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Abstract

Newly discovered metamaterials have opened new vistas for better control of light via negative refraction, whereby light refracts
in the “wrong” manner. These are dielectric and metallic composite materials structured at subwavelength lengthscales. Their
building blocks consist of local resonators such as conducting thin bars and split rings driving the material parameters such as the
dielectric permittivity and magnetic permeability to negative (complex) values. Combined together, these structural elements can
bring about a (complex valued) negative effective refractive index for the Snell–Descartes law and result in negative refraction
of radiation. Negative refractive index materials can support a host of surface plasmon states for both polarizations of light. This
makes possible unique effects such as imaging with subwavelength image resolution through the Pendry–Veselago slab lens.
Other geometries have also been investigated, such as cylindrical or spherical lenses that enable a magnification of images with
subwavelength resolution. Superlenses of three-fold (equilateral triangle), four-fold (square) and six-fold (hexagonal) geometry
allow for multiple images, respectively two, three, and five. Generalization to rectangular and triangular checkerboards consisting
of alternating cells of positive and negative refractive index represents a very singular situation in which the density of modes
diverges at the corners, with an infinity of images. Sine-cosecant anisotropic heterogeneous square and triangular checkerboards
can be respectively mapped onto three-dimensional cubic and icosahedral corner lenses consisting of alternating positive and
negative refractive regions. All such systems with corners between negative and positive refractive media display very singular
behavior with the local density of states becoming infinitely large at the corner, in the limit of no dissipation. We investigate all of
these, using the unifying viewpoint of transformation optics. To cite this article: S. Guenneau, S.A. Ramakrishna, C. R. Physique
10 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Réfraction négative, lentilles parfaites et échiquiers : piégeage et imagerie dans des espaces optiques repliés. Les métama-
tériaux, structures diélectriques et métalliques dont la périodicité est inférieure à la longueur d’onde, ouvrent de nouveaux horizons
dans le contrôle de la lumière par le truchement de la réfraction négative, où la lumière prend un mauvais tour. Leur brique élemen-
taire est constitutée d’une part d’un résonateur de type anneau fendu qui conduit la perméabilité à prendre des valeurs négatives, et
d’autre part d’une barre métallique qui joue un rôle similaire pour la permittivité. A l’échelle macroscopique, ils prennent la forme
de lentilles plates, cylindriques et sphériques (dont celle éponyme imaginée par Victor Veselago en 1968 et dont John Pendry dé-
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montre qu’elle est parfaite en l’an 2000), ou d’échiquiers et de solides platoniques qui piègent la lumière en leur sein. Pour citer
cet article : S. Guenneau, S.A. Ramakrishna, C. R. Physique 10 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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Version française abrégée

Cet article présente une revue des lentilles dites de Pendry–Veselago [1,2], qui repoussent les limites de l’optique
classique (de Fourier) en s’affranchissant du critère de Rayleigh. Ce pendant de l’inégalité d’Heisenberg en mécanique
quantique postule que la résolution d’une image par un système optique traditionnel ne peut-être inférieure à la moitié
de la longueur d’onde émise par la source.

Nous commençons par un rappel historique dans l’introduction (Section 1) des différentes étapes qui ont mené à
la découverte des lentilles parfaites, en rendant justice à l’article visionnaire de McPhedran, Nicorovici et Milton [3]
sur une lentille cylindrique parfaite, dont la publication précoce (en 1994, l’avénement des métamatériaux n’avait pas
encore eu lieu) semble avoir joué en sa défaveur (l’histoire de la physique se nourrit de paradoxes). Nous expliquons
comment cette cure de jouvence de l’optique classique a été rendue possible grâce aux matériaux d’indice négatif, qui
ont été découverts par Sir John Pendry et ses collaborateurs entre 1996 (introduction d’un réseau de fils métalliques
fins) et 1999 (introduction d’un réseau de doubles anneaux fendus). En bref, ces deux ingrédients, quant ils sont com-
binés, conduisent à des matériaux caractérisés par un indice de réfraction négatif dans les lois de Snell–Descartes. De
tels métamatériaux sont aujourd’hui connus pour leurs propriétés plasmoniques agissant à la fois sur les composantes
électrique et magnétique du champ. Ces vertues rendent possible des phénomènes uniques tels qu’une image sans ab-
beration ni astigmatisme (Veselago, 1968 [2]), qui présente de surcroît une résolution sous-longueur d’onde (Pendry,
2000 [1]), à travers leur lentille plate éponyme.

Nous passons ensuite en revue les propriétés mathématiques des matériaux main-gauche (raisons motivant le choix
d’une racine carrée négative dans le plan complexe en Section 2) et la physique sous-jacente (homogénéisation de
structures périodiques localement résonantes en Section 3). Nous expliquons en détails pourquoi la pierre de touche
de ces métamatériaux réside dans un modèle de Drude qui rend compte du comportement effectif du réseau d’anneaux
fendus et de fils métalliques qui les compose, ce que John Pendry avait démontré en faisant appel à son intuition
physique dès la fin du siècle dernier (des mathématiciens appliqués ont depuis lors fournit un cadre théorique adéquat).
Plus précisément, lorsque les anneaux sont traversés par une onde électromagnétique, les électrons tournent d’une
extrémité à l’autre dans les deux sens, de sorte que les boucles se comportent comme des solénoïdes induisant du
magnétisme artificiel : le métamatériau posséde alors une perméabilité négative. Par ailleurs, chaque segment de fil
métallique se comporte comme un dipôle électrique et les électrons vont et viennent tout du long. Ce type de résonance
dite plasmonique s’observe dans les métaux, dont certains comme l’or ou l’argent possèdent une permittivité négative
dans le spectre visible. L’apport de John Pendry en 1996 a été de diluer le métal dans du diélectrique pour rendre
le matériau suffisamment transparent (one notera que les métaux sont fortement absorbant dans le visible). Pour des
raisons de causalité, une permittivité et une perméabilité négatives aux mêmes fréquences conduisent à un indice de
réfraction négatif. Cette coïncidence ne se produit pas dans les matériaux à l’état naturel, mais elle a été observée
expérimentalement pour des métamatériaux fonctionnant du domaine micro-ondes au proche infra-rouge.

Nous suivons ensuite Alice, l’égérie de Lewis Carroll, de l’autre côté du miroir dans les sections suivantes. Nous
adoptons tout d’abord un point de vue géométrique en Section 4 qui lève un coin du voile sur la physique de la
réfraction négative : pour fabriquer des lentilles parfaites ad libitum, on procède à un repliement de l’espace optique
sur lui-même (pour obtenir une image clône de la source – ou image parfaite – il suffit d’annuler le chemin optique).
Or, pour paraphraser l’énoncé du principe de Pierre Fermat, la lumière suit toujours le trajet le plus court. Pour annuler
son chemin optique, il suffit donc de replier l’espace sur lui-même, ce qui revient à introduire une métrique négative
dans les équations de Maxwell. Dans une lentille classique, le chemin optique ne s’annule pas et l’image d’un point
n’est généralement pas un point, mais une tache ou astigmatisme (mis à part peut-être des techniques de microscopie
confocales en champ proche ou des reconstructions d’image utilisant des algorithmes pour problèmes inverses qui
nécessitent un outil informatique). L’idée est donc de réduire le chemin optique. Par ailleurs, les aberrations qui
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affectent la qualité des images, peuvent-être minimisées. La lentille plate de Pendry–Veselago fait très bien ce travail,
avec une source et une image situées à une distance finie de la lentille.

Mais d’autres géométries ont été envisagées, telles que des lentilles cylindriques ou sphériques qui permettent
un grossissement d’une image parfaite [4]. Et il y a plus, des lentilles triangulaire, carrée et hexagonale permettent
d’obtenir respectivement deux, trois et cinq images parfaites. Leur généralisation à des échiquiers triangulaire et
rectangulaire [5] dont les cases alternent des matériaux d’indice de réfraction positif et négatif représente une situation
pour le moins singulière dans laquelle la densité de mode à chaque coin diverge, avec en prime une infinité d’images.
Pour peu qu’ils présentent un certain type d’hétérogénéité et d’anisotropie que nous qualifions de sinus-cosinus, ces
échiquiers peuvent-être envoyés sur des lentilles parfaites cubiques et icosahédrales constituées respectivement de huit
et vingt régions infinies alternant des matériaux homogènes isotropes d’indices de réfraction positif et négatif. Ces
coins parfaits tri-dimensionnels présentent une densité locale d’état infinie au noeud central, pourvu que la dissipation
inhérente dans ces métamatériaux tende vers zéro. Dans cet article de revue, nous abordons toutes ces lentilles à
travers le point de vue unificateur de l’optique de transformation.

Dans les Sections 5 et 6, nous explorons ces différentes classes de lentilles parfaites, avec en point de mire les
échiquiers d’Alice, qui permettent de piéger la lumière. Ces résonateurs d’un genre nouveau supportent des modes
de plasmon infiniment dégénérés quand ils pavent l’espace tout entier, et donc ils exhibent une densité d’état locale
qui n’est limitée que par la taille de ces échiquiers (et leur dissipation). Quand ils sont finis suivant une direction
d’espace, ces échiquiers offrent un paradigme optique : un tracé de rayons suggère qu’ils réfléchissent tout ou partie
de la lumière, alors qu’elle est intégralement transmise (transmission extraordinaire).

Nous concluons cet article de revue en Section 7 avec les perspectives offertes par la réfraction négative et d’autres
voies de recherche prometteuses telles que l’ultra-réfraction étudiée par Stefan Enoch et ses collaborateurs [6]. Dans
ce cas de figure, l’indice de réfraction est proche de zéro, et les relations de Snell–Descartes nous apprennent alors que
tout rayon incident sur un tel slab sera transmis suivant une direction perpendiculaire à l’interface air-slab. On peut
dès lors envisager des antennes omni-directionnelles. Enfin, Graeme Milton et Nicolae Nicorovici ont ouvert une voie
originale en démontrant mathématiquement et numériquement qu’une lentille parfaite cylindrique permet de rendre
invisible un ensemble de dipôles placés dans son voisinage immédiat [7] (cloaking).

1. Introduction

A fundamental issue with imaging systems is the constraint on resolution imposed by the diffraction limit. In
ordinary imaging systems that image only the propagating modes of radiation, features on the object smaller than the
wavelength cannot be reproduced in the image. Images with sub-wavelength features can be assembled from scanning
probes that can sense the electromagnetic near-fields (popularly known as scanning near-field optical microscopy).
However, the scanning process severely limits image frame rates, and the probes require near direct contact with
the object. The perfect lens proposed by Sir John Pendry in 2000 began to address these issues by providing for
the possibility of image transfer of both the near- and far-field components of radiation with a free-space working
distance [1]. The cornerstone of this flat lens is the concept of negative refraction – foreseen by Victor Veselago in the
late 1960s [2] – whereby both permittivity and permeability take negative values and lead to negative refractive index
and near-field enhancements. The subwavelength details of the source are transmitted through the system because
they couple to the surface plasmons that exist on the boundaries between the negative refractive index material and
the dielectric medium. This plasmonic mechanism is also the basis for the current interest in metallic structures for
super-resolution imaging at optical frequencies. Although such a near-field magnifier for electrostatic fields in the
cylindrical geometry was proposed earlier by McPhedran, Nicorovici and Milton [3], these perfect lenses can be
flat and can be generalized to a variety of geometries including the cylindrical and spherical geometries [8]. There
are some fundamental differences in the different geometries, for example, the focal surfaces. The cylindrical lens has
curved object and image surfaces, whereas the perfect lens has planar object and image planes that better match typical
detector arrays, and display formats. These imaging devices enabled by negative refractive index metamaterials have
attracted a lot of attention and activity during the past few years [9].

It was subsequently realized that the image resolution of these devices made of negative refractive index materials
suffered from serious limitations due to the presence of dissipation and spatial dispersion [10] that is inherent to
the structured composite resonant metamaterials. Pendry had proposed [1] that a thin film of silver that has negative
dielectric permittivity alone can approximately act as a superlens with subwavelength image resolution at visible
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and near ultra-violet frequencies for p-polarized light. Refinements of the Pendry lens were subsequently considered
to improve the performance using the metamaterials at hand: the superlens effect was generalized to an asymmetric
system, for example, a silver film with glass on one side and air on the other which made the system mechanically more
robust. Further, the image resolution obtained by an asymmetric lens could be better under certain conditions. This
proposal by Pendry and Ramakrishna to use a film of silver, which displays a (complex valued) negative dielectric
constant in the visible spectrum, with air on one side and other media such as glass or GaAs on the other side
[11] led to the demonstration of subwavelength imaging through negative refraction by Zhang’s team [12]. Such an
asymmetric lossy near-perfect lens for p-polarized waves can be further improved. Implementation strategies for near-
field magnification have been explored with layered media [13–15]. Such devices are sometimes called hyper-lenses,
so named because they are composed of an indefinite medium [16] with a hyperbolic dispersion relation. Experimental
realizations have also appeared using layered media [17,18], and wire arrays [19]. For a fixed input aperture, the near-
field magnification actually increases the amount of image information available in the far field. If one has both
a free-space working distance and near-field magnification one can acquire high resolution, sub-diffraction images
using standard resolution detectors, and without being in actual physical contact with the object.

In this review, we present the theory of negative refractive index materials that can operate as superlenses with
subwavelength image resolution. We first look at two ways of producing a metamaterial with the desired properties:
either by making a system of thin, alternating metal and dielectric layers which is an indefinite metamaterial, or with
an array of split ring resonators and conducting thin wires. A system of the former type was proposed by Ramakrishna
et al. [13] as a form of superlens, and it improves the original suggestion for a superlens [1], which consists of just a
single layer of metal (as realized by the team of Zhang [12]). We then look at the dispersion relation for our anisotropic
material, to see why modes which would be evanescent in both the metal and the dielectric separately are able to prop-
agate in the combined system, and why there is a preferred direction of propagation. The latter type of metamaterial,
first introduced by Pendry and co-workers in 1999 [20], is based upon the existence of a low-frequency stop band
associated with the local resonance of the periodically arranged split ring resonators [21]. Next, we investigate the
transmission properties of a slab of negative refractive index material, and explain the superlens imaging processes.
Then we move on to the generalization of the Pendry–Veselago lens to optical complementary media whereby the
combined effect on light propagating through two regions of space, with spatially varying properties and related in
a prescribed manner, get nullified. Using this generalization and a powerful technique of geometric transformations,
we show how to design varied generalized lenses that provide for a variety of useful functions: including magnifica-
tion and light confinement, that operate on both the near- and far-field, and can also provide for free-space working
distances.

2. Through the looking glass: A positively negative square root

Let us understand why should a medium with �e(ε) < 0 and �e(μ) < 0 be considered to have a negative refractive
index. There is a subtlety with the definition of the refractive index through the Maxwell relation n = √

εμ in the
negative layer. Care has to be taken for the choice of the square root in the definition of n. Indeed, the constitutive
parameters for a medium with both �e(ε) < 0 and �e(μ) < 0 satisfy

ε = |ε|eiΦε , μ = |μ|eiΦμ, where Φε,Φμ ∈
[
π

2
,π

]
(1)

This leads to an ambiguity in the expression for the refractive index n:

n = |n|eiΦn, with Φn = 1

2
(Φμ + Φε) ∈

[
π

2
,π

]
or Φn = 1

2
(Φμ + Φε) − π ∈

]
−π

2
,0

]
(2)

depending upon the choice for the square root. We infer from (2) that the wave is either left-handed with respect to
the wave vector k and right-handed with respect to the direction of the energy flow given by the Poynting vector S
(�e(n) < 0 and �m(n) > 0) or right-handed with respect to k and S (�e(n) > 0 and �m(n) < 0). Either physical
situation seems acceptable.

As we are particularly interested in the case of small loss, we can take the following two ansatz:

ε = εr + iηεi and μ = μr + iημi where 0 < η � 1 (3)
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Fig. 1. A scheme for the classification of electromagnetic media into combinations of positive refractive or negative refractive media (sign of the
real part of the wave-vector given in the various regions) and absorbing or amplifying media.

where εr and μr are negative reals, whereas εi and μi are positive reals. We obtain

n = ±√|εrμr |
[

1 − i
η

2

(
εi

|εr | + μi

|μr |
)]

+ O
(
η2) (4)

We note that a refractive index n such that �e(n) > 0 and �m(n) < 0 corresponds to an exponentially growing wave
in a dissipative medium and should therefore be disregarded in (4). Taking the limit of zero absorption (η goes to zero)
in (4) for �e(n) < 0 and �m(n) > 0, gives n = −√|εrμr |. This is a standard practice in Physics to obtain the causal
solution by considering a lossy medium and taking the limit of zero loss.

For simplicity, we only considered the case of passive media, but the general issue of resolving the wave vector
in negative refractive media with gain can be also addressed. For this, one has to consider the analytic behavior of
the wave vector k in the complex plane, with a total of eight physically distinct cases in the four quadrants of two
Riemann sheets [22]. The eight cases along with the different media and circumstances are shown in Fig. 1 where
they are located in different regions of the �e(kz)−�m(kz) plane, kz being the normal component of the wave-vector
in the refraction process between vacuum and the given medium. Primarily, we draw the readers’ attention to the
regions of the �e(kz) − �m(kz) plane where the media with �e(ε) < 0 and �e(μ) < 0 lie. It is seen that they both
have �e(kz) < 0. Second, we also stress that refraction of waves is primarily a propagation effect that is interesting
only when the waves can propagate long distances. While it has been theoretically shown that waves in some highly
absorptive media can refract negatively across an interface, the propagation length of the wave inside the medium is
usually so short to preclude even its experimental study in most cases.

During the past two years, there has been some controversy regarding the assignment of various physical media
to these eight regions [22–26]. It has been wrongly suggested [23,24] that for light incident on a semi-infinite gain
medium with �m(ε) < 0, the presence of gain in the medium could imply a negative sign for the refractive index even
if �e(ε) > 0 and �e(μ) > 0. It has also been mistakenly claimed [24] that evanescent waves that exponentially grow
into bulk of the medium would exist at the interface of such a positive medium that has gain. While we will not get
into a detailed analysis of this controversy here, we first note that for a finite medium such as a finite slab or a sphere,
all the relevant physical quantities such as the transmission, reflection or scattering coefficients are invariant with the
sign of the wave-vector or the index [26]. Hence the choice of the wave-vector in an infinite medium is primarily of
academic curiosity. Second, the choice of the wave-vector that causes an exponential increase of the evanescent waves
into the bulk of the medium would be contrary to the presence of surface plasmon waves at the interface between a
metal and a gain medium that has been experimentally measured recently [27]. In any case, if the evanescent waves
were to decay exponentially in absorptive media and amplify exponentially in amplifying media, the limit of zero
dissipation or gain would become ill-defined. Hence the choice of a wave-vector that causes exponential amplification
for evanescent waves in gain media is inconsistent. Finally, we should point out that the choice of the wave-vector in a
gain medium has been investigated with careful experiments a long time ago [28]. The experimental results described
therein clearly show that the sign for the square-root (or the wave-vector) in an amplifying positive dielectric medium
is definitely positive. Hence we stress here that while there are two mathematically valid choices for the branch, the
physical relevant branch for a medium can be chosen only by the imposition of physical boundary conditions. What
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Fig. 2. Schematic picture of a periodically layered stack with alternating layers of materials with parameters (ε1,μ1) and (ε2,μ2) respectively. In
the limit of thin layers and if one of the parameter set is negative, the stack behaves as an uniaxial indefinite medium.

boundary condition is physically correct can only be decided by experiments and there is unambiguous experimental
evidence [28,27] that the choice of the signs for the wave-vector in various media and circumstances originally set out
in Ref. [22] are the physically reasonable ones. We also note an attempt to obtain the limit of semi-infinite media by
considering finite slabs with gain and taking the limit of infinite slab thickness [29] and remark that any such attempt
would be futile for perfectly coherent, monochromatic waves as the steady-state solution is effectively obtained at
infinite time where all the multiple reflections from both the interfaces, however far apart, are included in the solution.

3. Engineering negative effective medium parameters

While the negative dielectric permittivity demonstrated by a plasma and highly conducting metals at visible and
ultra-violet frequencies has been known for over a century, negative magnetic permeability was relatively unknown
except in some narrow frequency ranges in some magnetic materials at microwave frequencies. Natural materials with
simultaneously negative dielectric and magnetic permeability were unknown and such effects became possible only
with certain artificially structured materials, examples of which were first engineered during 1999–2001 [30,20,31].

In this section, we discuss how negative effective medium parameters can be obtained using two examples. In the
first case, we present the homogenization analysis of a simple system of alternating layers of media with positive and
negative effective parameters and show how it can lead to positive or negative effective medium anisotropic tensorial
parameters. Such materials whose dielectric permittivity or magnetic permeability tensors have some positive com-
ponents and some negative components are termed as indefinite media. These anisotropic materials have interesting
properties: they can support the propagation of radiative modes that would be evanescent in usual positive media,
and these modes travel in a preferred direction. The propagation of evanescent modes gives us hope that an image
produced by light traveling through a slab of such a material might retain a sharp profile; also, because the preferred
direction depends on the ratio of the components of the permittivity tensor, it can be controlled by varying the fre-
quency of light used. In the second case, we present the split-ring resonator and thin wire media that demonstrate the
essence of negative effective medium parameters: i.e., an anti-phased over-screened response at frequencies slightly
greater than the resonance frequency of a forced oscillator with low levels of dissipation.

3.1. Layered media of alternating negative and positive layers: Smearing negativity around

Consider a periodically layered medium with alternating layers of positive and negative media. An easily realized
canonical example would be a layered stack of thin layers of a dielectric medium such as silica and a good metal
with negative dielectric permittivity such as silver or gold. For keeping the argument general and applicable to layers
of structured metamaterials, let us assume that the alternating layers have thicknesses of d1 and d2 and have relative
material parameters given by (ε1,μ1) and (ε2,μ2), respectively. This is schematically depicted in Fig. 2.

Now let us consider the limit of very thin layers, in which case the electric and magnetic fields in the layers
will be reasonably uniform. They will, however, have to satisfy the conditions of continuity imposed by Maxwell’s
equations across the layer interfaces. Suppose the fields in the two layers are (E1,D1,B1,H1) and (E2,D2,B2,H2)

respectively. First we account for the continuity of the tangential components across the interface and obtain

E1tan = E2 tan = 〈Etan〉 (5)
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Fig. 3. The effective axial permittivity for a periodic layered stack of silver and silica when the volume fraction of silver is η = 1. The stack has the
response of a resonant medium, which corresponds to the excitation of a plasmon mode across the structure.

H1tan = H2 tan = 〈Htan〉 (6)

where 〈 〉 indicates the average fields over a periodic cell. Now we can write for the volume averaged fields,

〈Dtan〉 = f1D1tan + f2D2 tan = ε0ε⊥E1tan (7)

〈Btan〉 = f1B1tan + f2B2 tan = μ0μ⊥H1tan (8)

where ⊥ indicates the tensorial component for fields applied perpendicular to the axis normal to the layers or tangential
to the layers. Here f1 = d1/(d1 + d2) and f2 = d2/(d1 + d2), which gives the relative volume fractions of the two
media. From the above, we obtain for the homogenized effective medium parameters,

ε⊥ = f1ε1 + f2ε2 (9)

μ⊥ = f1μ1 + f2μ2 (10)

Thus, the effective medium parameter components in the transverse direction are simple volume averages.
Similarly, considering the continuity of the normal components of the fields, we obtain

D1norm = D2 norm = 〈Dnorm〉 (11)

B1norm = B2 norm = 〈Bnorm〉 (12)

〈Enorm〉 = f1E1norm + f2E2 norm (13)

〈Hnorm〉 = f1H1norm + f2H2 norm (14)

The above equations yield,

ε−1
‖ = f1ε

−1
1 + f2ε

−1
2 (15)

μ−1
‖ = f1μ

−1
1 + f2μ

−1
2 (16)

and we see that the reciprocal of the axial effective medium parameter is the volume average of the reciprocals of
the layer medium parameters. There is, however, no mixing of the electric and magnetic responses. Such a mixing
would require either a chirality or bianisotropy in one or both the layers of the periodic stack [32–34]. Also note that
although the layer thickness does not figure explicitly in these expressions, the effective medium description is valid
only in the limit of very thin layer thickness compared to the wavelength of radiation (d1, d2 � λ).

In fact, we have realized a very strange effective medium in the above discussion. The layered architecture of
the stack results in extremely different responses to fields applied parallel and perpendicular to the axis normal to
the layers. Depending on the relative values of ε1 and ε2, one could realize ε⊥ and ε‖ with opposite signs: i.e., the
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medium is an indefinite medium. In Fig. 3, we show the effective medium axial tensor components as a function of
the wavelength for a layered stack consisting of alternating layers of silver and silica. The permittivity of silver is
modeled by an empirical expression [1,35]

ε1(λ) = 5.7 + 0.4i −
(

9q

2πch̄

)2

λ2 (17)

where q = 1.6 × 10−19 C is the charge of an electron and h̄ is the reduced Planck constant. This expression is
valid for λ ∈ (300,900) nm. The dielectric permittivity of silica is typically modeled via a three resonance Sellmeier
model [36]. We see that the mixture of positive and negative layers results in a resonant form for ε‖ with a resonance
at the wavelength where �(ε) → 0. This resonance frequency (or wavelength) is, of course, determined by the relative
volume fractions. At wavelengths smaller than the resonance, the ε‖ < 0, and at longer wavelengths ε‖ is positive. The
other component ε⊥ is, however, negative at the longer wavelengths and we have a true indefinite dielectric medium.

The importance of indefinite media is that the dispersion for light becomes hyperbolic in these media [16]. Consider
the dispersion equation in the above uniaxial medium for P-polarized light (when the magnetic field is normal to the
axis, taken to be the z-axis)

k2
x

εz

+ k2
z

εx

= μy

ω2

c2
(18)

If εx/εz < 0, then we find that for very large kx ,

kz = ±
√

−εx

εz

kx (19)

This is the quasi-static limit and the waves with large kx almost have a specific direction of propagation in the indefinite
uniaxial medium. Radiation with large transverse components of the wave-vector (transverse to the axis) propagates
along a cone with a cone angle of

θ = tan−1
√−εz

εx

(20)

Such waves would be evanescent in an isotropic medium by comparison. This has potential implications for the design
of imaging devices for the evanescent near-field modes as is discussed in Section 3.

Consider the reflection and transmission of a plane wave with a parallel wave-vector kx , incident from vacuum
onto the plane interface (x–y plane) between vacuum and a uniaxial effective medium with εx < 0 and εz > 0 (as it
happens at wavelengths larger than the resonance wavelength in our above example) and a plane wave with a parallel
wave-vector kx to be incident from vacuum. Since kx is fixed by the incident wave, we can obtain the wave-vector in
the uniaxial medium from the dispersion relation as

k2
z = μyεx

ω2

c2
− εx

εz

k2
x (21)

It is immediately seen that for kx <
√

εzμyω/c, the light will become evanescent in the indefinite medium and for
larger transverse wave-vectors become propagating in the indefinite medium. Thus, we will hence have total external
reflection in such a scenario! The other case of εx > 0 and εz < 0, also results in an interesting case – the waves are
always propagating in the indefinite medium for all kx and hence we have no cut-off wave-vector in this situation,
neither upper nor lower. This is easily seen from the iso-frequency plots of the refraction process shown schematically
in Fig. 4. A variety of interesting refraction phenomena involving various kinds of indefinite media including the
reversal of the Brewster and critical angles have been systematically studied in Ref. [37]. It must finally be emphasized
that in all our discussions, we assume that the largest wave-vector considered must still be much smaller than the
Bragg vector of the underlying periodic medium (kx � 2π/a) in order to satisfy the conditions of homogenization
and description by effective medium parameters.



360 S. Guenneau, S.A. Ramakrishna / C. R. Physique 10 (2009) 352–378
Fig. 4. Iso-frequency contour plots showing the negative refraction in an indefinite medium with hyperbolic dispersion. The circle in the center
shows the iso-frequency contour for (isotropic) vacuum and the black arrow indicates the incident wave-vector. The red arrows indicate the wave-
vector in the indefinite medium and the thick red arrows indicate the corresponding Poynting vectors. Left: for an x-hyperbolic medium with εx < 0
and εz > 0, the incident waves have a lower transverse wave-vector cut-off below which they do not couple to propagating modes in the hyperbolic
medium. The blue hyperbolic dispersion curves indicate when no propagating modes in vacuum can couple to propagating modes in the medium.
Right: the z-hyperbolic case of εx > 0 and εz < 0 when there is no cut-off wave-vector, either lower nor upper. Any propagating or evanescent
wave incident from vacuum couples to propagating modes in the indefinite medium.

3.2. Thin wire arrays: Doping the vacuum with metal

It is well known that several metals behave as a plasma at optical and ultra-violet frequencies. Hence the dielectric
permittivity given by

ε(ω) = 1 − ω2
p

ω(ω + iγ )
(22)

where ωp is a plasma frequency and γ represents the dissipation rate, is negative for frequencies smaller than the
plasma frequency (ω < ωp). The plasma frequency for most good metals (with small γ ) occurs at visible and ultra-
violet frequencies, the most popular for plasmonic applications being silver and gold due to the low dissipation and
the ease of handling them. However, due to the dissipation, this behavior cannot be readily extrapolated to lower
frequencies, when γ ∼ ω, in the infra-red and microwave region of the spectrum.

It was shown by Pendry et al. [38,30] that a sparse array of thin wires would have a plasma like response at even
microwave frequencies. Other groups including applied mathematicians have also subsequently derived this result
[39–42]. The electric field of the radiation oriented along the wires would drive currents along the wires. The essential
idea was that the sparseness of the wires yielded a reduced electron density (Neff) and the thin wires gave rise to an
enormous inductance to currents along the wire that made it appear as if the electrons moving in them had acquired
very large effective masses (meff) that were thousands of times the bare electronic mass. The combined effect is to
reduce the plasma frequency

ω2
p = Neffe

2

ε0meff
= 2πc2

a2 ln(a/r)
(23)

by several orders of magnitude. The plasma frequency only depends on the radius of the wires r and the spacing a

as given by the above expression [38]. A three-dimensional wire array with wires extending along all the three wires
will show a reasonably isotropic plasma-like response.

Using this simple recipe, thin wire metamaterials have been realized across the electromagnetic spectrum, down to
microwave frequencies. Having finite wire strips instead of continuous wires results in a resonant response as the finite
wire strips show the response of a bunch of electrical dipoles. A resonance arises due to the capacitive interaction of the
adjacent wire segments in the line. The dielectric permittivity is now negative only within a finite band of frequencies
above the resonant frequency. We refer the reader to Ref. [9] for more details on this topic. At optical frequencies
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Fig. 5. Plot of the reflectivity and transmission through a periodic array of very long silver nanorods. The period of the array is 120 nm (subwave-
length lengthscale) and the radiation is normally incident on the array with the electric field along the rods. A low frequency cut-off (ωp) for the
transmission that reduces with the rod size (filling fraction of the metal) is clearly seen demonstrating the behavior as a diluted metal.

and near infra-red frequencies, although the effect of the inductance is not predominant due to the penetration of the
fields into the metallic wires, the volume fraction of the metal can be effectively used to tune the plasma frequency.
For example, we show in Fig. 5, the reflection and transmission of light from an array of long silver wires calculated
using the transfer matrix method. The polarization is such that the electric field of the light is along the wires which
enables currents to be driven along the wires. There is a clear lower frequency cut-off which reduces with reducing
wire thickness (or correspondingly the filling fraction, f = πr2/a2 where r is the radius of the wires and a is the unit
cell size). Effectively, the system behaves as a diluted metal with a plasma frequency that depends on the square root
of the filling volume fraction of the metal. This behavior is common to several ‘holey’ nanostructured metals. It has
been shown [43] that arrays of subwavelength sized holes (with array spacing small compared to the wavelength) in
a conducting metal film can support surface modes much in the manner of a plasma medium. This behavior turns out
to be possible even if the film was made of a perfect conductor and only depends on the possibility that the geometry
can support localized modes.

3.3. Negative magnetic permeability: An under-damped, overscreened resonance

While negative dielectric permittivity was known for plasmas, negative permeability was a rare occurrence in
natural media that was only known to occur over very small bandwidths in resonant magnetic systems. Pendry et
al. [20] introduced designs for structured media with μ < 0, which paved the way for experimentalists to fabricate
structures that gave rise eventually to negative refractive index materials. In fact, even today, most of the magnetic
metamaterials structures have their origin in the designs of Ref. [20].

The simplest conceptual picture is best obtained for effectively two-dimensional systems with long cylinders with
capacitive gaps running along them as shown in Fig. 6. If radiation is incident on this array of split-cylinders with
the magnetic field oriented along the cylindrical axis as shown, the oscillating magnetic field induces currents to
run around the conducting rings. These currents feel a finite inductive impedance (L) due to the finite size of the
conducting loops while they feel a capacitive impedance (C) due to the capacitive gaps within the conducting loops.
This gives rise to a resonant response of the system where the resonance is driven by the magnetic field of the
radiation with a consequent resonant enhancement of the magnetic polarizability of the cylinder. If the array period
is sufficiently small compared to the wavelength of the radiation, then it can be described by an effective medium
magnetic permeability [20]

μeff = 1 + f ω2

ω2
m − ω2 − iγmω

(24)

where the resonance frequency ω2
m = 1/(LC) arises from the L-C resonance of the cylinders, f is the filling volume

fraction of the split cylinders and γm is the dissipation that arises from the ohmic dissipation of the currents along
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Fig. 6. Schematic picture of an array of cylinders with capacitive splits that respond resonantly to radiation with the magnetic field along the
cylindrical axes. Circulating currents around the rings tend to shield the interior due to the inductance while the capacitance due to the gaps gives
rise to a resonance.

the conducting loops. This magnetic permeability disperses violently near the resonance frequency. For a sufficiently
small dissipation, the cylinders give rise to an overscreened response and the magnetic permeability becomes negative
in a frequency band just above the resonance frequency (ωm < ω < ωm/

√
1 − f ).

By proper choice of the size of the SRR and capacitive gaps, one could obtain a magnetic resonance at any desired
frequency. Resonant magnetic metamaterials were quickly demonstrated at microwave frequencies [31], terahertz
frequencies [44] and even mid infra-red frequencies [45]. However, scaling to higher and optical frequencies was not
straightforward. It was pointed out in Ref. [46] that just making the SRR smaller could not reduce the inductance
at large frequencies. With reducing size and increasing frequencies, the currents became essentially ballistic and the
finite mass of the electrons contributes to an additional ‘inertial’ inductance that becomes comparable with the regular
‘geometrical’ inductance of the small SRR. It was shown in [47] that adding additional capacitive gaps could increase
the resonant frequencies into the telecommunications frequencies by reducing the serial capacitance of the conducting
loops. This predicted lack of linear scaling was later verified numerically [48] and SRR magnetic metamaterials have
been experimentally demonstrated at NIR frequencies [49,50]. Meanwhile, numerical investigations of such SRR are
undertaken to further understand its limitations and ways to overcome them [51,52].

However, alternative designs for high frequency (optical) magnetic materials have been demonstrated. Since the
response of the metal consisting of the rings mostly has a plasma-like response, it is possible to remove large portions
of the SRR and allow the displacement currents across these gaps to complete the circuit. Examples of such designs
are the horse-shoe like SRR with one missing leg that provides the capacitance [53], metal rod pairs [54], and the
fish-net structure [55]. The fish-net structure consists of a closely spaced double layer of thin films patterned as an
anisotropic mesh and is designed for normal incidence of the waves. The magnetic field induces currents in opposite
directions in appropriate legs of the double layer and is enhanced in the space in between the films. In all other designs
such as the SRR, one needs to develop structures with a high aspect ratio that is difficult to manage at the nanometric
scales that optical metamaterials require. Alú and Engheta [56] have proposed an alternate design for optical magnetic
metamaterials that depends on plasmonic resonances of metallic nano-particles placed on subwavelength sized closed
loops, which is yet to be demonstrated experimentally.

Completely homogenizable optical magnetic metamaterials have, however, proved elusive. In almost all cases, the
underlying periodicity has almost been half the free-space wavelength. The plasma-like response of the metals (silver
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Fig. 7. Schematic picture showing the focussing of rays by a negative refractive index slab with ε = −1 and μ = −1, and surrounded by vacuum.
A point source placed on one side will produce an image on the other side of the slab and also inside the slab. The entire object plane is mapped
point-wise onto the image planes. The focussing action will be possible only if the distance from the source to the slab is smaller than the thickness
of the slab.

or gold) and the practical limitations on size imposed by fabrication techniques make the size too large or otherwise
the resonance is too weak. Description of the large sized (compared to wavelength) photonic systems by effective
medium parameters is open to interpretation. A single set of anisotropic or even bianisotropic effective medium
parameters cannot properly describe the optical metamaterials as these systems are highly spatially dispersive.

4. Perfect lenses and the principle of optical complementarity: Optical ‘anti-matter’

In a manner similar to the White Queen who remembers events yet to come in Alice’s Wonderland [57,58], light
almost appears to propagate backwards in time within a negative index medium. The negative wave vector within
a negative index medium implies, for instance, that the constant phase planes for a plane wave move backwards in
time. The energy flow given by the Poynting vector S is, however, in the forward direction. This negative phase shift
for light upon traverse through a negative index medium has an important consequence, that a flat slab of negative
refractive index n = −1 can act as a lens (see Fig. 7).

Consider, for example, the transmission and reflection of light that is incident from vacuum on a slab of thickness,
d , with ε = −1 and μ = −1. Let the parallel component of the wave-vector of the incident light be kx , which is
preserved in the refraction process and z be the imaging axis normal to the slab. The transmission and reflection
coefficients of light of a slab (ε2,μ2) placed in a medium (ε1,μ1) can be calculated to be

T (kx) = 4Z1Z2 exp(ikz2d)

(Z1 − Z2)2 − (Z1 + Z2)2 exp(2ikz2d)
(25)

R(kx) = (Z2
1 − Z2

2) exp(2ikz2d)

(Z1 − Z2)2 − (Z1 + Z2)2 exp(2ikz2d)
(26)

where Z1 = kz1/ε1, Z2 = kz2/ε2, and kz1 and kz2 are the normal components of the wave-vectors in the respective
media. In the limit of ε2 = −ε1 = −1 and μ2 = −μ1 = −1, the reflection and transmission coefficients become

T = exp(−ikz2d), R = 0 (27)

for propagating waves. This is a consequence of the negative phase velocity in the medium 2. Hence, if one considers
a point source located at a distance d/2 from the slab, any propagating wave that transmits through the slab arrives
at a plane at a distance d/2 on the other side of the slab with exactly same phase as it started at the source. Further,
the reflectivity of the slab is also zero due to perfect impedance matching. Thus the focussing action of the Veselago
lens [2] (shown in Fig. 7) comes out in a straight forward manner for the propagating waves (rays).

Pendry [1] showed that the above focussing action holds not only for the propagating waves but also for the non-
propagating evanescent near-field modes of a source. It is the evanescent near-field modes that have information about
the variation of the electromagnetic fields on the object plane at lengthscales smaller than the wavelength of light.
Consider the reflection and transmission coefficients for an incident wave (exp(−κzd)). By analytic continuation of
the result for the propagating waves (kz → iκz), and we have

T = exp(+κzd), R = 0 (28)
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Thus, the evanescent wave that usually decays exponentially with distance in free space increases exponentially with
the thickness of the slab at exactly the same rate (κz). Hence the amplitude of the evanescent wave at the image plane
at a distance d/2 from the slab becomes restored to exactly the same value as emitted by the source on the other side
of the slab. The flat slab of ε = −1 and μ = −1 restores both the phase of the propagating waves and the amplitude of
the evanescent waves, bringing all of them to a focus at the image plane. Hence it acts a perfect lens that is not limited
by the conventional “diffraction” limit and can reproduce sub-wavelength sized features of the object in the image.

It was later on realized that the conditions for perfect lens action by a negative refraction index medium could
be simplified. The lens could be built unsymmetrically with different media on either side of the negative medium
slab [11], the negative index slab could be chopped up into thin layers [13], even other geometries such as cylindri-
cal [59,8,60] and spherical geometries [4,61] were possible. These ideas can be garnered under a general theory of
optical complementary media where in the negative index media behave in a complementary manner to ordinary media
whereby they “undo” the effects of ordinary media on radiation. Combining this with a general method of co-ordinate
mapping [62], one can map Maxwell’s equations to other geometries and obtain perfect lenses in many geometries.
For instance, using a mapping from a layered structure consisting of layers of complementary media together with
a periodic set of line sources, it was observed in Refs. [4,63] that two negative 2D corners sharing the same corner
combine to make an optical system within which light radiating from a line source is bent around a closed trajectory
and is refocused back on to the line source.

4.1. A generalized lens theorem for electromagnetic complementary media

The original ‘perfect lens’ presupposed a uniform slab of isotropic material with dielectric permittivity ε = −1 and
magnetic permeability μ = −1. However, focussing will occur under more general conditions [4,5]. Any system for
which

ε1 = +ε(x1, x2), μ1 = +μ(x1, x2), −d < x3 < 0

ε2 = −ε(x1, x2), μ2 = −μ(x1, x2), 0 < x3 < d (29)

will show identical focussing. Focussing will always occur irrespective of the medium in which the lens is embedded.
This is true for any medium which is mirror antisymmetric about a plane. Thus, in general, a negatively refracting
medium is complementary to an equal thickness of vacuum and optically ‘cancels’ its presence. The compensating
action extends to both the evanescent as well as the propagating modes. Due to this, there is perfect transmission and
the phase change of the transmitted wave is zero. In such systems, it is possible to excite surface plasmon modes at
all spatial frequencies.

More generally, if we now consider a region of space described with general dielectric permittivity and magnetic
permeability tensors given by

ε1 =
⎛
⎝ ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎞
⎠ , μ1 =

⎛
⎝μ11 μ12 μ13

μ21 μ22 μ23

μ31 μ32 μ33

⎞
⎠ , −d < x3 < 0 (30)

then the resulting complementary medium is given by

ε2 =
⎛
⎝−ε11 −ε12 +ε13

−ε21 −ε22 +ε23

+ε31 +ε32 −ε33

⎞
⎠ , μ2 =

⎛
⎝−μ11 −μ12 +μ13

−μ21 −μ22 +μ23

+μ31 +μ32 −μ33

⎞
⎠ , 0 < x3 < d (31)

which is the result first derived in [4] and retrieved using group theory (symmetries of Maxwell’s equations) in Ref. [5].
The entries in ε and μ can also be spatially varying along x and y. This covers the case of perfect corner reflectors

of 2n-fold skew-symmetry, and we are therefore ensured of the cancellation of the optical path. It is worth noting that
the generalized lens theorem was also applied to infinite checkerboards of skew-symmetry in [5]. Let us now derive
this theorem using the powerful tool of geometric transformations.
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4.2. Perfect lenses via transformation optics

These matrices can be also computed using the viewpoint of transformation optics. For this, let us consider a map
from a co-ordinate system {u1, u2, u3} to the co-ordinate system {x1, x2, x3} given by the transformation characterized
by x1(u1, u2, u3), x2(u1, u2, u3) and x3(u1, u2, u3). The transformation of the differentials is given by⎧⎪⎪⎨

⎪⎪⎩
dx1 = ∂x1

∂u1
du1 + ∂x1

∂u2
du2 + ∂x1

∂u3
du3

dx2 = ∂x2
∂u1

du1 + ∂x2
∂u2

du2 + ∂x2
∂u3

du3

dx3 = ∂x3
∂u1

du1 + ∂x3
∂u2

du2 + ∂x3
∂u3

du3

(32)

This change of co-ordinates is characterized by the Jacobian of the transformation (32):

Jxu = ∂(x1, x2, x3)

∂(u1, u2, u3)
=

⎛
⎜⎝

∂x1
∂u1

∂x1
∂u2

∂x1
∂u3

∂x2
∂u1

∂x2
∂u2

∂x2
∂u3

∂x3
∂u1

∂x3
∂u2

∂x3
∂u3

⎞
⎟⎠ , with

⎛
⎝dx1

dx2

dx3

⎞
⎠ = Jxu

⎛
⎝du1

du2

du3

⎞
⎠ (33)

This change of coordinates amounts to replacing the different materials (often homogeneous and isotropic, which
corresponds to the case of scalar piecewise constant permittivities and permeabilities) by equivalent inhomogeneous
anisotropic materials described by a transformation matrix T (metric tensor).

More precisely, Maxwell’s equations retain their form under coordinate transformations, so that in the transformed
coordinates Maxwell’s operator writes as

∇ × (
μ′−1∇ × E

) − μ0ε0ω
2ε′E = −iωμ0δrs p, or ∇ × (

ε′−1∇ × H
) − μ0ε0ω

2μ′H = ∇ × (
ε′−1j

)
(34)

where E and H are the time-harmonic (complex vector valued) electric and magnetic fields oscillating at frequency ω

(they are square integrable on every compact sub-manifold of R
3), δ is the Dirac distribution supported by the source

of polarization p ∈ C
3 located at rs , and j denotes a (distributed) current density. Last, but not least, ε0μ0 = 1/c2

with c being the speed of light in vacuum and the transformed (anisotropic heterogeneous) media are characterized
by [64–67]

ε′ = εT−1, μ′ = μT−1, T = JT J
det(J)

(35)

Let us apply these mathematical tools to the slab perfect lens which is interesting in that it corresponds to a non-
one-to-one coordinate transformation. This is clear, since it has triplets of planes on which the field distributions are
identical: the object plane, the internal image plane and the external image plane. In the one-dimensional case, the
corresponding coordinate transformation maps these three planes from a single plane in the reference space. The
coordinate transformation is given by⎧⎪⎨

⎪⎩
x′

1 = x1

x′
2 = x2

x′
3 = x3 − d, if x′

3 < −d/2, or − x3 if − d/2 < x′
3 < d/2, or x3 + d, if d/2 < x′

3

(36)

where d is the thickness of the lens.
This leads to the identity for the transformation matrix T outside the lens, whereas inside the lens i.e. for −d/2 <

x′
3 < d/2, ∂x3/∂x′

3 = −1 which flips the sign of T33, so that the material properties differ from free space only in the
x3 = x′

3 direction, as expressed in (29), whereby the scalar permittivity ε = ε1 and the transformed (scalar) permittivity
ε′ = ε2, and similarly for the permeability.

However, in the case of anisotropic ε and μ, the transformed medium is now characterized by

ε′ = det(J)
(
J−1εJ−T

) = (−1)

⎛
⎝1 0 0

0 1 0

⎞
⎠

⎛
⎝ ε11 ε12 ε13

ε21 ε22 ε23

⎞
⎠

⎛
⎝1 0 0

0 1 0

⎞
⎠

0 0 −1 ε31 ε32 ε33 0 0 −1
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Fig. 8. Analysis of the electromagnetic field radiated by a harmonic line source in presence of a perfect lens with permittivity and permeability
ε = μ = −1 + i ∗ 0.004. (a) Norm of electric field, slab lens; (b) Norm of electric field, cylindrical lens; (c) Norm of magnetic field, slab lens;
(d) Norm of magnetic field, cylindrical lens. Insets in panels (b) and (d) are a magnification of the region surrounding the source and its image.

=
⎛
⎝−ε11 −ε12 +ε13

−ε21 −ε22 +ε23

+ε31 +ε32 −ε33

⎞
⎠

μ′ = det(J)
(
J−1μJ−T

) = (−1)

⎛
⎝1 0 0

0 1 0

0 0 −1

⎞
⎠

⎛
⎝μ11 μ12 μ13

μ21 μ22 μ23

μ31 μ32 μ33

⎞
⎠

⎛
⎝1 0 0

0 1 0

0 0 −1

⎞
⎠

=
⎛
⎝−μ11 −μ12 +μ13

−μ21 −μ22 +μ23

+μ31 +μ32 −μ33

⎞
⎠ (37)

which is in accordance with (31).
We note that there is no change in the impedance of the media, since the permittivity and permeability undergo the

same geometric transformation: the perfect lens is impedance-matched with its surrounding medium (vacuum, say)
so that no reflection will occur at its interfaces. In this way, one can design of plethora of generalized lenses [68–71],
and this new field of physics has been named transformation optics.

The above derivation is straightforwardly extended to two-dimensional and three-dimensional perfect lenses, lead-
ing to (30), (31). The same arguments hold for cylindrical and spherical lenses, simply mapping Cartesian onto
cylindrical-polar or spherical-polar coordinates. In the upper left panel of Fig. 8, we plot the norm of longitudinal elec-
tric field in the case of an electric line current source located at point (x1, x2, x3) = (x1,0,−0.3) in presence of a slab
lens characterized by ε(x1, x2, x3) = μ(x1, x2, x3) = −1 + i ∗ 0.004 for x1 ∈ R, −0.7 < x2 < 0.7, −0.2 < x3 < 0.2.
A ‘ghost’ image appears in the slab lens at (x1,0,0), whereas a ‘perfect’ image is visible at (x1,0,0.3). In the upper
right panel of Fig. 8, we repeat this numerical experiment for a cylindrical perfect lens of inner radius r1 = 0.2 and
outer radius r2 = 0.3 of permittivity ε = −1 + i ∗ 0.004. A line source is located at point (rs, θs) = (0.1,0) with ghost
image at point (r ′

s , θ
′
s) = (0.26,0) and a perfect image at point (r ′′

s , θ ′′
s ) = (0.36,0).

4.3. Triangular and square corner reflectors

Among the large class of optical systems built by sticking together complementary media, we find the so-called
corner lenses, or perfect corner reflectors. These represent very singular situations whereby the optical space can
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Fig. 9. Upper panel: Analysis of the electromagnetic field radiated inside the vacuum by a line source of wavelength λ = 3a, where a is the
sidelength of each of the 60 regular triangular cells constituting the checkerboard lens. The source is located in the close neighborhood of this lens
which alternates cells with relative permittivity and permeability ε = μ = 1 and either ε = μ = −1+ i ∗0.004 (upper left) or ε = μ = −1+ i ∗0.04
(upper right). Lower panel: Analysis of the electromagnetic field radiated by the same line source line for a periodic checkerboard (the basic cell
consists here of 20 regular triangles as in panel (c) of Fig. 15). In all four panels, we plot the real part of the longitudinal electric field.

be folded back onto itself in all three dimensions. In two dimensions, they are obtained by mapping a 1D photonic
crystal onto a chessboard like structure via a change from Cartesian to polar coordinates. In three dimensions, we
would rather start from a doubly periodic structure to get a three-dimensional chessboard like structure mapping
Cartesian onto spherical coordinates.

The eigenfunctions of perfect corner reflectors can easily be written down in two dimensions. These are the periodic
functions with periodicity of [π,π]

U(θ, x2, �) = exp
(±kθ |θ |) exp

[±i(k2x2 − ωt) ± k�|�|
]

(38)

in θ ∈ [−π/2,π/2]. Here, [k�, kθ , k2] are the eigenvalues satisfying k2
� −k2

θ −k2
2 = ω2/c2. Thus we have one equation

and three variables to be determined. Hence all modes with kθ leading to the same k2 and k� are degenerate at a given
frequency and the density of modes diverges. This fact is illustrated in the lower panel of Fig. 9.

Understanding the perfect lens in terms of transformation designs is a great basis for understanding all the optical
elements we discuss in this article. This is particularly true, since here we will consider not only slab elements, but also
cylindrical and spherical lenses (transformation designed elements with non-parallel and non-planar surfaces prove
useful for that). Perfect lenses are interesting in that they correspond to non-one-to-one coordinate transformations.
This is especially obvious for the slab lens, since in that case the perfect lens has triplets of planes on which the field
distributions are identical: the object plane, the internal image plane and the external image plane. The corresponding
coordinate transformation (36) maps these three planes from a single plane in the reference space. But this is also
true for a wider class of perfect lenses such as corner lenses made of a NRM sharing the perfect property of other
negatively refracting lenses. This has been first shown in [4] using the technique of coordinate transformations. A pair
of negatively refracting corners is capable of bending light in a loop and forming a series of images such that as
n → −1, light circulates within the loop forever. In the electrostatic limit, all the surface plasmon modes are degenerate
at ωp/

√
2. At this frequency, the density of states diverges and ε = −1, if we assume a simple Drude form for the

plasma, ε = 1 − ω2
p/ω(ω + iη), where η is a small positive parameter.

In Fig. 10, we plot the norms of the electric and magnetic fields radiated by a harmonic line current source located
inside an open resonator consisting of weakly absorptive square or triangular complementary regions. It is clear that
the electromagnetic energy is mostly confined within the corner. In the limit when the resonator fills all the space and
the absorption vanishes, all modes become infinitely degenerate, leading to a local density of states which diverges
[63].

Also, it is worthwhile noting that the corner mode for the triangular perfect corner exhibits a C6v symmetry (struc-
ture invariant through a rotation 2π/6) while its counterpart for the square perfect corner is of C4v symmetry. We
preserve the symmetry of the structure for larger checkerboards but degeneracy means symmetry of modes is broken,
which is a common feature in waveguide theory (see [72] for mode classes and degeneracies).
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Fig. 10. Analysis of the electromagnetic field radiated by a line source located at (x1, x2) = (0.2,0.2) (square corners) and (x1, x2) = (0,0.2)

(triangular corners). Upper panel: norm of the electric field; lower panel: norm of the magnetic field.

4.4. Superlenses with finite transverse extent

The original Pendry–Veselago lens assumed an infinite transverse extent for the slab of negative refractive index
medium. When we consider structures such as the checkerboards, the structures are finite in more than one dimension
and one natural question that comes up is regarding the effects of a finite transverse dimension on the image resolution.
After all, in the case of the checkerboards one is transferring the images of such structures around with finite sized
pieces of negative refractive index materials. For any practical implementation of superlenses where one would only
have superlenses of finite transverse extent, this question assumes a technological significance. Even fundamentally,
this question is of significance as aperture size of the lens in a conventional imaging system gives rise to diffraction
and limits the smallest focus spot possible. For propagating waves, the finite aperture due to the finite transverse extent
limits the waves with the largest transverse wave-vector that can be transported across the slab. However, the effects
of the finite aperture on the evanescent waves cannot be that trivially understood. The finite transverse extent breaks
the translational symmetry of the original problem and can generate waves with new transverse wave-vectors. In this
section, we will analyze the effects of a finite transverse extent of Pendry’s original flat lens.

This question has been analyzed earlier by [73,74] where it was found that in spite of a finite transverse width for
the slab, much of the subwavelength image resolution was retained. Chen et al. [74] found that the image spectrum
due to the finite slab was approximately given by the spectrum of the source itself multiplied by a convolution of
the transmission coefficient and the Fourier transform of a window function that depended on the transverse extent
of the slab. From numerical solutions of Maxwell’s equations we find that the images with subwavelength resolution
remain unaffected as long as the transverse width of the slab is not as small as the objects being imaged themselves.
We show an example of the fields for imaging by a finite lens in Fig. 11 where the subwavelength image resolution
can be clearly seen.

Here we analyze the effects of a finite transverse width using another approach. Obviously a full analytic solution
for this problem will be highly non-trivial. We will model the effects of the finite transverse extent heuristically by
assuming that the radiation incident outside this aperture is lost. To accomplish this, we assume that a slab of negative
refractive index of infinite transverse extent is bounded by perfectly absorbing apertures as shown in Fig. 12. This is
in fact equivalent to the well-known Kirchoff–Fresnel boundary conditions of the scalar diffraction theory [75]. In this
approximate description, the effects of the finite transverse extent on the surface states that eventually determine the
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Fig. 11. Top: The electric fields of two line sources placed apart by 0.2λ imaged by a finite slab of width of λ calculated by a finite element method.
Bottom panel: The electric fields at the object plane at a distance of 0.2λ from the slab and at a symmetrically placed image plane on the other side.
The imaging and the subwavelength image resolution are clearly visible.

amplification of the evanescent waves and the subwavelength image resolution are not taken into account. Now the
fields at the image plane can be obtained as

E(x, z3) = F−1
x

{
eikz(z3−z2)Fkx

[
A2(x)F−1

x

(
T (kx)Fkx

{
A1(x)F−1

x

[
eikz(z1−z0)Fkx E(x, z0)

]})]}
(39)

where Fkx and F−1
x indicate the Fourier transform and the inverse Fourier transform respectively. T (kx) is the Fourier

space transmission function of the slab of infinite transverse extent for an incident plane wave with wave-vector kx

and k2
x + k2

z = ω2/c2 here. A1(x) and A2(x) are the aperture functions at the planes z = z1 and z = z2 respectively.
We will assume that the aperture functions allow unit transmission within the aperture region (i.e., they are unity in
a finite range of x) and zero transmission outside (they are zero outside). Essentially, here we propagate the fields
to the edges of the slab where they are spatially modulated by the aperture functions. This is actually equivalent to
the approximate solution of Chen et al. [74] where the image spectrum consists of a convolution of the transmission
function and a window function. Here we have the direct spatial modulation or a multiplication of the spatial fields
and the aperture functions. We now have provided a physical interpretation of the window function.

Let us examine the imaging of a pair of slits of widths 20 nm each and separated by a small sub-wavelength distance
(100 nm) for different sizes of the transverse extent of the slab (modeled as the aperture size). We assume the radiation
to have wavelength of 400 nm and the slab to have the material parameters of μ = −1 and ε = −1 + i ∗ 0.0001. The
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Fig. 12. Schematic picture showing the model for a superlens of finite transverse extent. The additional perfectly absorbing apertures in the front
and back of the infinite slab imply that radiation incident outside this region is completely lost to the system.

Fig. 13. The images of two slits of width 20 nm, placed apart by 100 nm (center-to-center) for different sizes of the aperture. The presence of the
aperture becomes felt through an a shadow image of the edges which become more intense as the aperture size becomes similar to the lengthscales
of the object being imaged itself.

small amount of dissipation is required for numerical purposes to prevent the mathematical divergences of the singular
perfect lens without any dissipation. The finite dissipation, as is well known sets an upper cut-off for the wave-vectors
which limits the image resolution [10]. The edges of the slits will not appear sharp in the image as a consequence. We
show in Fig. 13 the images of the slits when imaged by apertures of various sizes. The finite extent of the aperture
width creates its own image which can be seen when the aperture size is taken to be 400 nm (∼λ) (c). However, even
with such a small aperture, the resolution of the slits remains unchanged. We also note that the intense images of the
aperture edges dominates the near-field images over that of the slits that are being imaged when the aperture size is
about 200 nm (d). Thus, we conclude from this explicit demonstration that the finite transverse size of the slab will
become important only when the aperture becomes almost of the same size as the objects that are being imaged. For a
more absorptive slab, we have verified that the images of the aperture edges are of much lower intensity at the image
plane along with a reduced resolution of the images. Of course, the full solution of the slab with finite transverse width
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Fig. 14. Analysis of the longitudinal electric field radiated by a harmonic line source of wavelength λ ∼ 10a which is located inside a finite
checkerboard consisting (a) of 36 square cells, (b) 26 equilateral triangles, of sidelength a which alternate relative permittivity and permeability
ε = μ = 1 and ε = μ = −1 + i ∗ 0.04; (c) Resonance of the square checkerboard at λ ∼ 10a + 0.1a; Resonance of the triangular checkerboard at
λ ∼ 10a + 0.00001a. The strong leakage is noted in panels (b) and (c).

will be expected to also contain certain resonant features that arise due to the excitation of the plasmon modes of the
finite slab that are not captured in this model as the slab is still assumed to be of infinite transverse extent.

4.5. Plasmonic resonances in infinite checkerboards

We next analyze infinite non-absorptive checkerboard structures, for which the imaginary part of the resonances
should vanish. It has been shown in [5] that a source placed in one cell of a rectangular checkerboard produces an
image in every other cell. This straightforwardly applies to triangular checkerboards as well, since they meet the
property of mirror antisymmetry of the Generalized lens theorem, as can be observed in the lower panel of Fig. 9
where a source located in one NRM triangle of the basic cell produces an image in all other triangular complementary
regions. These checkerboard structures retain their image transfer properties irrespective of whether they consist of
homogeneous isotropic media or inhomogeneous anisotropic media, as long as they exhibit mirror antisymmetry and
adjacent cells are complementary to each other.

All modes are degenerate at a given frequency ωp/
√

2 and the density of modes is infinite. These systems are
extremely singular and contain a very large number of corners between positive and negative cells where the density
of surface plasmon states diverges. Dissipation affects sub-wavelength imaging badly, and the divergence in the local
density of states can only worsen the situation. It is due to this fact that the effect of dissipation on sub-wavelength
resolution becomes an important issue, which we shall investigate in the sequel.

5. Resonant checkerboard configurations

5.1. The Ray picture does not always tell the truth

Let now consider finite checkerboards of NRM with square and equilateral triangular cells. From Fig. 14, it appears
that the triangular checkerboard seem to do a better job at trapping light. For the triangular checkerboard shown in
Fig. 15, the ray picture indicates the possibility of full reflection by a transverse generalized lens consisting of equi-
lateral triangular cells. However, perfect transmission was found to occur in Fig. 9. This apparent contradiction of the
full wave solutions with the ray analysis arises due to the localized fields at the corners which the rays cannot describe
[76]. This extraordinary transmission occurs via the excitation of the surface plasmon modes of the system, as also
transpires from Fig. 14. Nevertheless, the type of plasmonic guidance involved here via the interfaces between posi-
tive and negative index media differs substantially from the extraordinary transmission experimentally demonstrated
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Fig. 15. (a) All rays incident on aligned triangular NRM are reflected; (b) Most rays emitted by a source located inside a triangular corner reflector
circulate in closed trajectories (red trajectories) whereas others escape in free space (blue trajectories); (c) Basic periodic cell of 20 complementary
regular triangles; (d) Icosahedral lens consisting of 20 complementary regions.

in [77], as we shall see in the sequel. As illustrated by the paradox of the ray picture showing no transmission and the
complementary theorem showing perfect lensing (the optical path cancels), it is imperative to investigate numerically
finite structures of NRM which are of the checkerboard type. This is why we also numerically checked the state-
ment of the generalized lens theorem through finite element computations, as reported on Fig. 9, see also [78]. We
numerically show in Fig. 9, the response of two small, slightly dissipative checkerboard systems consisting of cells
alternating air and NRM (left: ε = −1+ i ∗0.04 and μ = +1; right: ε = −1+ i ∗0.004 and μ = +1), for a line source
placed just above the checkerboard for the P-polarization. We note the flip of the sign for the field when it crosses the
checkerboard, which we attribute to μ being non-negative. The checkerboard acts along the lines of the generalized
lens theorem, even though it is of finite horizontal extent. Noteworthily, the dissipation in NRM on the left panel of
Fig. 9 is quite large. Hence, the field enhancement is weakened on interfaces (which is why PML need not be taken
far away), however, subwavelength imaging is displayed.

5.2. Dissipative triangular and rectangular checkerboard systems

We observed in our calculations that the eigenfunctions are large in magnitude, always located at the intersecting
corners and very small in the bulk of the material. The working wavelength is typically larger than the cell’s size,
so that these corner modes are exponentially decaying away from the corners. We observe some surface plasmon
excitations running along the interfaces separating complementary media. Since there is a large degeneracy of the
modes, the leaky modes could be localized at any corner. From Fig. 14, we can see that the ratio of the real part to the
imaginary part of the eigenfrequencies is larger for the triangular checkerboard, and accordingly the leakage reduces
compared with square checkerboards. The rate of increase is faster for the case of triangular structure. From Fig. 14,
we see that the amplitude of the cornermode increases with the symmetry of the system (fourfold for squares and
sixfold for equilateral triangles).

Also, let us emphasize again that the corner mode for the triangular perfect corner exhibits a C6v symmetry (struc-
ture invariant through a rotation 2π/6) while its counterpart for the square perfect corner is of C4v symmetry. We
preserve the symmetry of the structure for larger checkerboards but degeneracy means symmetry of modes is broken,
which is a common feature in waveguide theory (see [72] for mode classes and degeneracies). Interestingly, similar
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trapping effects occur in photonic crystal checkerboards [79]. However, the physics of negative refraction in photonic
crystals does not involve plasmonic effects as in metamaterials [80], hence the LDOS is bound to remain finite even
for infinite checkerboards (no control whatsoever of the evanescent field) [79].

6. Round trip in the flat land and its 3D counterpart

6.1. Mapping homogeneous isotropic checkerboards onto icosahedral 3D corner lenses

Let us consider a system of non-orthogonal coordinates (l, θ,Φ). These coordinates are along the directions of the
lattice vectors attached to a triangular periodic checkerboard, whose basic cell is depicted in the left panel of Fig. 15.
The associated material properties are expressed as

ε(θ,Φ) = μ(θ,Φ) = +1, ∀(θ,Φ) ∈ Positive, and

ε(θ,Φ) = μ(θ,Φ) = −1, ∀(θ,Φ) ∈ Negative (40)

where

Positive = (0,π/2) ×
{

N⋃
j=0

[
jπ, (2j + 1)π/2

]} ∪ (π/2,π) ×
{

N⋃
j=0

[
(2j + 1)π/2, (j + 1)π

]}
(41)

and

Negative = (0,π/2) ×
{

N⋃
j=0

[
(2j + 1)π/2, (j + 1)π

]} ∪ (π/2,π) ×
{

N⋃
j=0

[
jπ, (2j + 1)π/2

]}
(42)

This checkerboard is invariant along the l direction, periodic of period π in the θ direction and periodic of period 2π

in the Φ direction. We want to analyze the electromagnetic field associated with a doubly periodic set of point sources
within this two-phase positive–negative checkerboard (see Fig. 9) as shown in Fig. 15.

It is clear that a single source generates a point image inside every other block of the checkerboard. This can be
easily shown by considering a singly periodic set of oblique slabs in either direction and using the generalized lens
theorem [4,5] whereby the condition of complementarity is satisfied for the layers along the imaging direction with
varying refractive index n in the direction transverse to the imaging direction.

From the knowledge of the field within the checkerboard containing the doubly periodic set of point sources (cf.
Fig. 15, left panel), it is possible to find a solution of a 3D corner lens (cf. Fig. 15, right panel) mapping our system of
generalized coordinates (l, θ, Φ) onto Cartesian coordinates (x1, x2, x3) as follows:

l = l0

2
ln

(
x2

1 + x2
2 + x2

3

r2
0

)
, θ = arccos

(
x3√

x2
1 + x2

2 + x2
3

)
[π], Φ = arctan

(
x2

x1

)
[π] (43)

where r0 stands for the radial position of the point source on Fig. 15. Here, l denotes the radial (logarithmic) coordinate
and θ and Φ denote the longitudinal and azimuthal coordinates.

Let us now defined three unit vectors u1, u2, u3 along the generalized l, θ , Φ axes. In the Cartesian frame
(x1, x2, x3) (see Fig. 15 left), we denote by ε̃ij (resp. μ̃ij ) the nine non-zero components of the tensors ε̃ (resp.
μ̃) which are related to the diagonal tensors ε(θ,Φ) (resp. μ(θ,Φ)) as per [62]

ε̃ij = εiTij

∣∣u1 · (u2 × u3)
∣∣Q1Q2Q3

QiQj

μ̃ij = μiTij

∣∣u1 · (u2 × u3)
∣∣Q1Q2Q3

QiQj

, i, j = 1,2,3 (44)

with T the metric tensor which is such that T −1
ij = ui · uj and

Qij =
(

∂l

∂x

)(
∂l

∂x

)
+

(
∂θ

∂x

)(
∂θ

∂x

)
+

(
∂Φ

∂x

)(
∂Φ

∂x

)
(45)
i j i j i j
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From (43) and (45) we deduce that

Q11 = 1

r

√
cos2 Φ + sin2 Φ

sin2 θ
, Q22 = 1

r

√
sin2 Φ + cos2 Φ

sin2 θ
, Q33 = 1

r
(46)

Similar expressions hold for the other six Qij . Now, choosing

ε1 = μ1 = r

(
sin2 θ cos2 Φ + sin2 Φ

cos2 θ sin2 Φ + cos2 Φ

)
ε2 = μ2 = ε−1

1 = μ−1
1

ε3 = μ3 = r sin2 θ

√
sin2 θ sin2 Φ + cos2 Φ√
sin2 θ cos2 Φ + sin2 Φ

(47)

we get ε̃ii , μ̃ii to be identical to (40) and ε̃ij = μ̃ij = 0, for i �= j . This is the prescription for our new materials which
will focus a source back onto itself in three dimensions. Note that this includes the near-field components as well.

The transformed electric and magnetic fields take the following forms:

Ẽi = QiiEi, H̃i = QiiHi, i ∈ {1,2,3} (48)

where Qii is given by (46). We note that for rectangular checkerboards, the previous analysis simplifies since in that
case Tij |u1 · (u2 × u3)| = δij [5].

We can build upon the previous algorithm and generate a checkerboard structure with as many complementary
phases as we wish, provided that they respect mirror symmetries along the main diagonals, thereby generating multi-
phase 3D corner reflectors.

6.2. Spatially varying anisotropic checkerboards with sine-cosecant behavior

Consider a checkerboard with εi(θ,Φ) = ±εi sin θ or ±εi/ sin θ . It is clear that such a system satisfies the condition
of complementarity and mirror symmetry, and therefore it should also image the sources as a checkerboard made of
isotropic homogeneous materials. This is the sine-cosecant checkerboard that images the sources perfectly: using the
property of mirror symmetry along θ about the positive–negative surfaces, we indeed obtain perfect mapping of a
source onto an image. Hence, the icosahedral corner with the homogeneous materials with alternating signs for the
refractive index will also form a cavity in a perfect sense. Thus, we have now generalized the result of [5] for a 3-D
cubic corner to a 3-D icosahedral corner. There should be an infinite degeneracy of the associated surface states at
frequency ωp/

√
2.

6.3. Homogeneous isotropic 3D checkerboards: Towards freezing light

According to the generalized lens theorem a periodic homogeneous isotropic checker icosahedral medium will also
make a perfect lens if it satisfies the prerequisite mirror symmetry along all three imaging directions. A point source
located within a cell will be imaged in every other cells. In this system of checker tetrahedra of complementary media,
all surface plasma modes are degenerate at frequency ωp/

√
2 in the electrostatic limit. At this frequency, the density

of states must be infinite. Also, this is a frequency at which the condition ε = −1 is met.

7. Conclusions

In this article, we reviewed and discussed some of the salient aspects of negative refractive index media and meta-
materials, see also [80,58,9,81]. The origin of many of the strange effects on radiation in such media can be primarily
traced to the negative phase vector. We gave examples of resonant metamaterials that can give rise to negative material
parameters (ε,μ), and negative refractive index. The acute effects of anisotropy on radiation in metamaterials with
some negative tensorial parameters was pointed out and can be of great consequence. Negative index materials can
enable perfect lenses, in principle, due to their ability to support surface plasmon states, and this has been experi-
mentally confirmed back in 2003 [82], and recently in the challenging case of volumetric super lenses [83]. After
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Fig. 16. Longitudinal electric field radiated by a line source of wavelength λ = a located inside four metamaterials of typical sidelengths a filled
an effective relative permittivity and permeability ε = 0.01 and μ = 1. (a) Rectangle of width a and height 3.5a; (b) Square of sidelength a;
(c) Isosceles triangle of sidelengths a and

√
2a; (d) Equilateral triangle of sidelength a.

briefly reviewing the Pendry–Veselago lens (which displays neither astigmatism nor aberration [84]), we presented
ideas of optical complementary media and generalized the perfect lens ideas to various geometries using a method of
geometric transformations.

We have discussed possible extensions of perfect lenses to higher dimensional spaces and also checkerboard lenses
paving the plane. The former have flat interfaces and can be shaped e.g. as boxes or tetrahedra. The latter are open
resonators with counter-intuitive properties such as an infinite local density of states. The unifying viewpoint for all
these optical systems is the concept of transformation optics whereby one can sculpt the refractive index ad libitum
simply by mapping the optical space on what he likes. Although we focused here on the physics of negative refraction,
it is worth mentioning that researchers have also investigated the case of a vanishing index of refraction. In that case,
one essentially has a spatially constant field that is transmitted into the medium. Enoch et al. [85] have theorized an
effective permittivity close to zero using some periodic array of metallic cylinders which enables to tune down the
effective permittivity in a way similar to what was achieved by Pendry et al. [38] and Guida et al. [39] to obtain a
low-frequency bulk plasmon. This has led to the realization of the first omni-directive antenna via ultra-refraction [85]
and we give some examples of applications in Fig. 16.

While we focused our review on metamaterials which display unique effective properties in the homogenization
regime, photonic crystals [86] offer an interesting alternative towards negative refraction in the Bragg regime, using
anomalous dispersion curves located at the edges of stop bands (some of them naturally display a negative group
velocity), as first theorized in [87] and then further explored in [88] (see also [81] for a comprehensive review of the
state of the art in photonic crystals). Although sub-wavelength imaging remains elusive following this path, interest
in this area has been recently fueled by some promising numerical simulations and experiments [89,90].

Finally, similar effects can be obtained for other types of waves, such as acoustic waves propagating in structured
elastic materials [91–94,34] and even surface water waves interacting with periodic structures [95]. But other types of
waves are also of interest, such as coupled pressure and shear elastic waves in structured solids, or flexural waves in
thin structured plates. Enhanced resonances in opto-elastic metamaterials might even enable a better control of light
via sound vibrations (via Brillouin scattering). Metamaterials with negative material parameters have created a novel
route towards the control of radiation and hold much promise for future technologies including the recent exciting
research in cloaking mechanisms. We are confident new discoveries are on their way.
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