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Abstract

Like electromagnetic topology, the equivalent electric circuit theory can be transposed to solve large electromagnetic systems.
Compared to measures into a cavity, an analogy with coupled circuits will be made. Kron’s formalism has been chosen to describe
the system of equations. We will use a hyper matrix impedance with sub-matrix describing some interactions of the system. The
inverse of the impedance matrix will give us scattering parameters S21 between a transmitting and a receiving antenna installed in
the cavity. Next, a second receiver will be added outside the cavity.

The aim of this article is to show the interest of Kron’s method applied to complex systems, in which many of physical phenom-
ena are involved. To cite this article: S. Leman et al., C. R. Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Utilisation de la théorie des circuits pour la CEM des grands systèmes. Au même titre que la topologie électromagnétique,
la théorie des circuits électriques peut être transposée pour la résolution de problèmes électromagnétiques complexes. En prenant
pour base des expériences réalisées sur une cavité, nous allons procéder à une analogie avec des circuits couplés. Puis, à l’aide
du formalisme de Kron, nous décrirons une super matrice impédance dans laquelle figurerons des sous-matrices révélatrices des
différents couplages mis en jeu. L’inversion de cette matrice mènera finalement à la détermination du coefficient de transfert S21
liant un monopole émetteur et un premier monopole récepteur installé dans cette cavité. Un second monopole récepteur sera ensuite
mis en place à l’extérieur de la cavité.

L’objectif de cet article, est de mettre en évidence l’intérêt de la méthode de Kron appliquée à des systèmes complexes, c’est-
à-dire, faisant intervenir de nombreux phénomènes physiques de différentes natures. Pour citer cet article : S. Leman et al., C. R.
Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

More and more EMC engineers are concerned with the prediction of the disturbances occurring in various circuits
of large electronic systems. A car or an aircraft affected by electromagnetic interference due to a radar beam or
lightning are two typical examples where the determination of the current or voltage appearing at certain sensitive
places of the circuit provides interesting guide lines about the characterization of EMC protection, such as the use of
a filter, shield or ground connection topology. Such work may be achieved in several ways; the theoretical prediction
by means of a full wave tool seems the most attractive. However, it requires a lot of computation time and memory
storage, which are often incompatible when a few geometrical parameters or other parameters must be changed in
order to know the variation gap in terms of EMC constraints probability.

For this reason, some alternative approaches avoiding computation steps with a full wave model were explored,
such as the topology due to C. Baum [1] in 1980, tested and improved by J.P. Parmentier [2] ten years later, and more
recently, the use of circuit assembly as proposed by O. Maurice [3]. This article is devoted to the last technique, where
the various electromagnetic couplings provided in a large system will be reduced to the interaction between many
equivalent circuits with the combination of inductance, capacitance and resistance joined with emf RF depending on
the electromagnetic interference context. The main advantage of this methodology is for solving the circuit theory
with the concepts of mesh and branch currents established by G. Kron [4,5] and leads to the construction of a hyper
matrix impedance. Using the appropriate scale factor, each element of this matrix may be related to the electromag-
netic coupling involved in a large system. From the computation of the inverse form of this matrix, the amplitude of
disturbance in various location of the large system may be known. This tool allows one to keep the physical aspect of
EM interactions in opposition to a classical 3D approach.

Section 2 of the paper gives a brief description of the system under consideration, which consists in the arrangement
of monopoles coupled inside and outside a cavity. The aim of this test setup is to produce resonance in the cavity and
combine with induction on short and long monopoles with respect to the wavelength.

Section 3 consists in the system description by means of a topological diagram as considered by the previous
authors. From the graph facility we can deduce the ways of the main electromagnetic coupling which determine
specified blocks in the equivalent circuit assembly.

After a short description of Kron’s method in Section 4, Section 5 deals with the construction of the diagonal
element attached to the hyper matrix impedance, neglecting electromagnetic coupling. This section is mainly focused
on the conversion of the eigen modes appearing in the flat rectangular shaped cavity into RLC circuit resonators.

Section 6 is related to the final filling of the hyper matrix by the coefficient and sub-matrices involving the electro-
magnetic coupling.

In Sections 7 and 8, we will propose a comparison between experiments and simulations performed as described
above and some conclusions will be added about the expected application of this method on an industrial scale.

2. System under consideration

Fig. 1 shows a short description of the system to be solved with the so-called circuit approach. It consists of two
short monopole antennas coupled inside a rectangular shaped cavity. Monopole 1 is connected to an RF source, while
the short monopole 2, used as a receiving antenna, forms directly a junction with a long monopole coming out of the
cavity. A similar monopole placed at distance d12 of about 9 cm from the previous one will be connected to a receiver
as a network analyzer. We can mention that the height h of the short monopole inside the cavity will be chosen very
small with respect to the wavelength (h � λ); then the length of the monopoles 2 and 3 outside are h2 = h3 = 19 cm
in order to reach the resonance condition of these wires.

The height c of the box will be very small compared to the wavelength explored in order to behave like a 2D
cavity. To study theory and measurements within the frequency range 100 MHz to 2 GHz, we suggest using the
following dimensions a = 42 cm, b = 28 cm and c = 3.8 cm for this cavity. According to the Cartesian axis Oxyz

in Fig. 1, we can notice that the exact locations of the monopoles inside the cavity expressed in centimeters will be
(x0, y0) = (21;14) for monopole 1, (x, y) = (21;21) for monopole 2 and (x, y) = (21;30) for monopole 3.

The next step will be devoted to the characterization of the S21 parameter relevant to the electromagnetic coupling
throughout monopole 1 and 3, especially to detecting the combination of resonance phenomena occurring inside the
cavity and at the level of the monopole 2 coming out of the cavity, with monopole 3 used as a receiving wire. General
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Fig. 1. Description of the test setup.

theory of the empty rectangular shaped cavity shows that the eigen modes occur with frequencies fmnp given by the
following formula:

fmnp = v
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According to the dimensions mentioned a, b, c, the first eigen mode of this cavity will be given for n = 0,m = 0 and
p = 1, which corresponds to a frequency of 3.95 GHz.

f0,0,1 = v

2

√(
1

c

)2

= 3.95 GHz (2)

As suggested above, the depth c of the cavity is very small compared to the wavelength in order to give it a 2D
behavior with frequencies just below 3.95 GHz. For this reason the maximum value of the frequency explored will be
2 GHz in order to consider only the contribution of degenerated modes forcing the parameter p to zero.

3. Sub-network arrangement of the problem

The preliminary work will be to produce a topological graph of the system to extract the arrangement of several
sub-networks which may be easier to convert into electrical circuits for the final use.

From the electromagnetic coupling point of view, we can recognize five sub-networks with the following encoded
topological volumes. The transmitting short monopole 1 inside the cavity corresponds to the volume V3,1, while the
empty cavity itself will be noted by the volume V3,2. Part of the receiving monopole 2 inside the cavity consists of
the volume V3,3, then the outer part of this monopole forms the volume V3,4. At this level of topological description,
we find the monopole 3 connected to the receiver, which forms the volume V3,5. Consequently, a brief analysis of the
topological graph in Fig. 2 from bottom to top shows that the link between V3,1, V3,2 and V3,3 leads to the volume
V2,1 which includes the coupling phenomena within the cavity, and the link between V3,4 and V3,5 is related to the
coupling outside the cavity noted volume V2,2. Finally, joining the previous volumes V2,1 and V2,2 links all coupling
of the large system attached with the topological volume V1,1.

The aim of the proposed approach will be to reduce each sub-network to a circuit composed of the arrangement
of inductance, capacitance, resistance with voltage or current source; each is specified by the type of electromagnetic
coupling occurring in layer 3 of the topological diagram. Thus Fig. 3 shows one example of conversion in terms of
equivalent electrical circuits. This representation has been chosen for testing the efficiency of equivalent electrical
model of cavities.

According to Kron’s methodology, it requires the combination of “mesh” network and “branch” network. Thus
the diagram on the left corresponds to the mesh network involving the emf e and inner 50� resistance R0 of the RF
source connected at monopole 1 and forming the previously mentioned volume V3,1. Just on the right, we find amount
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Fig. 2. Topology diagram of the test setup.

of R,L,C resonators to convert the empty cavity attached to the volume V3,2 into circuit elements. Details about the
constitution of these elements will be brought in Eqs. (5)–(9). Volume V3,3, related to the monopole 2, especially its
short part placed inside the cavity is assumed to be a simple mesh network with the resistance R2 which corresponds
to the 50� termination between this wire and the bottom face of the cavity. Volume V3,4 attached to the upper part of
monopole 2 outside the cavity is focused towards a mesh network including inner impedance Zant22 of this monopole
and 50� termination. We can notice that when the wavelength becomes short with respect to this monopole, the
value of Zant22 may change strongly with frequency. As previously mentioned, volume V3,5 attached with the long
monopole 3 is related to the mesh network where Zant3 and R3 correspond to its inner impedance and the 50� load
input impedance of the receiver, respectively.

Fig. 3. Circuit diagram of the test setup.

Various links between the topological volumes in layer 3 are established by the parameters of Fig. 3 related to
the coupling phenomena. Coefficients N21 and N32 are defined by two matrices involving the field pattern through
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the Oxy plane of the cavity; details about these will be given afterwards. Direct coupling between the transmitting
monopole 1 and short part of monopole 2 is summarized by jωM31 which is similar to induced voltages at both
sides of volume V3,1 and V3,3. Since the distance between these short antennas may be similar to the wavelength,
M31 depends on the frequency; to avoid any numerical computation, this coefficient will be directly deduced from
measurements carried out with a network analyzer. Furthermore, according to the fact that the height of monopole 1
and short part of monopole 2 are smaller than the wavelength, they behave like small capacitances Cant1 and Cant21.
For convenience sake, we can notice in Fig. 3 that they are placed at both sides of each R,L,C resonator. The link
between volumes V3,3 and V3,4 needs the continuation of the current when the wire of monopole 2 is crossing the upper
side of the cavity, then volumes V3,4 and V3,5 are connected by means of ZCE mutual impedance. As previously, this
parameter is provided from measurements; additional details about the coupling throughout the topological volumes
will be brought in Section 5 of the paper.

4. Solving the problem with the circuit approach by means of Kron’s methodology

According to the diagram in Fig. 3 each part of the circuit may be characterized in terms of mesh current with
attached contravariant tensor J i and branch current with attached contravariant tensor I i . The relationship between
mesh current and branch current is given by the condition involved at each node of the circuit and contained in vector.
In a similar way, the various voltage sources installed on the branches of these circuits are related to a covariant vector
Ei which forms an emf vector. From the topology of the circuit like the diagram in Fig. 3, we can find a relation
between the emf vector and the mesh current vector:

[E] = [Z][J ] (3)

As a general rule, the mesh current vector is unknown; then after construction of the matrix [Z] taking into account
the circuit topology in Fig. 3, we can deduce from the inverse product the [J ] vector and consequently the response at
various points of the circuit.

From the theoretical point of view, the main restriction of Kron’s method deals with propagation phenomena which
require that the circuit must be formed with lumped elements.

The next section of the paper will be devoted, step by step, to the determination of each parameter of matrix [Z],
the so-called hyper matrix impedance of the large system.

5. Construction of the hyper matrix [Z] without the electromagnetic coupling

From the diagram in Fig. 3, we can deduce a preliminary arrangement of the hyper matrix neglecting electromag-
netic interaction, as shown in Eq. (4): it consists of a diagonal with parameters composed of sub-matrix [Zk] related to
the corresponding volume in layer 3 of the topological diagram in Fig. 2. The determination of these sub-coefficients
is given simply according to Kron’s method exposed in previous section.

E =

⎡
⎢⎢⎢⎢⎣

[E1]
[E2]
[E3]
[E4]
[E5]

⎤
⎥⎥⎥⎥⎦ , Z =

⎡
⎢⎢⎢⎣

[Z1] [0] [0] [0] [0]
[0] [Z2] [0] [0] [0]
[0] [0] [Z3] [0] [0]
[0] [0] [0] [Z4] [0]
[0] [0] [0] [0] [Z5]

⎤
⎥⎥⎥⎦ (4)

Thus the matrix [Z1] is reduced to the scalar R0, while according to the relationship between the mesh current in V3,3,
the matrix [Z3] given by Eq. (5) may be established since the branches of this circuits do not include emf sources.
This shows that the right-hand side of the equation is cancelled.

J 14R2 − J 15R2 = 0

−J 14R2 + J 15R2 = 0 (5)

Consequently, the size in matrix [Z3] is given by the number of mesh involved in volume V3,3, while the subscripts
of the mesh current vector are encoded in respect of the size of matrix [Z1] and [Z2] respectively. From these rules,
matrix [Z4] and [Z5] will be found in a similar way:
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Z1 = [R0], Z3 =
[

R2 −R2
−R2 R2

]
Z4 = [Zant22], Z5 = [R3 + Zant3] (6)

Extending this approach to the determination of the sub-matrix [Z2] related to an N resonator arrangement requires
a recall of the electromagnetic theory of cavities. As shown in a recent work published by M. Cauterman [6,7], the
electromagnetic response of a 2D cavity excited by a line source may be easily simulated by the arrangement of
R,L,C resonators. We recall that a 2D cavity consists of an infinite long tube with uniform cross section. When it
has a rectangular shape, the 2D is similar to the usual infinitely long wave guide; as briefly shown hereafter, a 3D flat
rectangular cavity working below its first eigen mode behaves like a 2D model.

As a general rule, a 3D cavity may be solved from the Helmholtz equation (7), where Ez deals with the electric
field component collinear to the z axis parallel to the small dimension c of the rectangular box as described in Fig. 1.
The right side of this equation includes the Dirac function, which is related to the transmitting antenna placed inside
the cavity. Assuming this antenna to be similar to a Hertzian dipole, the right term is cancelled except at the location
of the antenna.[

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
+ k2

]
EZ = jωμI0δ(r − r ′) (7)

In a standard way, Eq. (7) may be solved and lead to Eq. (8) where the values assigned with the coefficients
ε0m, ε0n, ε0p are selected in respect of the mode configurations [8].

�Ez(x, y, z) = ε0n.ε0m.ε0pjωμ0I0hant
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As recalled in Eq. (2) the first eigen mode of the 3D cavity is given by the minimum value of the frequency fmnp
where transverse magnetic components Hx and Hy and electric components Ex and Ey do not vanish for the TE
modes and TM modes, respectively. According to the dimensions specified in Section 2 this occurs for p = 1,m = 0
and n = 0, which correspond to the frequency of 3.95 GHz. Otherwise especially for p = 0, the mode configurations
leading to the value of fmnp below 3.95 MHz are similar to those found for a 2D rectangular shaped cavity. Then Ez

electric field component attached with the TM mode behaves like the restricted form of Eq. (8):

EZ = 4jωμ0I0hant

abc

∞∑
m=1

∞∑
n=1

sin(mπx0/a) sin(mπx/a) sin(nπy0/b) sin(nπy/b)

k2 − (mπ/a)2 − (nπ/b)2
(9)

To match Eq. (9) with the circuit concept, a scale factor α will be considered to transform Ez electric field amplitude
into voltage amplitude V. For this reason Eq. (9) can be rewritten as in Eq. (10):

V = αEz → V =
∞∑

n=1

∞∑
m=1

NmnN
′
mnjLmnω

1 − ω2/ω2
mn

I0 (10)

In Eq. (10) appears the parameter Nmn related to the coupling between the monopole 1 and the 2D TMmn according
to Eq. (11) involving the sinusoidal function at the numerator of Eq. (9); in the same way, we deduce N ′

mn related to
the coupling between TMmn and the Ez component acting on the short part of monopole 2 inside the cavity:

Nmn = sin

(
m

πx0
)

sin

(
n
πy0

)
, N ′

mn = sin

(
m

πx
)

sin

(
n
πy

)
(11)
a b a b
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In Eq. (11), we find the angular frequency ωmn attached to a and b, the dimensions of the box:

ωmn = 2πfmn with fmn = v

2

√(
m

a

)2

+
(

n

b

)2

(12)

Another parameter found in the voltage equation (10) deals with the inductance Lmn attached with TMmn it may be
deduced by equalizing Ez from Eqs. (9) and (10). Furthermore, the use of the resonator circuit as shown in diagram
of Fig. 3 involves the capacitance Cmn which may be easily deduced from the well known relationship between ωmn

and its corresponding inductance and capacitance:

Lmn = 4μ0hant1α

abck2
mn

with ωmn = 1√
LmnCmn

→ Cmn = ε0
abc

4hant1α
(13)

The previous computation assumed a perfect empty cavity without losses, in order to take into account the dissi-
pated thermal power in the walls of the box with high electric conductivity σ . Eq. (10) may be somewhat changed
with the insertion of the Q factor attached to the TMmn mode as follow:

V =
∞∑

n=1

∞∑
m=1

NmnN
′
mnjLmnω

1 − (ω2/ω2
mn)(1 − j/Qmn)

I0 with Qmn = RmnCmnω (14)

In Eq. (14) the value of the Q factor may be deduced from the 3D model with p = 0 according to Eq. (15) below,
where the skin depth δ in the high conductive material appears. We can notice that the losses in the system depicted
in Fig. 1 are mainly due to the thermal effect in the 50� termination of monopole 2 and the inner resistance of the RF
source.

Qmn = ηabck0mn(k
2
x + k2

y)

2Rw[b(a + c)k2
x + a(b + c)k2

y]

kx = mπ

a
, ky = nπ

b
, kmn =

√
k2
x + k2

y, Rw = 1

σδ
(15)

Computation of these formulas for the 2D lower resonance frequency leads to the following values for the first res-
onator appearing in Fig. 3.

f1,1,0 = 646 MHz, L11 = 0.93 nH, Cmn = 65.5 pF, R11 = 47 k�, N11 = 1, N ′
11 = 0.705 (16)

Usually the resonator attached with the 2D TMmn mode may be presented with the diagram in Fig. 4 and its branch
current noted I k where the top subscript k is related to the kth branch of the circuit. In Fig. 4 we consider the
contribution of five branches with 3, 4 and 5 corresponding to the resistance Rmn, inductance Lmn and capacitance
Cmn related to TMmn. At both sides of this circuit the coupled capacitance with monopoles 1 and 2 have been added
on each resonator, they are concerned by branch currents I 2 and I 6.

Fig. 4. Branch currents and mesh currents attached to one RLC resonator.

For convenience’s sake the diagram in Fig. 4 may be transformed into a product of matrix involving the voltage
vector [Vmn], the branch current vector [Imn] and the branch impedance matrix [Zmn] as written below:

[Vmn] = [Zmn][Imn] (17)



S. Leman et al. / C. R. Physique 10 (2009) 70–82 77
Details about the full diagonal impedance matrix expressed in terms of branch currents for each resonator are given
in Eq. (18).

Zmn =

⎡
⎢⎢⎢⎢⎣

1
jωCant1

0 0 0 0
0 Rmn 0 0 0
0 0 jωLmn 0 0
0 0 0 1

jωCmn
0

0 0 0 0 1
jωCant21

⎤
⎥⎥⎥⎥⎦ (18)

We can mention that the value of the capacitances related to monopole 1 and the short part of monopole 2 inside
the box are deduced from the usual analytical formula in Eq. (19), the heights h1 and h2 of these short antennas are 1
cm and 2 cm respectively, while the wires diameters are about d = 1.5 mm each.

Cant = 2πε0

ln(4h/d)
h, Cant1 = 0.18 pF, Cant21 = 0.28 pF (19)

However, to include this matrix in the above Eq. (3), one additional computation is required in order to change the
branch current into mesh current by means of the commutation matrix [L] as found in Eq. (20).

I 2 = J 2 + 0J 3 + 0J 4 + 0J 5,

I 3 = J 2 − J 3 + 0J 4 + 0J 5,

I 4 = 0J 2 + J 3 − J 4 + 0J 5,

I 5 = 0J 2 + 0J 3 + J 4 − J 5,

I 6 = 0J 2 + 0J 3 + 0J 4 + 1J 5,

L =

⎡
⎢⎢⎢⎣

1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎥⎦ (20)

Consequently each coefficient of the matrix in the mesh configuration may be written by using Einstein notation:

Z′
nbβ

= La
bZnacL

c
β; a, b, c,β = 1,2, . . . , r (21)

According to the fact that the number of resonators considered with the diagram in Fig. 3 depends of the location of
the 3D first eigen mode in respect of the first 2D resonance frequency, the sums in Eqs. (10) and (14) will be restricted
to N modes appearing within this frequency range. Then matrix [Z2] in Eq. (3) can be written according to the full
diagonal form of size N :

Z2 =
⎡
⎢⎣

[Z′
1] 0 0 0

0 [Z′
2] 0 . . .

0 0 . . . 0
0 ... 0 [Z′

i]

⎤
⎥⎦ (22)

Each element of matrix [Z2] may be easily deduced from Eq. (22) and filled as shown in Eq. (23).

Z′
i =

⎡
⎢⎢⎢⎣

1
jωCant1

+ Rmn −Rmn 0 0

−Rmn R + jωLmn −jωLmn 0

0 −jωLmn jωLmn + 1
jωCmn

− 1
jωCmn

0 0 − 1
jωCmn

1
jωCmn

+ 1
jωCant21

⎤
⎥⎥⎥⎦ (23)

Before concluding this section, we will make some comments about the scale factor α introduced in Eq. (10). As
mentioned above, this factor links electric field data found at both sides of the cavity and voltage data appearing with
the circuit diagram in Fig. 3. Since the physical unit of α is expressed in meters, the best way to determine this factor
will be to use the relationship between Ez and the emf induced on the short part of monopole 2 inside the box. Since
this wire is loaded by 50� and shortened with respect to the wavelength, α may be considered with 3.8 cm unit.

6. Insertion of electromagnetic coupling parameters in the circuit approach

In order to find the hyper matrix related to the whole circuit in Fig. 3, diagonal off element in Eq. (3) must be filled
with additional scalar coefficient or sub-matrices involving various type of electromagnetic coupling.

Let us consider the connection between the short and outer part of monopole 2 which characterize the coupling
between the topological volumes V3,3 and V3,4 as shown in Figs. 3 and 5. Mesh currents as presented on the left of
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Fig. 5. Combination of topological volumes V3,3 et V3,4 by the cross connection matrix.

this figure with two separate meshes may be merged with one mesh only according to the use of the diagram on the
right hand and the new mesh current noted here J ′ and related to initial mesh current J by Eq. (24).

J 1 = 1.J ′1 + 0.J ′2

J 2 = 0.J ′1 + 1.J ′2

J 3 = 0.J ′1 + 1.J ′2 (24)

This equation consists of a linear transformation characterized by the so-called cross connection matrix [F ] as written
in Eq. (25) and filled with parameters in Eq. (26).

[J ] = [F ][J ′] (25)

[F ] =
⎡
⎣ 1 0

0 1
0 1

⎤
⎦ (26)

Then the size of the initial hyper matrix [Z] as given by Eq. (3) may be reduced by using the cross connection matrix:

[Z′] = [F ]t
[ [Z3] 0

0 [Z4]
]

[F ] (27)

In this equation we find the transposed form of [F ], while the new matrix is noted [Z′], in the same way, part of emf
vector [E] dealing with [E3] and [E4] may be reduced according to the following:

[E′] = [F ]t
[ [E3]

[E4]
]

(28)

At last, Eq. (3) with size 5 behaves like Eq. (29) with size 4.

E =

⎡
⎢⎢⎣

[E1]
[E2]
[E′]
[E5]

⎤
⎥⎥⎦ , Z =

⎡
⎢⎣

[Z1] [0] [0] [0]
[0] [Z2] [0] [0]
[0] [0] [Z′] [0]
[0] [0] [0] [Z5]

⎤
⎥⎦ (29)

The coupling between volumes V3,1 and V3,3 as shown in Fig. 3 involves the resonance occurring at the cavity level
and direct coupling phenomena between monopole 1 and monopole 2. The first one may be characterized in terms of
coupling parameters Nmn and N ′

mn as mentioned in the analytical formula in Eq. (11).
Extending the circuit concept towards these coupling factors forms two full diagonal sub-matrices [Z12] and [Z21]

where each coefficient is expressed in terms of the product between Nmn and a scale factor β; it characterizes the
coupling between the voltage source and each resonator. In the same way, the N ′

mn coefficients will be inserted
in matrices [Z23] and [Z32] to characterize the coupling between the resonator and current amplitude induced in
monopole 2. To find the scale factor β , we consider the transfer of electromagnetic energy within the mode TMmn i.e.
the amplitude of Ezmn electric field and the corresponding voltage Vmn in the block diagram in Fig. 3. Regarding the
topological volume V3,1 the RF voltage source with emf e produces the current I 1 given in Eq. (30).

I 1 = e

R0 + Ze1
(30)

In this formula, R0 is the inner résistance of the voltage source, while Ze1 forms the input impedance offered
by the short monopole 1. According to the fact that the height h1 of the monopole is very short compared to the
wavelength, Ze1 is provided by a capacitance of about 0.2 pF which is ten times less than the 2.4 pF of the coaxial N
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connector receiving this small antenna, consequently Ze1 written in Eq. (31), where CN is the concerned N connector
capacitance. In the considered frequency range going from 100 MHz to 2 GHz, fifty Ohms R0 remains far below Ze1
and β may be expressed as written in Eq. (32).

R0 � 1

CNω
→ Ze1 ∼= 1

jCNω
(31)

e = βI 1 → β ∼= 1

jCNω
(32)

The previous coupling impedances were related to the energy of one mode, but it is also a so-called additional
direct coupling which concerns resonance outside the box and the electromagnetic interaction within monopoles 1
and 2. It occurs rather in the low frequency range, i.e. below the first 2D resonance and between two consecutive
modes. It consists of two diagonal off coefficients jωM13 and jωM31 placed in location 3 in line 1 and location 3
in column 1 of the hyper matrix. They are similar to the mutual inductances. However, taking into account the fact
that the distance between monopole 1 and monopole 2 may be similar to the wavelength, values of M13 and M31 may
be moved with the frequency. For instance these coefficients will be deduced from measurements. The last diagonal
off parameters found in this hyper matrix deal with the coupling between outer part of monopole 2 and monopole
3 connected to the receiver. It concerns the coupling between the volumes V3,4 and V3,5 of the topological diagram
by means of the coupling impedance ZCE , as previously deduced from measurements with a network analyzer. We
can notice that in low frequency range a good approximation with M13 and M31 may be the value of 5 pH with 3.8
cm height c of the box and 9 pH when it rises to 7.8 cm. The last step will be to add the diagonal off parameters in
Eq. (33) which forms the final hyper matrix impedance, as shown in Eq. (34).

E =

⎡
⎢⎢⎣

[E1]
[E2]
[E′]
[E5]

⎤
⎥⎥⎦ , Z =

⎡
⎢⎢⎢⎢⎣

[Z1] [ N12
jωCN

] [jω.M13] [0]
[ N21
jωCN

] [Z2] [ N23
jωCN

] [0]
[jω.M31] [ N32

jωCN
] [Z′] [ZC,E]

[0] [0] [ZC,E] [Z5]

⎤
⎥⎥⎥⎥⎦ (33)

We can deduce the mesh current in term of vector [J ] from the product on the right involving the emf vector [E]
and the computation of inverse hyper impedance matrix as written in Eq. (34).

[J ] = [Z]−1 · [E] (34)

From the circuit approach of electromagnetic coupling, numerical data of scattered parameters will be compared
to the measurements in next section of the paper.

7. Computation of S21 parameters compared with measurements

Two configurations of the system in Fig. 1 will be tested. One is related to the determination of S21 parameter
between the input port of monopole 1 and the termination of the short part in monopole 2 placed at the back side of
the cavity. The second concerns the determination of S21 between the input port of the monopole 1 and the termination
of the long monopole 3 placed outside the cavity.

The first tests will be performed with 3.8 cm and 7.8 cm for the height c of the box. We can notice that for this
two values of c,h1 = 1 cm and h2 = 2 cm. Computation of S21 from the circuit approach as described in the previous
sections uses Eq. (35) where E0 corresponds to the emf of the sinusoidal wave source instead of the output port of the
network analyzer, then Vc is the voltage collected at monopole 2 output loaded with 50 �. We recall that the amplitude
of Vc may be easily deduced from the computation of the corresponding mesh current solved in Eq. (34).

S21 = 2Vc

E0
(35)

The graph in Fig. 6 shows the explored frequency range within 100 MHz to 2 GHz in a horizontal logarithmic scale,
while the vertical scale expresses S21 in terms of dB. Theoretical data are provided by the curves with solid lines and
experiments by dashed lines.
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Fig. 6. S21 parameter related to monopoles 1 and 2 from measurements and theory.

Table 1
Location of the resonance frequencies and the corresponding values of the coupling factors.

Mode Resonant frequency Nmn N ′
mn

(1,1) 646 MHz 1 0.705
(3,1) 1.2 GHz −1 −0.705
(1,3) 1.65 GHz −1 0.713
(5,1) 1.869 GHz 1 0.705
(3,3) 1.94 GHz 1 −0.713

Each peak of the curves in Fig. 6 deals with a 2D resonance of the cavity; we can notice that 25 resonators were
considered in the computation including the combination of 25 2D TMmn appearing before the first 3D eigen mode.
However, due to the location of the monopoles inside the cavity, 5 modes will be excited. The amplitude of the peak for
the first 2D resonance corresponds exactly to the experiment, however, for the other resonances, we can observe a shift
from the theory especially at peak amplitude of the curves. Some investigations showed that it is due to the sampling
of the experimental and theoretical frequencies data. Increasing the frequency resolution shows a very good agreement
between theory and measurements. From these results, we can conclude that the minimum amplitude acquired by S21
is mainly influenced by the effect of direct coupling between the monopoles 1 and 2 and related to M13 and M31.
Furthermore, when the height of the box is changed, the location of the minimum is somewhat moved.

Before extending the confrontation between measurements and theory to the final configuration with the voltage
collected at monopole 3 output, the location of the frequencies of resonance in Fig. 6 and the corresponding values of
Nmn and N ′

mn coupling factors will be listed in Table 1.
However, due to the location of monopoles 1 and 2, among 25 available 2D modes, electromagnetic energy in the

cavity is restricted to the above five modes as specified by Nmn and N ′
mn.

These experiments and computations were extended to the determination of S21 parameter collected between
monopole 1 and monopole 3, as shown in Fig. 7. Display scales and curves are the same as those used in Fig. 6.
We can notice on this graph that the maximum and minimum amplitudes occurs at 2D resonance of the box, however,
the curves are less sharp. This is due to the contribution of the coupling factor ZCE between the two long monopoles
2 and 3 with h2 = h3 = 19 cm, which acquire their first own resonance at frequency f0 as shown in Eq. (36).

f0 = v

4h3
= 394 MHz (36)

Consequently, other resonances of these wires occurring at frequencies 2f0, 3f0 and 4f0 are somewhat mixed with
the resonance of the box itself, and it explains why the shape of the curves is changed. Nevertheless measurements
curves are in agreement with theoretical curves.
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Fig. 7. S21 parameter related to monopoles 1 and 3 from measurements and theory.

8. Conclusion

With the support of a flat rectangular shaped cavity, with a system of monopoles at both sides of the walls of
the box coupled throughout, it has been shown that the transformation of the electromagnetic problem into a similar
circuit diagram leads to the construction of a hyper matrix impedance. From a preliminary diagonal form of this
matrix, neglecting all electromagnetic coupling, the main parameters relevant to various contributions such as the
RF source connected to the system, or the resonance occurring at cavity level and the behaviors of monopoles, were
characterized in terms of scalars and sub-matrices impedance. The second step was to include diagonal off parameters
related to the various electromagnetic coupling as described in Section 5 of the paper. For convenience sake they were
deduced from specific measurements carried out with a network analyzer. This hyper matrix impedance was solved
by means of Kron’s methodology and consequently related to the input emf vector and unknown mesh current vector.
The response of the receiver connected to the dedicated out port of the system like the monopoles, was compared
with measurements performed within a wide frequency range from 100 MHz to 2 GHz. From the comparison with
the circuit computation, it was observed a good fitting especially when the cavity resonance and monopole resonance
occur either separately or mixed together.

From this first test applied to EMC problem of large scale, we can conclude that the circuit approach seems to be
efficient. Indeed, at first, we can assume that the theoretical prediction of the response of the concerned system using
a full wave simulator requires a lot of computation time and amount of memory. Then, the use of theory circuit with
the combination of topological diagram leads the subdivision of the computation work and consequently reduces the
computation time dramatically. Furthermore, in a future study, this way may be combined with the tensorial formalism
in order to make a dedicated software tool.
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