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Abstract

When the laser pulse radiation pressure is dominant, the efficiency of the laser energy transformation into the energy of relativistic
ions is very high. An analysis of the stability of a thin plasma slab accelerated by the radiation pressure shows that the onset of a
Rayleigh–Taylor-like instability can lead to transverse bunching of the slab. At the nonlinear stage of the instability development
the plasma slab breaks up into separated clumps, which are accelerated by the wave radiation pressure. An indication of the effect
of radiation pressure on the bulk target ions is obtained in the experimental studies of plasma jets ejected from the rear side of thin
solid targets irradiated by ultraintense laser pulses. To cite this article: S.V. Bulanov et al., C. R. Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur l’accélération d’ions par des ondes électromagnétiques de haute intensité dans le régime dominé par la pression de
radiation. Quand la pression de radiation laser est dominante, l’efficacité de la transformation de l’énergie laser en énergie des ions
relativistes est élevée. Une analyse de la stabilité d’une mince tranche de plasma accélérée par la pression de rayonnement montre
que le déclenchement d’une instabilité du type Rayleigh–Taylor peut mener à un fractionnement transverse de la tranche. Dans la
phase nonlinéaire de développement de l’instabilité la tranche se divise en morceaux séparés, qui sont accélérés par la pression de
rayonnement de l’onde. Une indication de l’effet de la pression de rayonnement sur les ions de la cible est obtenue dans des études
expérimentales de jets de plasma éjectés de la face arrière de cibles minces solides irradiées par des impulsions ultra-intenses. Pour
citer cet article : S.V. Bulanov et al., C. R. Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Ion acceleration by a high intensity electromagnetic wave incident on an electron cloud carrying a small portion of
ions was proposed by V.I. Veksler more than 50 years ago [1]. In this mechanism the ion acceleration occurs in the
collective electric field which is produced due to the radiation pressure acting on the electron component. Laser-driven
fast ions are considered in regard to a broad range of applications (see review articles [2,3]).

The transition to powers of electromagnetic radiation corresponding to relativistically strong fields radically
changes the acceleration regime. In Ref. [4], a regime where the ion acceleration in a plasma is directly due to the
radiation pressure of the electromagnetic wave has been identified. In this radiation pressure dominant acceleration
(RPDA) regime (it is equivalently called the “Laser Piston”), the ions move forward with almost the same velocity
as the electrons and thus have a kinetic energy well above that of the electrons. This acceleration process is highly
efficient with the ion energy per nucleon being proportional to the electromagnetic pulse energy. This acceleration
mechanism has attracted a great deal of attention. In Ref. [5] the stability of the accelerated foil has been analyzed.
Refs. [6] are devoted to extending its range operation towards lower electromagnetic wave intensities. In Ref. [4] it has
been shown that a foil interacting with a laser pulse becomes deformed and changes into a “cocoon”, which, in turn,
traps the electromagnetic wave, thus allowing the ion acceleration over a distance larger than the Rayleigh length. The
leading edge of the cocoon moves at a relativistic speed.

In the present paper we discuss the ion acceleration mechanism when the ion-electron thin foil is accelerated by
the radiation pressure of a high intensity electromagnetic wave. We consider the foil stability and the effects of the foil
expansion in the transverse direction. At the end of the article we discuss the results of experiments [7] that appear
consistent with Radiation Pressure effects.

2. Mathematical model

We generalize the results obtained in Refs. [4,5]. In the electromagnetic wave interaction with the foil, the latter is
modeled as an ideally reflecting mirror. The equations of motion of the surface element |dσ | of an ideally reflecting
mirror in the laboratory frame of reference can be written in the form

dpi

dt
= P dσi (1)

where pi = (px,py,pz) is the momentum of the mirror surface element, dσi is a vector normal to the mirror surface,
i = 1,2,3, and P is equal to the relativistically invariant pressure.

We consider a configuration where the electromagnetic wave propagates along the x axis and the initial position of
the mirror is in the plane y, z. In the co-moving frame of reference the radiation pressure P for normal wave incidence
is given by expression P = E2

M/2π , where EM is the electric field amplitude. In the laboratory frame of reference we
have E2

M = (ωM/ω0)
2E2

0 with ωM and ω0 being the frequency values in the co-moving and in the laboratory frames
of reference. For ωM and ω0 we have the relationship ωM = ω0[(1 − β)/(1 + β)]1/2.

As is well known, an approach towards the description of the problem of nonlinear regimes of the Raleigh–Taylor
instability of a thin foil has been formulated in Ref. [8] and further developed in a number of publications, e.g. see
Refs. [9]. We consider a thin plane shell with surface particle number equal to n0l0, where l0 is the shell thickness. At
the initial time the shell is at rest in the plane x = 0. In order to derive the equations of shell motion we introduce the
Lagrange coordinates η and ζ , related to the Euler coordinates x, y, z as xi = x0,i + ξi(x0, t), with x0,i = (0, η, ζ ) and
the displacements ξi(x0, t). The velocity of the surface element is given by vi = ∂t ξi . At t = 0 we have ξi(x0,0) = 0
and ∂t ξi(x0, t) = vi(x0,0). Here the Lagrange coordinates η and ζ mark the element of the shell surface. Initially, at
t = 0 the coordinates of the shell element dσ center dσ 0 are (0, η, ζ ). At time t it is located at the point with coordi-
nates x, y, z. Due to the conservation of the number of particles in the shell element, dN = n0l0|dσ 0| = constant, we
have the relationship

ν0|dσ 0| = ν|dσ | (2)

where ν0 = n0l0 and ν = nl. Writing dσ 0 and dσ in terms of the Lagrange and Euler coordinates we obtain |dσ 0| =
|dη × dζ | and |dσ | = |dy × dz,dz × dx,dx × dy|. Here dx,dy,dz are the vectors of the length |dx|, |dy|, |dz|, directed
along the axes x, y, z.
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Using Eq. (2), we find a relationship between the values of the surface density at time t = 0 and t :

ν = ν0

∣∣∣∣dσ 0

dσ

∣∣∣∣ = ν0

[{y, z}2 + {z, x}2 + {x, y}2]1/2
(3)

where {xj , xk} are the Poisson brackets defined as {xj , xk} = ∂ηxj ∂ζ xk − ∂ζ xj ∂ηxk .
With the help of Eqs. (1) and (3) we obtain the equations of motion for the shell element

∂tpi = P
ν0

{x0,j + ξj , x0,k + ξk}, ∂t ξi = c
pi

(M2
αc2 + pkpk)1/2

(4)

where Mα is the ion mass. Here and below the indices i, j, k are pairwise different.

3. RPDA ion acceleration

3.1. RPDA regime of the ion acceleration during interaction of electromagnetic pulse with a thin shell which is at
rest at the initial time

Assuming that the foil moves along the x axis, i.e. that the initial conditions define a plane mirror homogeneous
along the y and z directions, and y(0) = η, z(0) = ζ , i.e. ξx = 0 and ξy = 0 we can represent the x-component of
Eq. (4) in the form

dp
(0)
x

dt
= E2

0

2πν0

Mαcγ (0) − p
(0)
x

Mαcγ (0) + p
(0)
x

(5)

where p
(0)
x depends only on time t . The relativistic gamma-factor is equal to

γ (0) = (
1 + (

p(0)
x /Mαc

)2)1/2

The solution of Eq. (5) is formally equivalent to the solution of the problem of charged particle motion under the radia-
tion pressure of electromagnetic wave presented in “The Classical Theory of Fields” by L.D. Landau and E.M. Lifshitz
(see Problem 7 in Section 78 in [10]). If the initial value of the particle momentum vanishes, p

(0)
x (0) = 0, the depen-

dence of the particle momentum on time p
(0)
x (t) for a constant amplitude of electromagnetic wave E2

0 = constant, can
be written as

p(0)
x (τ ) = Mαc

4(2 + 3τ)

{[
47 + 8(2 + 3τ)

(
5 + 3τ(4 + 3τ)

)3/2 + 12τ(4 + 3τ)
(
11 + 6τ(4 + 3τ)

)]1/3 − 1

− 31 + 24τ(4 + 3τ)

[47 + 8(2 + 3τ)(5 + 3τ(4 + 3τ))3/2 + 12τ(4 + 3τ)(11 + 6τ(4 + 3τ))]1/3

}
(6)

where τ = E2
0 t/2πν0Mαc is a normalized time. We note that more compact form of the solution of the problem

of foil element motion under the radiation pressure of electromagnetic wave has been obtained in Ref. [4] with the
dependence of the momentum on time written in terms of hyperbolic functions. The above presented dependence
given by Eq. (6) is explicit. In the limit τ → ∞ we have

p(0)
x (τ )/Mαc = (3τ/4)1/3 − (6/τ)1/3 + · · · (7)

In the case of a finite length electromagnetic pulse the electric field E0 value at the moving shell, i.e. at x = x(t),
depends on time as E0(t − x(t)/c). The function x(t) must be found from Eqs. (4). We introduce new variable

ψ = ω0
(
t − x(0)(t)/c

)
(8)

equal to the phase of the wave at the shell, x = x(0)(t). Differentiating Eq. (8) with respect to time, we find

dψ = ω0
Mαcγ (0) − p

(0)
x

(0)
(9)
dt Mαcγ
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Changing from the variable t to ψ and introducing normalized fluence of electromagnetic wave, which is the
energy flux per unit surface,

w(ψ) =
ψ∫

0

R(ψ ′)
2λ0

dψ ′ (10)

where R(ψ) = E2
0(ψ)/Mαν0ω

2
0 and λ0 = 2πc/ω0, we can find the solution to Eq. (5). If the initial value of the

momentum vanishes, p
(0)
x (0) = 0, the solution takes the form

p(0)
x (ψ) = Mαc

2w(ψ)(w(ψ) + 1)

2w(ψ) + 1
(11)

Eq. (9) yields a relationship between the variables t and ψ :

ψ +
ψ∫

0

[
2w(ψ ′) + w(ψ ′)2]dψ ′ = ω0t (12)

In the case of constant amplitude electromagnetic wave, when R = R0 = E2
0/2Mαν0ω

2
0, expressions (10) and

(12) give w(ψ) = (R0/λ0)ψ and 3ψ + 3(R0/λ0)ψ
2 + 2(R0/λ0)

2ψ3 = 3ω0t . The x component of the shell element
momentum p

(0)
x in the limit t � ω−1

0 (λ0/R0) depends on time as

p(0)
x ≈ Mαc(3R0ω0t/λ0)

1/3 (13)

in accordance with expression (7).
We note that the dependence t1/3 of the fast ion energy on time has been observed in the 3D computer simulations

of thin shell acceleration by super strong electromagnetic pulse (see Ref. [4]). From expression (11) it follows that the
efficiency of the electromagnetic wave energy transformation into the energy of fast ions (this efficiency is defined as
κeff = (γ (0) − 1)/w) tends to unity for w → ∞.

3.2. RPDA ion acceleration when the electromagnetic wave interacts with the shell expanding or contracting in the
transverse direction

We assumed above that the transverse coordinates of the shell element do not depend on time, y(0) = η and z(0) = ζ .
In the general case the shell can expand or contract in the transverse direction. We shall take into account the transverse
expansion (contraction) of the shell assuming the transverse motion to be nonrelativistic similarly to the approximation
used in accelerator theory [11].

3.2.1. Nonrelativistic limit
If at first we consider the nonrelativistic limit for the longitudinal motion, Eqs. (4) can be written as

∂tt ξi = P
Mαν0

{x0,j + ξj , x0,k + ξk} (14)

In the simplest case, which corresponds to a local approximation in the vicinity of the electromagnetic pulse axis,
the shell expansion (contraction) is uniform in the y, z plane. We present a dependence between the Lagrange and
the Euler variables of the form ξx = ξ

(0)
x (t), ξy = m

(0)
y (t)η, ξz = m

(0)
z (t)ζ and substitute it into Eqs. (4), taking into

account the smallness of the transverse components of momentum with respect to the longitudinal one. We choose the
initial conditions for the deformation parameters, m

(0)
y and m

(0)
z , for which m

(0)
y (0) = 0, ṁ

(0)
y (0) = ω

(0)
y , m

(0)
z (0) = 0,

and ṁ
(0)
z (0) = ω

(0)
z . As a result, the y- and z-components of Eqs. (14) yield the following expressions for the transverse

coordinates of the shell element,

y(0)(t) = (
1 + ω(0)

y t
)
η, z(0)(t) = (

1 + ω(0)
z t

)
ζ (15)

in which case the surface density, ν(t), depends on time. According to Eq. (3) we have

ν(t) = ν0

|{y, z}| = ν0

|(1 + ω
(0)

t)(1 + ω
(0)

t)|
(16)
y z
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If the parameters ω
(0)
y and ω

(0)
z do not vanish and are positive, the surface density decreases: for t → ∞ we have

ν(t) ∝ 1/t2. For negative values of one or both the parameters ω
(0)
y and/or ω

(0)
z the surface density ν(t) becomes equal

to infinity in a finite interval of time,

tcoll = 1/max
{∣∣ω(0)

y

∣∣, ∣∣ω(0)
z

∣∣} (17)

This case corresponds to the singularity formation.
Substituting the dependence given by Eq. (16) into Eqs. (14), we find the equation for the x component of the

momentum

d2ξ
(0)
x

dt2
= P

Mαν0

(
1 + ω(0)

y t
)(

1 + ω(0)
z t

)
(18)

Its solution in the case of a constant amplitude electromagnetic wave, E2
0 = constant, is given by

ξ (0)
x (t) = P

6ν0Mα

t2[6 + 2
(
ω(0)

y + ω(0)
z

)
t + ω(0)

y ω(0)
z t2] (19)

For positive parameters ω
(0)
y and ω

(0)
z from the equation (19) it follows that asymptotically at t → ∞ the longitudinal

component of the momentum p
(0)
x depends on time as

p(0)
x ≈ Mαc

(
2P

3ν0Mαc
ω(0)

y ω(0)
z

)
t3 (20)

i.e. the kinetic energy grows proportionally to t6.

3.2.2. Ultrarelativistic case
Here we assume that p

(0)
x /Mαc � 1 and py/p

(0)
x 	 1 and pz/p

(0)
x 	 1. Using this approximation we find instead

of Eq. (15)

y(0)(t) =
(

1 +
t∫

0

π
(0)
y

Mαγ (0)(t ′)
dt ′

)
η and z(0)(t) =

(
1 +

t∫
0

π
(0)
z

Mαγ (0)(t ′)
dt ′

)
ζ (21)

where π
(0)
y and π

(0)
z are related to the initial components of transverse momentum, p

(0)
y and p

(0)
z , as p

(0)
y = π

(0)
y η and

p
(0)
z = π

(0)
z ζ . The transverse momentum components, p

(0)
y and p

(0)
z , are determined by the initial conditions and by

γ (0)(t) = (
1 + (

p(0)
x (t)/Mic

)2)1/2

Substitution of the relationships (21) into Eqs. (4) yields

dp
(0)
x

dt
= P π

(0)
y π

(0)
z c2

4ν0M2
α

Mαcγ (0) − p
(0)
x

Mαcγ (0) + p
(0)
x

( t∫
0

dt ′

γ (0)(t ′)

)2

(22)

The asymptotic solution for π
(0)
y > 0 and π

(0)
z > 0 gives the following time dependence of p

(0)
x (t):

p(0)
x (t) ≈ (

125P π(0)
y π(0)

z c2/48ν0
)1/5

t3/5 (23)

We see that in the case of expanding foil the acceleration efficiency is higher than in the case of the foil which does
not expand in the transverse direction.

We note that for contracting foil with π
(0)
y < 0 and/or π

(0)
z < 0 (ω(0)

y < 0 and/or ω
(0)
z < 0 in the nonrelativistic

limit) the density becomes infinite in a finite time (17) and the acceleration stops.

4. Instability of a thin shell accelerated by the radiation pressure of electromagnetic wave

Now we consider the problem of the stability of the accelerated shell with respect to perturbations ξ
(1)
i (x0, t),

resulting in the shell deformations in the transverse direction. Linearizing the system (4) around the unperturbed
solution given by Eq. (10), we obtain
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Fig. 1. Growth of nonlinear perturbations (1) for a not expanding foil with ω̃x = 0 and (2) for a foil expanding in the transverse direction with
ω̃x = 1. Foil shape at τ̃ = 0 (a) and at τ̃ = 4 (b) for ρ = 0.5, q = 0.25.

∂ψψξ(1)
x + ∂ψp

(0)
x

p
(0)
x

∂ψξ (1)
x = R(ψ)Mαc

2πp
(0)
x

(
∂ηξ

(1)
y +∂ζ ξ

(1)
z

)
(24)

∂ψψξ(1)
y − ∂ψp

(0)
x

p
(0)2
x

∂ψξ (1)
y = −R(ψ)p

(0)
x

2πMαc
∂ηξ

(1)
x (25)

∂ψψξ(1)
z − ∂ψp

(0)
x

p
(0)2
x

∂ψξ (1)
z = −R(ψ)p

(0)
x

2πMαc
∂ζ ξ

(1)
x (26)

Using the ultra-relativistic approximation, p
(0)
x /Mic � 1, in these equations we keep leading only the terms.

We seek the solution to Eqs. (24)–(26) in the WKB approximation and represent the functions ξ
(1)
i (η, ζ,ψ) in the

form

ξ
(1)
i (η, ζ,ψ) ∝ exp

( ψ∫
0

Γ (ψ ′)dψ ′ − iqη − irζ

)
(27)

under the condition of a slow dependence of the growth rate Γ on the variable ψ : ∂ψΓ/Γ 2 	 1. Substituting expres-
sion (27) into Eqs. (24)–(26), we find

Γ (ψ) = (
q2 + r2)1/4(

R(ψ)/2π
)1/2 (28)

with ξ
(1)
x ≈ (Mαc/p

(0)
x )ξ

(1)
y ≈ (Mαc/p

(0)
x )ξ

(1)
z . In two-dimensional geometry this expression reduces to the expression

found in Ref. [5]. Using relationships (13) we find for the case of a constant amplitude electromagnetic wave that the
perturbations depend on time as

ξ
(1)
i (η, ζ, t) ∝ exp

(
(t/τr )

1/3 − iqη − irζ
)

(29)

where the characteristic timescale of the instability development in the ultrarelativistic limit is equal to τr =
ω−1

0 [(2π)3/2R
1/2
0 ]/[6(q2 + r2)3/4λ2

0].
Taking into account that R0 = E2

0/Mαν0ω
2
0 we see that the instability timescale is proportional to the square root

of the ratio of the radiation pressure to the ion mass. In other words, the higher the ion mass the faster the instability
develops and the larger the radiation pressure the slower the perturbations grow.

It is easy to show, that in the nonrelativistic limit the perturbations depend on time and on the Lagrange coordinates,
η and ζ , as

ξ
(1)
i (η, ζ, t) ∝ exp(t/τnr−iqη − irζ ) (30)

where the characteristic timescale of the instability is τnr = ω−1
0 (2π/R0)

1/2(q2 + r2)−1/4.

4.1. Effect of the shell stretching on the R-T instability

The plasma expansion along the foil surface may result in the slow-down of onset of the nonlinear stage of insta-
bility with the cusps, the plasma clumps, formation.
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Fig. 2. (a)–(c) Proton density distribution in the x–y plane at t = 40, 50, 70, respectively; (d) laser pulse electric field Ez(x, y) at t = 70.

If at first we consider the nonrelativistic limit for the longitudinal motion, and seek for the sake of simplicity two
dimensional solutions to Eqs. (14) of the form

ξx(η, t) = ξ (0)
x (t) + ξ (2)

x (η, t), ξy(η, t) = ξ (1)
y ωytη + ξ (2)

y (η, t), ξz = 0 (31)

Substituting these expressions into Eqs. (14) we find

ξx(η, τ̃ ) = τ̃ 2/2 + ω̃3
y τ̃ /6 − ρ exp(

√
qτ̃ ) sin(qη) (32)

ξy(η, τ̃ ) = ω̃y τ̃η + ρ exp(
√

qτ̃ ) cos(qη) (33)

where τ̃ = t (P /ν0)
1/2 and ω̃y = ωy(ν0/P )1/2.

These expressions describe the time evolution of the foil form as it is shown in Fig. 1. We see that instability evolves
into the nonlinear regime faster in the not-expanding foil reaching the stage when the cusp are formed at τ̃ = 4 for the
amplitude and wave number of initial perturbations equal to ρ = 0.5 and q = 0.25, while the stretching results in the
growth of the perturbation wavelength in the expanding foil.

5. Computer simulation of the R-T instability development of a premodulated shell

In order to investigate the onset and the nonlinear evolution of the instability of the foil, we have performed a
numerical simulation using the 2D version of the PIC e.m. relativistic code REMP, see Ref. [12]. The size of the
computation box is 60λ × 15λ with a mesh of 80 cells per laser wavelength λ. The total number of quasiparticles in
the plasma region is equal to 2 × 107. A thin plasma slab, of width 12.5λ and thickness 1λ, is localized at x = 10λ.
The plasma is made of fully ionized hydrogen ions; the ion to electron mass ratio is 1836. The electron density
corresponds to the ratio ωpe/ω = 10. An s-polarized pulse with electric field along the z-axis is initialized in vacuum
at the left-hand side of the plasma slab. The pulse has a form given by

a0 ×
[

exp

(
− (x − 2.5lx)

2

2l2
x

− y2

2l2
y

)
+ 0.125 exp

(
−2x2

l2
x

)
sin

(
8y

ly

)]
(34)

with lx = 20λ, ly = 12.5λ. It is a superposition of a “Gaussian” pulse and relatively weak sinusoidal in the y-direction
modulations. The pulse dimensionless amplitude, a0 = 160, corresponds for λ = 1 µm to the intensity I ≈ 3.5 ×
1022 W/cm2 (Rmax/λ0 = 27.5).

The results of these simulations are shown in Figs. 2–4. The wavelength λ of the incident radiation and its period
2π/ω are chosen as units of length and time. The distribution in the x–y plane of the proton density and of the laser
pulse electric field are shown in frames from (a) to (c) at t = 40, 50, 70, respectively.

In Fig. 2(a), we see the periodically premodulated shell. Fig. 2(b) shows an initial stage of the R-T instability:
the instability develops with a growth rate of several tens of inverse laser periods, consistent with the analytical
estimate ω0/τr < 1, with the formation of cusps and of multiple bubbles in the plasma density distribution. In the
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Fig. 3. (a) Proton density distribution in the x–y plane and (b) the proton phase plane at t = 90; (c) electron density distribution in the x–y plane
and (d) the electron phase plane at t = 90.

Fig. 4. Proton and electron energy spectrum at t = 100.

nonlinear stage, we see the formation of relatively large scale clump bubbles. The laser electric field is modulated in
the longitudinal and transverse directions as seen in Fig. 2(c). The protons are accelerated forward, and their spectrum
consists of quasimonoenergetic beamlets, shown in Figs. 3 and 4, where we present the proton, Fig. 3(a), and electron,
Fig. 3(c), density distribution at t = 90. In frames Figs. 3(b) and 3(d) we show the proton and electron phase planes,
x, px , respectively. Fig. 4 shows the proton and electron energy spectra at t = 100.

In Fig. 3, the fully nonlinear stage of the instability results in the formation of several clumps in the proton density
distribution, moving with relativistic velocities, with more diffuse, lower density plasma clouds between them. The
high-energy tail in the proton spectrum (Fig. 4) grows much faster than in the stable case. The local maxima at
relatively lower energy correspond to the plasma clumps. When the instability develops from noise, the clumps in
the instability nonlinear stage propagate at different angles, but remain well collimated in the forward direction close
to the axis (see Ref. [5] and Fig. 3 therein). As we have seen above more collimated clumps can be obtained using
shaped laser pulses.

6. Experimental evidence of plasma jets driven by ultraintense-laser interaction with thin foils

Although at moderate laser light intensity the ion acceleration mechanism due to the charge separation at the rear
target surface and the ion acceleration at the front of a plasma expanding into vacuum will be the dominant process
leading to high-energy acceleration, radiation pressure can still play a significant role by driving the ions from the
front-surface into the target and forming plasma jets at the rear side. Results published in Refs. [3,7] suggest that this
process can lead to the ejection of well-collimated plasma jets, when the accelerated ion bunches break out at the
rear surface of thin foils. Fig. 5 shows interferograms obtained at the VULCAN facility at the Rutherford Appleton
laboratory, where the target was irradiated at intensities in the range from 3 × 1019 to 5 × 1020 W/cm2. While in thin
targets (5 µm targets) there is a clearly evident plasma jet expanding from the target, with increasing thickness the
plasma profile presents the features of an ordinary thermal plasma expansion.
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Fig. 5. Interferograms of laser-irradiated foils showing jet formation at the target rear: (a) 3 µm Al foil irradiated by 1 ps pulse at 3 × 1019 W/cm2;
(c) 5 µm Cu foil irradiated by a 700 fs pulse 1020 W/cm2. Probing time: (a) +250 ps; (c) +400 ps after the arrival of the CPA on target. The
inverted electron density profile contour plots (in the unit of 1021 cm−3) of the rear side plasma are shown next to the respective interferograms
[(b), (d)].

Numerical simulations [7] suggest that radiation pressure plays an important role in the formation of these jets.
In order to explain the observed longitudinal velocity achieved by the plasma jet, we considered a piston-like push
of the portion of the target that has been irradiated by the laser pulse. Within the framework of the one-dimensional
snowplow approximation, we can write the equation of motion of the plasma (in nonrelativistic approximation) as

d

dt

(
Mαν(x)

dx

dt

)
= P (35)

which has a form of the Meshchersky equation. Here ν(x) = ∫ x

0 n0(s)ds with n0(x) the ion density distribution
inside the foil. For short laser pulse with duration τlas < l0/�vα , where l0 and �vα are the foil thickness and the ion
velocity, we obtain vα(t) = (P τlas/2Mαn0)

1/2t−1/2 and �vα = (P τlas/Mαn0l0). The efficiency of the laser energy
transformation into the kinetic energy of fast ions is κeff = Eα/Elas = (�vα/c)2. For long laser pulse with τlas >

l0/�vα , the ion momentum is given by Eq. (11). In the nonrelativistic limit when w 	 1, Eα = 2Mαc2w2 and κeff =
2w. According to the above expressions, the axial velocity of the jet emerging from a displaced Al foil (n0 ≈ 60ncr) at
a laser irradiance of 3 × 1019 W/cm2 is 1.5 × 108 cm/s. Similarly, the longitudinal velocity of the plasma jet from the
rear side of a Cu foil (n0 ≈ 85ncr) irradiated at 1020 W/cm2 is in the range 1–2 × 108 cm/s, in reasonable agreement
with the experimental observations. The density values used in the estimations above correspond to single ionization
of Al and Cu, i.e. we assume moderate heating of the bulk target during the interaction.

7. The scaling of ion acceleration in the RPDA regime

The general requirements for the parameters of a laser accelerator are essentially the same as those for standard
accelerators of charged particles [11], i.e. they should have a reasonable acceleration scale length, a high enough
efficiency and the required maximal energy, a high quality, emittance and luminosity of charged particle beams.

Using the above obtained expressions for the ion energy dependence (11) on the laser pulse amplitude and length
we can write the fast ion energy scaling. In the nonrelativistic limit, when γα = Eα/Mαc2 	 1, it is

Eα = 8 × (
1011/Ntot

)2
(Mp/Mα)(Elas/1 J)2 MeV (36)
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Here Mp is the proton mass and Ntot is a number of accelerated ions. In the ultrarelativistic limit, γα � 1, the scaling
has a form

Eα = 6.25 × (
1011/Ntot

)
(Mp/Mα)(Elas/100 J) GeV (37)

The ion acceleration length in the limit γα � 1 is of the order of

lacc = llas/(1 − vα/c) ≈ 2γ 2
α llas (38)

As we see, the acceleration length depends on the laser pulse duration, τlas (llas = cτlas), and on the final energy of
accelerated ions, mαc2γα .

As an example, we consider a solid density foil, n0 = 1024 cm−3, of 1 µm thickness irradiated by a laser pulse
with a transverse size of 100 µm. For a laser pulse energy of the order of 200 kJ we find that the accelerated ion
energy is equal to 1 TeV with a total ion number of 1012. For a laser pulse duration of τlas = 1 ps, the pulse length is
equal llas ≈ 0.03 cm. In this case for Ei = 1 TeV the acceleration length is approximately equal to lacc ≈ 0.6 km. If
we assume the laser pulse length to be 30 µm, i.e. τlas ≈ 100 fs, and laser energy is equal to 20 kJ, protons achieve the
energy about 100 GeV over the acceleration length of the order of 60 cm.

Parameter of fundamental importance such as the luminosity characterizes the number of reactions produced by
the particles in colliding beams of a collider. The luminosity is given by the expression L = f (N1N2/4πσyσz), where
N1 and N2 are the numbers of particles in each of the beams, σy and σz are the transverse size of the beam in the
y and z directions, and f is the frequency of the beam collisions. The product of the luminosity and the reaction
cross section gives the reaction rate. We see that the luminosity can be increased by increasing the particle number
in a bunch, Nj , and/or by increasing the repetition rate, f , or by decreasing the transverse size of the bunch, σi , by
focusing the particle beam into the minimum size focal spot.

In order to achieve high values of the ion bunch luminosity it is highly desirable to decrease the transverse bunch
size. This can be achieved by modulating the density inside the foil, e.g. by a properly modulated laser pulse. The
analysis of the foil motion presented in Section 4 shows an exponential growth of the modulations. This opens the
way for focusing the acceleration of ions onto a narrow spot with a lower limit given by the foil thickness. Using these
results we can estimate the RPDA accelerated ion bunch luminosity as

L = 1034(f/1 kHz)
(
Ntot/1012)2(10−4 cm/σ⊥

)2 cm−2 s−1 (39)

which is of the order of the luminosity of standard accelerators.
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