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Abstract

We study quasistatic cloaking by the mechanism of plasmonic resonance, for systems of coated cylinders. Our focus is on the
nature of the resonant cloaking interaction: whether systems of particles can be made to cooperate in cloaking a polarizable particle
from an applied uniform field. We show that in fact if the cloaking regions of the systems of particles overlap, then they tend to
interact in a fashion detrimental to their cloaking of the polarizable particle. If the cloaking regions touch but do not overlap, then
the system of particles can cloak a larger region than each would in isolation. To cite this article: R.C. McPhedran et al., C. R.
Physique 10 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Cloaking et résonance plasmoniques dans des systèmes de particules : coopération ou combat ? Nous analysons le cloaking
en régime quasi-statique à travers le mécanisme des résonances plasmoniques, pour des systèmes de cylindres pelliculés. Nous
focalisons notre étude sur la nature de l’interaction résonante du cloaking : à savoir si des systèmes de particules peuvent agir
de concert pour cloaker une particule polarisable pour un champ extérieur uniforme. Nous montrons qu’en fait si les régions de
cloaking du système de particules se chevauchent, alors elles tendent à interagir d’une manière néfaste pour chaque particule. En
revanche, si les régions de cloaking se touchent mais ne se chevauchent pas, alors le système de particules peut cloaker un région
plus étendue que chaque particule prise isolément. Pour citer cet article : R.C. McPhedran et al., C. R. Physique 10 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

The topic of cloaking or the hiding of objects from detection by electromagnetic waves is one of the most exciting
and active areas in modern physics. The subject builds on pioneering work by Veselago [1], with lesser known but
important contributions also being made by Kerker [2]. The field really exploded in interest and activity after sem-
inal contributions by Pendry and co-workers [3–6], Leonhardt and co-workers [7], while Greenleaf and co-workers
[8,9] made significant prior contributions. The work we have mentioned so far broadly relied on a mechanism we
may describe as transformation optics, or internal cloaking. The object to be hidden from scrutiny is placed inside a
hollow cavity, which is surrounded by a metamaterial shell, carefully crafted to guide electromagnetic waves, of an
appropriate frequency, round the cavity, in a fashion such that the detouring of rays is undetectable by an external ob-
server. Similar interesting physics involving the control of rays arises in studies of corner reflectors and checkerboards
involving metamaterials [10,11].

There is a second, complementary method of cloaking, which may be described as cloaking by plasmonic reso-
nance, or external cloaking. In previous papers we have also referred to this mechanism as cloaking by anomalous
resonance [12–15] or partial resonance [16]. Here, the principle is that an object to be cloaked is placed outside,
but close to, a body capable of undergoing a plasmonic resonance. This resonance acts to cancel out external fields
at the location of the small object. This idea can be traced to papers by some of the present authors [12–16], with
interesting contributions also being made by Alu and Engheta [17,18], and Bruno and Lintner [19]. We mention that
our previous work [12–15] dealt with full electromagnetic cloaking (not just quasistatics) for the Veselago slab lens.
Also we showed fully three-dimensional cloaking of a point dipole in the quasistatic case [12]. We have addressed the
problem of two-dimensional cloaking at finite frequencies, in a recent paper [20]. The same effect can be achieved in
alternative ways, as discussed by Ramm [21] and Miller [22].

The mechanism of external cloaking is in principle similar to that occurring in more elementary contexts. In chem-
istry Le Chatelier’s Principle and in electromagnetism Lenz’s Law both dictate that systems in equilibrium react to
external changes in such a way as to oppose or, if possible, cancel them. In the present paper we will explore how
effective this reaction to external perturbations can be when a cloaking system is composed of several separated
cylindrical particles.

The first two cloaking mechanisms are compared with a third technique (of unfolded geometries) [23–25] in a table
in Nicorovici et al. [20]. It makes clear that the third technique [23] is intermediate in operation between internal and
external cloaking, although in principle it is closely linked to cloaking by plasmonic resonance.

It is the object of this paper to present our first results on an investigation of a widely recognized limitation of
all three cloaking methods: their narrow-band effectiveness. This topic is of great importance to any effective use
of cloaking, since electromagnetic detection will almost inevitably involve use of a range of frequencies, and current
cloaking designs either rely on geometric structures optimized for a narrow band of frequencies, or on optimal material
properties which again are narrow-band. This problem has recently been discussed by Farhat et al. [26], and by Alu
and Engheta [27]. The difference between the work here and that of Alu and Engheta is that we deal with the two-
dimensional case of electrostatics and seek materials offering optimal dielectric permittivity, while Alu and Engheta
deal with coated spheres and electromagnetic scattering, and combine both the dielectric permittivity and the magnetic
permeability as design parameters. Also, our focus will be on whether cloaking by resonance can be made to work in
a cooperative fashion, with individual particles “looking after” cloaking in a narrow range of frequencies, thereby in
aggregate delivering wider-bandwidth invisibility. Alu and Engheta concentrate on non-resonant designs, and achieve
promising results in this way.

In fact rather than discussing here the frequency overlap of plasmonic resonances in several coated cylinders, we
will discuss the spatial overlap of their cloaking regions. The reinforcement of cloaking by the spatial overlap would
be useful in practice, given that the physical choices of the cloaking material will not be ideal, and spatial overlap
could deliver aggregate performance closer to that of the ideal materials. Again, the idea of spatial overlap is easier to
investigate since it involves the use of only one material. A full investigation of spectral overlap would require designs
for a range of cloaking materials with plasmonic resonance frequencies closely spaced.

In the next section, we briefly describe the numerical methods we have used to obtain the results of later sections.
We continue in Section 3 with a discussion of systems of two and three coated cylinders, and show that in general
resonant cloaking cannot be made to operate in a cooperative fashion: the interaction between cloaking cylinders
is combative, in that, loosely speaking, each tries to cloak the others, rather than the external particle it is desired
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Fig. 1. Two coated cylinders, placed at the points zi and zj , and a polarizable line dipole at zd . Eappl is an electric field with sources at infinity.
The annular domain Dj , between the shell of the cylinder j and the dashed circle, is chosen so that it contains no other cylinder or field sources.
P(z) is an arbitrary point in the plane where the total electric potential is evaluated.

be cloaked. We show that this is true not only for highly-idealized choices of permittivity, which exhibit extremely
strong resonances, but also for the permittivity of silver, for which the resonances are damped by ohmic dissipation.
In Section 4, we discuss a means by which cooperative resonant cloaking can be achieved, with the cloaking regions
of successive coated cylinders touching rather than overlapping, so delivering a cloaking region larger in space but not
widened in frequency. We summarize our results in Section 5.

2. Formulation

Here, we only outline the formulation. Detailed theoretical considerations and the corresponding numerical method
are given in the electronic supplementary material.

We consider the problem of a finite cluster of identical coated cylinders with the core radius rc and the shell
radius rs , having the core permittivity εc and the shell permittivity εs , embedded in a matrix (background) of permit-
tivity εb . The cylinders are subjected to a uniform electric field sourced at infinity and the field of a polarizable line
dipole added to the system so that it becomes a source of electric field. Fig. 1 shows a pair of nearest neighbors in the
cluster.

For a physical system comprising a cluster of N coated cylinders, a dipole of magnitude d = (k(e), k(o)) located at
zd �= 0, and a uniform field E, the analytic potential in the matrix is given by the Wijngaard type series [28]
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Here, the cylinders are represented by multipole series, p = e, o, and q = 1 if p = e, and q = −1 if p = o [12,13].
The complex potential is obtained from the formula [12,13]
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where the superposed bar denotes complex conjugation and the subscript b stands for background (matrix). Note that
f

(p)
b (z) means to take the complex conjugates of all complex coordinates z, zd , and zi .

Let j be a cylinder in the cluster and Dj an annular region free of any field sources or cylinders/inclusions (see
Fig. 1). For z ∈ Dj and inside the cylinder j , we may write the complex potential in terms of the analytic potentials
[12,13,15]
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Consequently, for z ∈ Dj we construct the complex potentials
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the total complex potential for z ∈ Dj being
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The constant C(p) can be set so that the potential at the origin of coordinates is zero (f (p)
b (0) = 0):
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To show the symmetries of the cylinder cluster one has to set the origin of coordinates at the centroid of the cluster,
and the direction of axes according to the direction of the cluster symmetry axes.

Now, introduce the notations ζj = z − zj , zjd = zd − zj , and zji = zi − zj , and note that for z ∈ Dj we have
|ζj | < |zjd | and |ζj | < |zji |, ∀i �= j (see Fig. 1), so that we may use the series expansions of 1/(ζj − zjd) and
1/(ζj − zji)

� to rewrite (8) in the form
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The zeroth order term is
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we may express the constant Ã
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and from the boundary conditions at the shell–matrix interface we obtain a second relation
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Here, r
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c and r
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s denote the core and shell radii of the cylinder i. Also, ε
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shell permittivities, while εb represents the permittivity of the matrix (background). Finally, by substituting Eq. (14)
into Eq. (13) we obtain the linear system
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Eq. (16) can be used when we know the magnitude of the dipole. In the case of a polarizable dipole, the magnitude
of the dipole is determined by the total electric field at the point where the dipole is located. Thus, the total electric
field at an arbitrary point z is E = −∇Vb(z) [29], which is singular at z = zd . Hence, we have to remove the dipole
term from Vb(z) or, equally well, from f
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b (z) defined in Eq. (1), and use
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Note that we have also removed the constant which vanishes after differentiation. From (17) we derive the expression
of the complex potential
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Finally, by substituting k(e) and k(o) into (16) we obtain a linear system for the coefficients A
p,j
m . Note that, in the

case E(e) = E(o) = 0 this linear system becomes homogeneous and the solution is the trivial one, except the resonant
states. Therefore, all the multipole coefficients vanish and there is no effect. Actually, with no external source the
whole system of polarizable dipoles and cylinders is “in darkness” with all the components being then invisible.

The resonant states, if they exist, are interesting because the only parameters which can be varied to achieve
the resonance effect are the polarizability of the dipole and the distances between the dipole and cylinders. The
arrangement of cylinders could be important too.
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Fig. 2. Numerical computations for the magnitude of a polarizable dipole moving along the y-axis through the cloaking regions of a system of three
cylinders. Left: the physical structure containing coated cylinders with rc = 1, rs = 4, εc = εm = 1, εs = −1 + 10−6i, and μc = μs = μm = μ0.
The applied external electric field is E = (0,−1) and the polarizability of the dipole is α = 20. The dashed line denotes the cloaking radius

r# =
√

r3
s /rc = 8 (see [12,13]), and the centers of the cylinders are located at the points z = d{1 − i

√
3/3,2i

√
3/3,−1 − i

√
3/3}, with d = 16.

Right: the values of |ke| and |ko| corresponding to the position of the polarizable dipole in the left panel (the black dots in the right panel
show the x-coordinate of the red dot on the ke- and ko-curve in the left panel). Here, the black dots correspond to (x = 0, y = 0.04), where
ke = 1.7205 + 8.54009i and ko = −4.6295 + 6.89136i.

3. Combative cloaking

We now consider a polarizable particle placed in a uniform external field, and approaching a system of three
cloaking cylinders with centers arranged on the vertices of an equilateral triangle. The inner and outer radii of the
coated cylinders are chosen so that the boundaries of their cloaking regions (indicated by dashed lines in Fig. 2,
left panel) just touch the outer surfaces of the other cylinders. The three cloaking regions overlap in a small, almost
triangular region. It was our expectation that the cloaking action of the first pair of coated cylinders would set in as the
particle penetrated their overlapping cloaking region, and the cloaking would be enhanced when the particle entered
the region where the third cylinder could enhance the cloaking.

We show results for two cases: one where the cloaking cylinders have a coating with a dielectric permittivity with
a very small imaginary part (Fig. 2), and one where its imaginary part is that of silver at just that wavelength where
the real part of the dielectric permittivity passes through −1 (Fig. 3).

Considering first the idealized case, we see that cloaking tends to be best in the region of two-cylinder interaction,
but is bad in the region where three cylinders interact. However, even in the region of pair interaction, the cloaking
interaction is inferior to that of a single coated cylinder acting in isolation. Note the small regions of local maxima
in Fig. 2 (right panel), where cloaking is less effective, and the very evident peak at the center of the three-cylinder
cloaking region. The best cloaking interaction is evident at the right of the curve in Fig. 2, where only the top cylinder
is involved.

Consider next the case of an actual metal as the cloaking material (Fig. 3). Naturally enough, the cloaking action
is a much smoother function of position, as we would expect given the lower quality factor of the plasmon resonance
associated with the damping effect of the imaginary part of the dielectric permittivity. Roughly speaking, this is the
major difference between the results in Fig. 2 and Fig. 3: there is a good cloaking action at the center of the pair
interaction region, but this is lost in the three cylinder interaction region.

We can see no evidence in either Fig. 2 and Fig. 3 of the cylinders acting to help each other in diminishing the
applied field acting on the polarizable external particle. This conclusion also relates to other numerical experiments
on different geometrical configurations of cloaking cylinders. For example, in Fig. 4 we show the interaction of the
polarizable dipole with a pair of cloaking cylinders: the similarity of the results here with those for three cloaking
cylinders is evident. In the case of highly resonant cloaking, if there are interactions then the cloaking is fragile and
spatially oscillatory, and rarely helped by cloaking particle interaction. If the cloaking corresponds to realistic material
parameters, and is thereby only moderately resonant, then the most important factor is how deeply the particle to be
cloaked penetrates into the cloaking region, rather than whether there are multiple cloaking interactions.
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Fig. 3. Numerical computations for the magnitude of a polarizable dipole moving along the y-axis through the cloaking regions of a system of
three coated cylinders with silver shell. The parameters are the same as in Fig. 2 except shell permittivity which is εs = −1 + 0.585385i for an
external radiation of wavelength λ = 336.9681 µm (rc , rs and d are also given in µm). For the position of the dipole shown in the left panel (x = 0,
y = 0.04) we have ke = 4.67281 + 7.38056i and ko = −7.71414 − 0.49838i.

Fig. 4. The same as Fig. 2 (left panel) and Fig. 3 (right panel) but with the top cylinder removed. The vertical dashed lines mark the lower intersection
of the cloaking areas, the position of the cylinder centers, and the upper intersection of the cloaking areas.

4. Cooperative cloaking

We now consider a design where the coated cylinders have cloaking regions which touch, but do not overlap (see
Fig. 5, left panel). The result is that we can follow the polarizable particle along a trajectory where it is only interacting
strongly with one cloaking cylinder at a time. In Fig. 5 (right panel) we see that this gives us quite a good cloaking
effect over a trajectory whose length can be increased indefinitely. There are small “blips”, where the particle moves
from one cloaking region into the next, but overall this design works well. The best cloaking occurs as we would
expect, at the points where the particle is deepest in the cloaking zone of a single cylinder.

For the next example (Fig. 6), we show a two-layer arrangement of cloaking cylinders, again with an idealized
imaginary part of the dielectric permittivity. The cloaking behavior is similar to that in Fig. 5, except that the “blips”
in cloaking where overlap regions touch is larger, and there is an interesting alternance in their size. The reasons for the
differences between the behavior in Figs. 5 and 6 are not fully understood, and need to be explored if this mechanism
of collaborative cloaking is to be further developed.

5. Conclusions

We have explored phenomena which arise when quasistatic cloaking due to plasmonic resonance is attempted
with systems of coated cylinders. The hoped-for strengthening of cloaking effects due to overlapping resonances has
not been in evidence, at least in the cases we have investigated. Other geometries may well be required, perhaps with
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Fig. 5. Numerical computations for the magnitude of polarizable dipole moving along a sin-type trajectory (y = 5 sin (πx/d)) through the cloaking
regions of a chain of coated cylinders. Left: the physical structure containing coated cylinders with rc = 1, rs = 4, εc = εm = 1, εs = −1 + 10−6i,
and μc = μs = μm = μ0. The applied external electric field is E = (−1,0) and the polarizability of the dipole is α = 20. The dashed line denotes
the cloaking radius r# = 8 and the distance between the centers of the cylinders is d = 2r# = 16. Right: the values of |ke| and |ko| corresponding to
the position of the polarizable dipole in the left panel (the black dots in the right panel show the x-coordinate of the red dot in the left panel). The
black dots correspond to ke = −0.0000991 − 0.0004102i and ko = 0.0003424 − 0.0000991i.

Fig. 6. Numerical computations for the magnitude of polarizable dipole moving along a sin-type trajectory (y = 2 sin (2πx/d − π/2)) through
the cloaking regions of a cluster of coated cylinders. Left: the physical structure containing coated cylinders with rc = 1, rs = 4, εc = εm = 1,
εs = −1 + 10−6i, and μc = μs = μm = μ0. The applied external electric field is E = (−1,0) and the polarizability of the dipole is α = 20. The
dashed line denotes the cloaking radius r# = 8 and the distance between the centers of the cylinders is d = 2r# = 16. Right: the values of |ke| and
|ko| corresponding to the position of the polarizable dipole in the left panel (the black dots in the right panel show the x-coordinate of the red dot
in the left panel). The black dots correspond to ke = −0.461442 − 5.14197i and ko = 3.88616 − 0.439134i.

multiple coatings or with sectored coating. to achieve the sought-after effects of better cloaking bandwidth, or stronger
cloaking with non-optimal materials. Of course, the investigations reported here need also to be undertaken in the case
of the full Maxwell equations, and not just in the quasistatic limit.
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