters of the electromagnetic
field. We have proposed a probabilistic model of the MSRC based on an analogy between a rotating mode stirrer
and the conductivity of the walls of the MSRC. The stochastic collocation method makes possible a simulation of
the MSRC without stirrer and a direct introduction of losses in the resolution of Maxwell’s equations using FDTD or
other numerical methods. Results are obtained with a limited number of conductivity values and therefore a limited
number of simulations of the empty cavity. Comparison with experimental measures shows that this method is valid
in the optimal working range of the MSRC.
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