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Abstract

We examine the band spectrum, and associated Floquet–Bloch eigensolutions, arising in straight walled acoustic waveguides that
have periodic structure along the guide. Homogeneous impedance (Robin) conditions are imposed along the guide walls and we
find that in certain circumstances, negative curvature of the lowest (bending) mode can be achieved. This is unexpected, and has not
been observed in a variety of physical situations examined by other authors. Further unexpected properties include the existence
of the bending mode only on a subset of the Brillouin zone, as well as permitting otherwise unobtainable velocities of energy
transmission. We conclude with a discussion of how such boundary conditions might be physically reproduced using effective
conditions and homogenization theory, although the methodology to achieve these effective conditions is an open problem. To cite
this article: S.D.M. Adams et al., C. R. Physique 10 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Conditions de Robin pour modes de flexion à dispersion négative. Nous étudions le spectre de bande associé aux modes de
Floquet–Bloch dans des guides d’ondes planaires acoustiques périodiques. Nous imposons des conditions d’impédance homogènes
(conditions de Robin) sur les bords du guide d’épaisseur finie, et observons dans certains cas une courbure négative de la première
bande de dispersion (mode de flexion). Cette trouvaille est pour le moins inattendue, car une telle anomalie n’a pas été reportée à
ce jour pour d’autres types de conditions limites dans nombre de problèmes physiques. Encore plus surprenante est l’existence de
modes de flexions dans un segment de la zone de Brillouin ainsi que des vitesses de groupe extrêmes. Finalement, nous suggérons
certaines pistes pour obtenir de telles conditions d’impédances, telle que la voie classique de l’homogénéisation, même si cela reste
pour l’heure un problème ouvert. Pour citer cet article : S.D.M. Adams et al., C. R. Physique 10 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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Version française abrégée

Nous considérons un guide planaire périodique dont la géométrie est décrite dans la légende de la Fig. 1. Les ondes
acoustiques qui s’y propagent sont solutions de l’équation de Helmholtz (1) dans les couches homogènes j = 1 et 2
occupées par des matériaux élastiques isotropes de densités ρj kg m−3 où les vitesses des ondes acoustiques sont de
cT (j) m s−1. Les paramètres géométriques et physiques sont normalisés par rapport à l’épaisseur h du guide et ceux
du matériau 1. Nous imposons des conditions d’impédance (de Robin) ∂u

∂n
+ μ±u = 0 sur les paroies horizontales

supérieure et inférieure y = ±1 du guide planaire. Par ailleurs, des conditions classiques de continuité du champ
de déplacement et de la composante normale du stress sont imposées aux interfaces verticales entre les différents
matériaux de la cellule élémentaire et des conditions de Floquet–Bloch sur les bords gauche et droit de celle-ci. Nous
nous intéressons plus particulièrement au cas où les conditions d’impédance sont de signes opposés i.e. μ+μ− < 0.

En premier lieu, nous considérons le problème homogène et obtenons la relation de dispersion (6) qui se réduit au
cas Neumann [5] pour p = 0, car dans ce cas la seule solution non-triviale du problème est pour μ = 0.

En second lieu, nous considérons le problème multi-couches et obtenons la relation de dispersion (7), (8) qui est
identique au cas Dirichlet [5]. Le spectre de bande de notre guide avec conditions d’impédance contient donc en
particulier celui du guide avec conditions de Dirichlet, mais il est plus riche. En effet, les courbes en pointillé sur
la Fig. 4 n’existent que pour les conditions d’impédance, alors que les courbes continues existent dans les deux cas.
On note par ailleurs que la première courbe de dispersion a une courbure négative et elle n’existe que pour un petit
interval de la zone de Brillouin. En jouant sur la valeur de l’impédance, nous obtenons des courbes de dispersion
exotiques reportées sur la Fig. 5. Pour le cas μ = 10, nous observons dans la Fig. 6 que le premier mode de flexion
admet une courbure négative avec une pente quasi-infinie quand k0d = 2.9. Ce type de dispersion anormale pourrait
avoir des applications non seulement en réfraction négative, mais aussi dans le transport ultra-rapide de l’énergie.
Nous analysons dans la Fig. 7 l’extension du support des modes de flexion en fonction de la valeur de l’impédance.
Ce type de mode n’existe que sur des sous-ensembles strictement inclus dans la zone de Brillouin, contrairement aux
conditions au bord classiques de type Dirichlet ou Neumann. Enfin, nous reportons dans la Fig. 8 des profils du champ
de déplacement.

Nous concluons notre étude par les applications qui peuvent-être envisagées, telles que la réalisation d’endoscopes
à haute résolution. Nous étayons ces perspectives par des résultats numériques illustrant le principe de tels endoscopes
dans la Fig. 9, même si nous ne sommes pas en mesure de démontrer l’aspect haute-résolution.

1. Introduction

Negative refraction [1] is a rapidly growing field in photonics, which started back in 2000 with the controversial
claim of Sir John Pendry that it leads to the possibility of a lens displaying sub-wavelength imaging [2] which is
an electromagnetic paradigm [3]. The quest for this superlens fueled research in this area, which lies somewhere at
the interface between surface science, photonics and new technologies, and a comprehensive review of its infancy
can be found in [4]. We are concerned today with acoustical counterparts of perfect lenses [5], having tomographic
applications in mind, but also slow wave devices in the spirit of what has been achieved in photonic crystals [6,7],
but transposed to the area of acoustic delay lines [8]. Thus far, Neumann (freely vibrating) and Dirichlet (clamped)
conditions (or an alternation of them) were assumed to hold on the walls of one-dimensional strips, while in the
present paper we investigate the possibility of impedance (Robin) boundary conditions. Such conditions might arise
in a number of physical situations, including rough or high-contrast structured interfaces [9], but importantly also
electrical circuits [10]. The propagation of waves with anti-parallel group and phase velocities was discussed in the
late 1940s by Brillouin [11] and Pierce [12] who utilized a series-capacitance/shunt-inductance equivalent circuit
model supporting backward waves, see panel (a) of Fig. 1. However, such circuits were dominated by diffraction-
scattering phenomena, as these were used in the Bragg regime, whereby the wavelength is comparable to the unit cell
repeated periodically. In contrast, circuit-based electromagnetic metamaterials displaying negative refraction through
effective impedance conditions operate at low frequency, in the fundamental mode of the waveguide when dissipative
effects are much smaller, see [10]. In that case, diffraction-scattering phenomena can be neglected, leading to non-
intuitive effective properties such as interfaces now known to support plasmon waves which are responsible for the
enhancement of evanescent waves in metamaterials [13].
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Fig. 1. Fundamentals of transmission lines and acoustic resonators. Panel (a) displays an infinite periodic circuit consisting of an alternation of
capacitances on its upper wall and inductances on its vertical walls (which was shown to support backward waves in the Bragg regime by Brillouin
[11]); Panel (b) shows an acoustic resonator consisting of a mass connected to two springs attached to clamped walls on either side (acoustic
equivalent [18] of a split ring resonator displaying artificial magnetism in electromagnetic meta-materials [14]); Panel (c) is a unit cell of an infinite
periodic circuit extending some designs of Caloz and Itoh for negatively refracting transmission lines in the homogenization regime [10] (note that
effective impedance conditions on upper and lower walls should be of opposite signs from asymmetry considerations); Panel (d) draws a parallel
with the acoustic resonator of panel (b).

Fig. 2. The infinite periodic waveguide; materials 1 and 2 are shown. The guide occupies −∞ < x/h < ∞, −1 < y/h < +1.

Interestingly, impedance conditions of the Robin type such as those discussed in the current paper arise naturally
in transmission lines consisting of asymmetric resonating electrical circuits exhibiting some negative refraction in the
quasi-static regime [10]. This asymmetry allows for oppositive propagation directions for surface waves supported
by upper and lower walls of the waveguide (backward and forward). This leads to a most unusual imaging system
whereby the source feeds the image and vice versa, which somewhat echoes a proposal of a perfect lens by Pendry
and Ramakrishna using an alternation of layers with negative refractive index (NRI) and positive refractive index with
gain to compensate for the absorption inherent in NRI. However, the present paper focusses on the area of acoustic
waveguides where the mathematical models and the underlying physics is much different. We hope that our results on
negatively refracted low frequency bending modes will open new routes in delay lines and imaging devices displaying
high-resolution.

Fig. 2 shows the geometry of the guide we consider. The solutions in the periodic guide are characterized by the
frequency, ω, and the product of the Bloch wave number, k0, with the periodic cell length d . The spectral problem
does not permit propagating solutions for some range of frequencies and so-called stop bands, [16], occur and we
investigate the appearance of these. Impedance boundary conditions are imposed on the upper and lower guide walls
and we demonstrate that negative group velocity of the bending mode can occur. It can be demonstrated, [5], that such
phenomena are not possible in the analogous cases of homogeneous Dirichlet or Neumann wall conditions. Further,
this has not previously been observed in curved guides or guides with alternating boundary conditions. It should be
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noted that the appearance of this phenomena is of considerable practical interest [6,7], in particular in its potential for
opening new possibilities for sub-wavelength imaging. Further, we note some curves also have very slight curvature
in the ω, k0 plane and allow for some very slow propagation of energy, as was observed in the Dirichlet and Neumann
cases [5].

We begin by formulating the problem and deriving the modal solution for the impedance system. A dispersion re-
lation is given, but we later find that this captures only part of the solution. We offer a comparison with the analogous
Dirichlet and Neumann problems, and outline why the argument which prohibits negative bending mode curvature
in those cases does not apply here. Results are presented for the fundamental cases of interest, and we investigate
the variation of the bending mode as boundary conditions are altered. There are physical implications of the anoma-
lous dispersion and trapping phenomena that we discuss. We finally propose a design of an acoustic endoscope via
anomalous dispersion.

2. Formulation

We consider a striped guide occupying −1 < y/h < 1, −∞ < x/h < +∞, shown in Fig. 2. We assume material 1
occupies regions nd < x/h < nd + d1, and material 2 occupies regions nd + d1 < x/h < (n + 1)d , for all integers n,
and this enables us to solve the problem on region 0 < x/h < d , subject to Bloch conditions. Impedance conditions on
the guide walls are imposed and we permit differing impedance parameters on top and bottom. Here and henceforth
a j in subscript will denote a material parameter or variable corresponding to, or only defined in, material j , for
j = 1,2.

We non-dimensionalize throughout using parameters of material 1; all variables and parameters decorated with
tilde are non-dimensional. The following non-dimensional variables and parameters are introduced:

x̃ = x/h, ỹ = y/h, t̃ = cT (1)t/h, ũ3 = u3/h, τ̃ik = τik/
(
ρ(1)c

2
T (1)

)
ω̃ = hω/cT (1), α̃(j) = cT (j)/cT (1), β̃(j) = ρ(j)/ρ(1)

for j = 1,2. In subsequent equations, the tilde will be omitted for convenience, and everything hereafter is non-
dimensional. The Helmholtz equations are:

α2
(j)

(
∂2u

(j)

3

∂x2
+ ∂2u

(j)

3

∂y2

)
+ ω2u

(j)

3 = 0 (1)

and the equations are valid within the domains occupied by materials j = 1,2.
Impedance boundary conditions of the Robin type

∂u

∂n
+ μ±u = 0 (2)

are applied along the guide walls y = ±1, and interface conditions ensuring the continuity of normal stress and
displacement at material junctions are imposed.

The change of phase between x = 0 and x = d is fixed using Floquet–Bloch conditions on the normal stress and
displacement:

u
(2)
3 (x = d−) = u

(2)
3 (x = 0−) exp(ik0d), τ

(2)
13 (x = d−) = τ

(2)
13 (x = 0−) exp(ik0d) (3)

and to ensure propagating solutions we impose that k0 is real.
Fig. 3 shows the Bloch spectrum when μ− = μ+ = 1 for a guide made of aluminum–tin (materials 1 and 2

respectively: aluminum has cT = 3130 m/s and ρ = 2700 kg/m3 and tin has cT = 1670 m/s and ρ = 7300 kg/m3),
and with d1 = d2 = 3. All subsequent computations will use the same material parameters and layer thicknesses. In
this instance, the spectrum resembles that of the analogous clamped case. In particular, a stop band at zero frequency
appears, and several band gaps form. Further, we note the presence of two nearly completely flat bands associated
with modes trapped in the layers, at ω = 1.17, ω = 1.39. We do not present a full comparison between the impedance
problem and clamped/free problems here, but instead proceed directly to the special case in which negative bending
mode curvature can be obtained.
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Fig. 3. The Bloch spectrum for the impedance problem in which μ− = μ+ = 1.

Here and henceforth we shall restrict analysis to the special case in which μ = +μ+ = −μ−. We begin by ex-
amining the homogeneous problem in which one can pose a single-mode solution in each of the materials of the
form:

u
(j)

3 (x, y) = [
Aj exp(+ikn(j)x) + Bj exp(−ikn(j)x)

]
û

(j)

3n (y), for j = 1,2 (4)

valid for kn(j) �= 0, in which A1, A2, B1, B2 are constants, and û
(j)

3n (y) is the nth modal solution:

û
(j)

3n (y) = [
μ sin(p(j)) + p(j) cos(p(j))

]
cos(p(j)y) + [

p(j) sin(p(j)) − μ cos(p(j))
]

sin(p(j)y) (5)

in which p(j) = (ω2/α2
(j)

− k2).
Invoking a determinant condition shows that boundary conditions impose:

μp(j) sin(p(j)) cos(p(j)) = 0 (6)

thus possible solutions are at p(j) = π/2,π,3π/2, . . . , provided μ �= 0. The case p(j) = 0 leads to the trivial solution,
unless μ = 0, which corresponds to the bending mode in the stress-free case.

3. Results

We now turn our attention to the layered case, and note that as in previous acoustic problems, the modal solution
does not include material parameters. This opens the possibility for single mode into single mode (monomodal)
transmission between layers, in which a separable solution is applicable. In this instance one arrives at a dispersion
relation without requiring the modal solution u

(n)
j (y):

2r
(
cos(kn(1)b) cos(kn(2)a) − cos(k0d)

) − (
1 + r2) sin(kn(1)b) sin(kn(2)a) = 0 (7)

r = (
α2

(2)β(2)

)/(
α2

(1)β(1)

)
√√√√α−2

(2)ω
2 − (nπ/2)2

α−2
(1)ω

2 − (nπ/2)2
(8)

valid for n = 1,2, . . . . The above dispersion relation, known as the Kronig–Penney relation in the context of electrons
in solids [17], naturally appears in one dimensional photonic and phononic crystals (with layers of infinite height), see
e.g. [16,19,20] and references therein. This is the same as in the clamped case, and thus the Bloch spectrum for the
impedance problem must contain the spectrum for the clamped problem. It follows that the analysis of that problem
concerning the existence of slow modes also holds here, [5]. The impedance-problem, however, has a wider Bloch
spectrum, and this is demonstrated in Fig. 4, in which μ = 1, and where solutions corresponding to both clamped and
impedance problems are shown as solid lines, and solutions corresponding to the impedance case only are shown as
dashed lines. Due to the inclusion of these spectra, it is clear that the impedance guide supports energy propagation
at more frequencies than the analogous clamped guide. Furthermore, Fig. 4 shows that modes of the layered structure
exist below the n = 1 cut-off frequency of both materials, at α(1)π/2 = 1.57, α(2)π/2 = 0.84. The figure shows a
bending mode with negative curvature, which exists in 0 < k0d < 0.283, and we draw attention to this in panel 4(b).
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Fig. 4. The Bloch spectrum for μ = +μ+ = −μ− = 1 is shown as solid curves (clamped and impedance spectra) and dashed curves (impedance
only spectrum). Panel (b) highlights that the lowest mode exists only on a subset of 0 � k0d � π , and that negative curvature is observed. Panel (c)
shows that bandgaps also form in the impedance-only spectrum.

Panel 4(c) shows that stop bands form in the impedance only spectrum, preventing energy propagation at a range
of frequencies. In a similar fashion to the traction-free problem, these bands generally widen as material disparity
increases.

We briefly address these additional modes, and explain why they are not captured by the derived dispersion rela-
tion, (7). In deriving (7) it was assumed that a single modal expansion can be posed in each material, and continuity
conditions imposed on those expansions will yield a dispersion relationship. However, it is only by virtue of a biorthog-
onality relationship, [15], which takes a much simpler form in acoustics, that one can be sure that mode scattering
will not occur. In the problem at hand, the biorthogonality property is lost, and modes scatter, whenever the mode
number n is odd in one material and even in the other. In this case, as happens with the bending mode, there is no
governing dispersion relation and hence no analytical tools are available. In particular, the analysis presented in [5],
which demonstrates that the clamped guide bending mode always has positive group velocity involves perturbing the
derived dispersion relationship. When impedance conditions are used, however, the bending mode is not a solution
of (7), and so the possibility for negative bending mode curvature remains open.

We now examine how the response of the bending mode varies as the impedance parameter, μ, is changed. It is
clear that μ = 0 and μ = ∞ correspond to traction-free and clamped problems respectively, and in the absence of any
physical mechanism to introduce a discontinuity it is natural to expect to find a smooth transition as those values are
approached.

We begin by giving the Bloch spectrum of bending modes for various values of μ, shown in Fig. 5. There are
three types of bending mode available, and in all cases the group velocity is either positive or negative on the entire
support; a feature characteristic of straight walled acoustic guides. Modes supported on k∗

0d < k0d < π appear, for
which k∗

0 > 0, and these modes have positive group velocity throughout, henceforth referred to as type I modes. Fig. 5
shows such examples of such modes at μ = 0.2 and μ = 2.5. We also note that k∗

0 → 0 as μ → 0, and the mode shown
at μ = 0.2 continuously deforms into the bending mode of the traction-free problem, supported on all of 0 < k0d < π ,
with positive group velocity. Modes supported on 0 < k0d < k∗d appear, for which k∗d < π , and these have negative
0 0
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Fig. 5. The Bloch spectrum for the bending modes for a variety of values of μ.

Fig. 6. Bloch spectrum for μ = 10. We draw attention to the bending mode which begins at k0d = 0, ω ∼ 2 and has support on 0 � k0d � 2.9. This
mode attains a large gradient and thus permits rapid energy propagation.

group velocity throughout and are henceforth referred to as type II modes, examples of which are shown at μ = 1,
μ = 5. Type I and II bending modes have a zero frequency, non-oscillatory solution at k0 = k∗

0 . Thirdly, certain values
of μ yield modes with negative curvature which exist throughout the Brillouin zone, and such a mode is shown in the
figure with μ = 0.5, henceforth referred to as type III modes.

As μ → ∞, one obtains lowest mode solutions (that mode obtaining minimum frequencies) which intersect higher
modes. As μ becomes larger, more modes are bounded below the bending mode at k0d = 0, permitting large group
velocities even at high frequencies. In the limit μ = ∞, equivalent to the clamped case, the bending mode disappears
as it represents the zero-solution. We note also that these modes offer group velocities far above any other mode for
large μ (e.g. μ = 5), and hence permit rapid transmission of energy. We give an example of the bending mode for
μ = 10 in Fig. 6. The mode is not supported on the whole Brillouin zone, and obtainable at 0 � ω � 2. As a result of
the vast frequency range occupied, the mode must obtain large group velocities (which are negative) throughout the
Brillouin zone. This feature is especially apparent when contrasted against the almost dispersion-less modes supported
by the structure, also shown in the figure at ω = 0.929,1.179,1.462.

It is clear that as μ increases from 0, transition between types is possible, as μ = 0.2 and μ = 2.5 are of the same
type, but 0.2 < μ = 1 < 2.5, of different type, exists at an intermediate value. We now turn our attention to identifying
how this transition occurs as μ increases.

Fig. 7(a) shows the region of the first Brillouin zone on which the bending mode is supported as μ varies, and is
shaded in the figure. Away from a number of critical μ the response is linear. The bending mode changes between
the types described as μ increases. We note that type III modes are supported only on narrow regions, shaded darkly
in the figure. At values μ = 0.481, 1.04, 1.53, 2.09, 2.58, a transition occurs as bending modes to the left of these
values disappear (the spectrum occupied by those modes shrinks to zero), and a new bending mode appears. This is
marked by a discontinuity in the k0d support and of the maximal ω over the mode at these values. Further, the switch
at these values is between modes of positive and negative group velocities, thus if one were able to tune the guide
through effective conditions, one could perturb about these values and so induce a rapid shift in the direction of energy
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Fig. 7. Panel (a) shows the variation of the Bloch support of the bending mode as μ varies, and mode types are shown. Types I and II (existing
only on some subset of the Brillouin zone) are shaded in light color, and type III modes are shaded darkly. Panel (b) shows the range of ω values
occupied by the bending mode. Type I and II modes achieve ω = 0 (non-propagating modes), and type III modes have positive lower bound, as
shown.

propagation, and so yield potential applications in switching technology. Continuity as μ → 0 is observed, where, at
the origin, the mode exists on all of 0 < k0d < π . Fig. 7(b) shows the response of the maximal and minimal values of
ω for the bending mode. It is worth noting that in straight walled guides, the width of the stopbands is determined by
the dispersion relations at the edge of the Brillouin zone, [21]; these results also confirm our observations of modes
having a uniformly signed group velocity throughout the Brillouin zone. Modes of types I and II are characterized by
ω = 0 minimal value of ω, shown in the figure. The critical impedance parameters, at which a new bending mode is
formed, are shown as dashed vertical lines in the figure.

Fig. 8 shows the mode shape of the lowest mode for μ = 1, in panels 8(a) and 8(c), and for μ = 0.2 in panels
8(b) and 8(d). In the first of these cases, we examine the mode shape at k0d = 0.286 corresponding to the zero-
frequency stationary solution of the bending mode, circled in Fig. 4. The second case is a mode whose support is on
1.21 < k0d < π , as seen in Fig. 5, at ω = 0.305 – at the edge of the Brillouin zone, and we see that despite differences
in Bloch and impedance parameters, the response is similar between these cases. It is also noted that panel 8(b) shows
the displacement response is linear in material 1. Careful examination of the lowest mode at various values of μ and
k0d shows that the shape across the guide is largely insensitive to changes in impedance, μ, and Bloch parameter k0,
and the examples presented here are typical of the bending mode. We also note the absence of symmetry across the
guide, shown in panels (c) and (d), whereas symmetry/anti-symmetry is found in the clamped and traction-free cases.

4. Conclusions

We have investigated the Bloch spectrum of a straight, parallel walled acoustic guide subject to impedance bound-
ary conditions on top and bottom. The focus has been on the special case in which μ+ = −μ−, and we have found
that anomalous dispersion effects of the bending mode are possible, including negative curvature and existence only
on some subset of the first Brillouin zone. Such effects can also be generated for |μ+| �= |μ−|, provided they are of
opposite signs, though unless |μ+| = |μ−|, the correspondence with the clamped case, given in Section 3, no longer
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Fig. 8. Mode shapes along the guide are shown in (a), (b), and shapes across the guide are shown in (c), (d), for μ = 1, k0d = 0.286 in panels (a),
(c) and for μ = 0.2, k0d = π in (b), (d).

Fig. 9. Lensing effect for an acoustic line source of frequency ω = 4 (panels a, c) and ω = 1.5 (panels b, d) located on the left edge of a waveguide
consisting of 6 cells of equal thickness h = 2 and length d1 + d2 = 2d1 = 6 with impedance parameter μ = ±10 on the guide walls, as in
Fig. 6. Upper panel (a, b): 2D plot of the longitudinal displacement u3; Lower panel (c, d): 2D plot of the absolute value |u3| of the longitudinal
displacement; The high magnitude of the displacement on the bottom wall is notable.
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holds as the symmetry is broken. We have described how these effects vary with boundary conditions on the guide
walls, and focused on the response of the bending mode to these changes. Comparisons with the clamped case were
drawn, and an explanation as to why negative bending mode group velocities are possible was given. There are poten-
tial applications in many areas, including a new generation of delay lines or high resolution medical imaging systems
such as endoscopes for non-destructive imaging. Fig. 9 shows some preliminary results on a lensing effect using either
the low frequency bending mode of Fig. 6 (panels b, d), or a higher-frequency mode (panels a, c), when μ = ±10
on the top and bottom guide walls respectively. We believe that the effective impedance conditions assumed on the
guide walls can be obtained through homogenization of corrugated waveguides. If one is interested in applications in
electronic engineering, a design of electrical circuits such as in Fig. 1 will enable one to obtain dispersion curves as
discussed in this paper in order to enable a better control of the signal wavespeed (through high or low group veloc-
ity). It is also interesting to note that the unusual behavior of the dispersion curve of the first bending mode which
disappears or appears unexpectedly on finite segments strictly within the Brillouin zone clearly contradicts the widely
accepted statement that width of gaps are controlled by the edges of the Brillouin zone, see [20,21].
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