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Abstract

In this review we discuss how theoretical momentum-resolved many-body spectral functions can help understanding the physics
underlying angular resolved photoemission spectra (ARPES). Special focus is set on phenomena induced by electronic Coulomb
correlations. Among these effects are transfers of spectral weight, the loss of quasi-particle coherence, and the sensitivity of these
phenomena on external parameters, such as temperature or pressure. For the examples of the metallic phases of VO2 and V2O3
we review results obtained within dynamical mean-field theory, and assess the limits of band-structure approaches. Our discussion
emphasizes the need for true many-body techniques even for certain metallic materials. To cite this article: J.M. Tomczak et al.,
C. R. Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Fonctions spectrales résolues en moment des matériaux métalliques corrélés : Des résultats de la théorie de champ moyen
dynamique. Dans ce rapport nous discutons comment les fonctions spectrales résolues en moment, déterminées dans le cadre des
théories à plusieurs corps, peuvent nous aider à comprendre la physique sous-jacente aux spectres de photo émission résolue en
angle (ARPES). Une attention particulière est portée aux phénomènes induits par les corrélations électroniques coulombiennes.
Parmi ces effets on trouve les transferts de poids spectral, la perte de cohérence de quasi-particules, et la sensibilité de ces phé-
nomènes aux paramètres externes tels que la température ou la pression. Prenant pour exemple les phases métalliques de VO2 et
V2O3 nous examinons des résultats obtenus dans le cadre de la théorie de champ moyen dynamique, et les limites des approches de
structure de bandes. Notre discussion souligne le besoin de techniques véritablement à plusieurs corps, même pour la description
de certains matériaux métalliques. Pour citer cet article : J.M. Tomczak et al., C. R. Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Keywords: Momentum-resolved spectroscopy; ARPES

Mots-clés : Fonctions spectrales résolues en moment ; ARPES

* Corresponding author at: Research Institute for Computational Sciences, AIST, Tsukuba, 305-8568 Japan.
E-mail addresses: jan.tomczak@polytechnique.edu (J.M. Tomczak), alexander.poteryaev@polytechnique.edu (A.I. Poteryaev),

biermann@cpht.polytechnique.fr (S. Biermann).
1631-0705/$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crhy.2009.07.002



538 J.M. Tomczak et al. / C. R. Physique 10 (2009) 537–547
1. Introduction

The most prominent hallmarks of correlated metals are the occurrence of finite lifetimes of one-particle excita-
tions, the appearance of incoherent spectral weight and the sensitivity on external parameters, such as temperature or
pressure. Photoemission spectroscopy [1–3] has been a very valuable tool in assessing these effects by confronting
many-body theories with experimental findings. Over the years, both theory and experiment, have thus enriched and
stimulated each other, and reached nowadays a consensus on the basic incarnations of many-particle effects. Indeed,
a sketch of the spectral function of a correlated metal, namely the paradigmatical three-peak-structure, consisting
of occupied and unoccupied Hubbard satellites with the quasi-particle peak in between, has somewhat become the
mascot of the field.

In recent years, photoemission has witnessed important progress, both conceptually and in precision. The latter
concerns not only the improvement in detector technology, but also the rather recent use of either very high or very
low photon energies, which both result in a better bulk-sensitivity by increasing the electron escape depth [1]. On
the conceptual side, there are at least two branches that are pursued: assessing non-equilibrium states by pump-probe
experiments (see e.g. [4]), and the momentum selective collection of electrons (for a review see [2]).

In this theoretical review, we shall be concerned with the latter, commonly known as angular resolved photoemis-
sion spectroscopy, or ARPES in short. Probably the most prominent examples of materials where ARPES data provide
us with puzzles, the solutions of which are likely to yield key insights into the physics of the compounds, are the high-
Tc superconductors. In fact, the momentum selective breakdown of the Fermi liquid regime (see e.g. the review [2])
has already called for serious refinements of theoretical approaches for models with electronic correlations. Beyond
model considerations (see e.g. the examples [5–8]) however, the reliable description of momentum-resolved spectra
in the realistic case is still a challenge, and yet bound to shed more light on intricate details of the excitation spectra
and possibly on the physics of high-Tc superconductivity.

While for angle integrated photoemission there are many examples for which theoretical calculations, e.g. based on
dynamical mean field theory (DMFT) [9,10] within its realistic extensions (in particular the so-called “LDA+DMFT”
scheme [11,12]), are congruent with experiment, assessing the momentum-resolved electronic structure poses a further
challenge to theoretical investigations. Nevertheless, in recent years ARPES modeling based on dynamical mean field
theory has evolved into a tool that provides us with useful insights into the excitation spectra of materials such as
transition metal oxides or rare-earth compounds. Early LDA + DMFT calculations for the ARPES spectra of γ -
phase of manganese [13], e.g., have revealed the existence of Hubbard bands in this simple transition metal and have
been confirmed by experiments. The seemingly simple transition metal oxide SrVO3 was proposed to exhibit a kink
structure much like in the high-temperature superconducting cuprates [14] (see also [15]). Finally, ARPES spectra
have been calculated for heavy fermion compounds [16] and the new iron oxypnictide superconductors, revealing an
intrinsically multi-band electronic structure [17].

In this review, we focus on the examples of VO2 and V2O3, two oxides that undergo metal-insulator transitions
under changes of external parameters – as a function of temperature for VO2, and as a function of pressure or tem-
perature for Cr-doped V2O3. While it is well established that e.g. the charge gaps of strongly correlated insulators are
not described by density functional theory (DFT) [18] within the local density approximation (LDA) [19], the limits
of band theory for metallic phases have attracted less attention. Here, we shall put the emphasis on this point, and –
using as examples the metallic phases of the mentioned vanadium oxides – discuss the influence of correlation effects
onto the electronic structure, thus assessing the limits of band-structure approaches.

In this context we address two issues that are induced by electron–electron interactions: (a) the transfer of spectral
weight to incoherent excitations; (b) the (orbital-dependent) coherence temperature of quasi-particle derived states.

When becoming of seizable magnitude, both of these effects lead to the break-down of effective one-particle
approaches such as DFT. One then has to go beyond the notion of a band-structure and employ a true many-body
technique, examples of which are Hedin’s GW approximation (GWA, for reviews see e.g. [20,21], for recent works
on vanadium oxides [22–26]), and DMFT.

This review is organized as follows: In Section 2 we summarize the main ideas of the DMFT method. Then we
discuss – within the DMFT framework – the impact of correlation effects onto the electronic structure, elucidating
energy shifts and life-time effects. In Section 4 we review results for momentum-resolved spectra of the vanadium ox-
ides VO2 and V2O3. We close the article with some comments on temperature dependence within electronic structure
calculations, and on perspectives of more detailed comparisons to ARPES experiments.
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2. Dynamical mean field theory (DMFT) and electronic structure calculations

The basic idea of DMFT is to replace a lattice problem (or as in the realistic case, the correlated orbitals of an
atom/a cluster of atoms, defined within a localized basis set) by an effective local system, coupled to a bath and
subject to a self-consistency condition, in analogy to conventional Weiss mean field theory in statistical mechanics.
Contrary to the latter however, the intervening mean field is energy-dependent, hence the notion of a dynamical MFT.

Let us illustrate the method on the example of a multi-band Hubbard model, defined by the Hamiltonian

H =
∑

k,LL′,σ
HLL′

0 (k)c
†
kLσ

ckL′σ +
∑
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Uσσ ′

LL′ nRLσ nRL′σ ′ (1)

The associated local problem is defined within the action formalism by
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where c† [c] are the Grassmann variables associated with the creation [annihilation] operators of the Hamiltonian
of Eq. (1), n refers to the corresponding particle number operator, and G0 is the non-interacting propagator of the
effective impurity problem. Alternatively, we can go back to a Hamiltonian formulation by parameterizing the bath
Green’s function by a set of auxiliary bath parameters:
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Here, V l
LL′ are the hybridization matrix elements of the l-th orbital in the discretized bath with the physical orbitals

L, L′, and ε̂l is the corresponding local Hamiltonian of the l-th orbital of the bath. This form is a straightforward
generalization of the usual Anderson impurity model [27] to the multi-orbital case.

The task consists in calculating the local Green’s function G
imp
LL′σ = −〈T cLσ c

†
L′σ 〉Simp of the above local impurity

model. For its solution, a variety of techniques, ranging from Monte Carlo simulations to approximate schemes, are
available.

In contrast to the original ideas of Anderson who wrote an impurity model in order to describe a physical impurity
in a (given) host material, the impurity within the DMFT context is representative of a correlated orbital at a given site
of a translationally invariant solid. One thus obtains a self-consistency condition by imposing that all equivalent sites
behave in this same way. Mathematically, one imposes the local Green’s function G of the solid to equal the impurity
Green’s function Gimp. To this effect, the self-energy of the impurity model Σimp = G−1

0 −G−1 is calculated and used
as an approximation to the full self-energy of the lattice. Thus

G(ıωn) =
∑

k

[
ıωn + μ − H0(k) − Σ imp(ıωn)

]−1 (4)

In practice, this set of equations is solved iteratively, starting from a guess for the bath Green’s function G0, solving
the impurity model, inserting the corresponding self-energy into the self-consistency equation (4), recalculating G0
from Dyson’s equation, using the result to update the impurity model, and so forth.

The basic idea of constructing a local model for the purpose of calculating a local self-energy as an approximation
to the full many-body self-energy of the system, carries directly over from the model context to the case of a real
solid. The most basic version of the combined “LDA + DMFT” scheme [11,12] can be viewed as a DMFT solution
of a multi-orbital Hubbard model, where the parameters are calculated from DFT-LDA. The impurity represents the
correlated orbitals of a type of atoms in the solid, and the self-consistency condition attributes the same self-energy to
all equivalent correlated atoms – up to rotations in orbital space.

Besides varying techniques for solving the impurity problem, implementations mainly differ in issues such as the
orbitals used for defining the interaction terms and the notion of locality in the DMFT context [28], the basis set of
the LDA implementation and the self-consistency condition, as well as the possibility of an update of the one-particle
Hamiltonian [29–31].
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From a conceptual point of view, LDA + DMFT in its general framework can be viewed as an approximation to
a functional of both, the density and the spectral density of correlated orbitals, as formulated within spectral density
functional theory [32].

3. Momentum-resolved spectral functions

3.1. The many-body spectrum

Band structure methods rely on effective one-particle theories: The Schrödinger equation becomes separable, and
the Hilbert space therewith sufficiently small to render the time-independent problem of the Hamiltonian solvable.
The eigenstates become Slater determinants of one-particle states, and the excitation energies are identified with the
corresponding eigenvalues. These being real, the excitations are delta-distribution-like, with infinite lifetimes. The
band picture is in this sense an idealisation of the normal Fermi liquid, with infinite lifetime on all energy scales. The
decay of quasi-particles leaving the Fermi surface is already beyond the band-picture. Within many-body approaches,
the impact of correlation effects is encoded in the electron self-energy Σ(ω), which is a complex non-Hermitian
quantity, which is furthermore frequency-dependent.1 While its real and imaginary parts are connected by a Kramers–
Kronig transformation, we can separate their principle impacts on the electronic structure. The real parts of the self-
energy are responsible for the shifting of spectral weight with respect to the non-interacting problem, in a way alike to
an external potential, albeit a frequency and orbital dependent one. As we will discuss below, already this complication
may lead to effects beyond a usual band-approach. The imaginary parts of the self-energy encode life-time effects and
thus the loss of coherence. If these imaginary parts are seizable, band-structures and densities of states loose their
meaning, and the only quantity that represents the one-particle excitations is the many-body spectral function

A(k,ω) = (
ω + μ − H0(k) − Σ

(
ω + i0+))−1 (5)

which for ω > 0 (ω < 0) is understood as the probability of adding (removing) an electron with energy ω and momen-
tum k into the system. It thus represents the amplitudes for the transitions N → N ± 1 of the electron occupation. In
principle, photoemission spectroscopy measures one of these processes, namely the removal of an electron by photo-
excitation. The energy and momentum of the electron can be collected, thus giving information on A(k,ω < 0). This
alone would be a theorist’s dream come true. Yet, there are several issues that complicate the occurring processes, but
which are beyond the scope of the current review. Indeed the states of the ejected electron and the system of N − 1
electrons are assumed to factorize (sudden approximation). Further, the photo-electron will scatter on its escape path
towards the surface, and transmit into the vacuum with only a certain probability. The casting of these effects into
theory and approximative solutions go under the name of the one and three step model. Finally, the coupling of the
electronic states to the light field modulates the momentum-resolved spectral function by matrix elements susceptible
to suppress certain transitions and enhancing others [33].

Despite these complications, a comparison of theoretical spectral functions with photoemission signals has proved
to be semi-quantitatively meaningful. For early examples of momentum-resolved spectra in the LDA+DMFT context,
see e.g. [13,15].

3.2. Effective band-structures

As alluded to above, Fermi liquid theory provides us with a justification for the search of effective low energy band
structures. In energy regions where the imaginary part of the self-energy is small (that is the quasi-particle life-time
large), the k-resolved spectral function displays sharp peaks corresponding to one-particle band-like excitations. These
quasi-particle excitations are given by the poles ωk of the momentum-resolved Green’s function, i.e. by ωk verifying
det(G[�Σ]−1) = 0, or

det
(
H0(k) + �Σ

(
ωk + i0+) − μ − ωk

) = 0 (6)

1 From now on we will be referring to DMFT results, thus the self-energy does not have any explicit momentum dependence.
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This is closest in spirit to the band-picture, and simplifies to an eigenvalue problem in the limit of a static self-
energy. Yet, in general, this equation is not a linear problem, which makes its numerical solution difficult.2 In
particular, the weight carried by the quasi-particle poles is Z = (1 − ∂�Σ

∂ω
)−1, that is, unlike in the band case, it is

in general smaller than one. Moreover, the number of poles is not limited to the orbital dimension. Indeed, when
thinking of the atomic limit, for which in the case of a half-filled one-band Hubbard model Σ = U2/4ω, there are
two solutions, corresponding to the Hubbard satellites, each having the weight 1/2. This means, only in weakly cor-
related materials can the above prescription be used for the construction of an effective one-particle Hamiltonian (for
an example, see [34,35]). Yet, also for correlated materials, interesting insights can still be gained from assessing the
energies of the (fictitiously coherent) quasi-particle dispersions (e.g. when assessing dispersion kinks near the Fermi
surface [14], or symmetry breaking induced transitions [35,34]). The density of states of the resulting excitations can
then sometimes be used as a guidance to the most coherent parts of the spectrum.3

In a Fermi liquid, however, close to the Fermi level, the imaginary part of the self-energy vanishes proportional to
ω2 + π2T 2, and the low-energy excitation spectrum can safely be assimilated to an effective band structure. Indeed,
expanding the self-energy to first order around the Fermi level Σ(ω) = �Σ(0) + ω∂ω�Σ(ω)|ω=0 and inserting the
resulting expression into Eq. (6) shows that this band structure is given by the solutions ωk of

det
(
ωk − Z

[
H0(k) + �Σ(ω = 0) − μ

]) = 0 (7)

where Z−1 = 1 − ∂ω�Σ(ω)|ω=0. Since Z < 1, this effective band-structure will in general have a smaller dispersion
than within DFT, one speaks of “bandwidth narrowing”.

We close this paragraph with a remark on the description of this band-narrowing effect within single-site DMFT.
Since this theory approximates the full non-local many-body self-energy by a purely local quantity it is sometimes
argued that DMFT could not modify the form of the LDA band dispersion. This is, however, not correct. In fact, the
energy and orbital dependence of the self-energy results very well in a k-dependent band renormalization, as can be
seen from the above equation (6). In a one-band system, the renormalization at a given k-point depends on the energy
εk of the band at that given k-point. In this situation, only LDA band states that have the same energy but correspond
to different k-points would be renormalized in the same way. In the general multi-band case, even this is not true
anymore, since differences in the orbital character can result in different band renormalizations even of bands that live
at the same energy.

4. Momentum-resolved spectroscopy of vanadium oxides

4.1. VO2

Our first example, vanadium dioxide (VO2), has triggered much interest over decades, due to its metal-insulator
transition as a function of temperature [36]. Metallic in its high temperature phase of rutile structure, cooling beneath
340 K provokes a phase transition to a monoclinic insulating phase. The nature of this transition – Peierls or Mott –
has been the subject of a long-standing debate (for a review see e.g. [37]; recent works can be found e.g. in [38,34,35]).

Dynamical mean field calculations [39–42] for the local spectral function agree well with experimental findings as
provided by (angle integrated) photoemission and X-ray absorption spectra [43–48]. In particular, the characteristic
features of the metal, with a pronounced peak at the Fermi level, and a lower Hubbard band satellite have been
experimentally confirmed [49]. Besides one-particle spectra, also the optical conductivity of experiments [50,47,51]
and LDA + DMFT calculations [52–54] are in agreement.

While theoretical results thus received experimental validation as far as integrated quantities are concerned, the
capturing of the precise structure in momentum space is evidently a much stricter demand. Early ARPES work [55]
indeed evidenced that the vanadium 3d bandwidth is narrower than in band-structure calculations, but lacked sufficient

2 Another view point (see e.g. [6]) identifies the effective band-structure with the maxima of the one-particle spectral function. Therewith the
influence of the frequency dependence of the anti-hermitian parts of the self-energy are incorporated into the finding of the positions of prominent
spectral features. This is motivated by the fact that experiments are measuring spectral weight and not pole positions. Yet, from a conceptual point,
we prefer the notion of one-particle poles, which, especially in the multi-orbital case, are better suited to resolve individual excitations.

3 In general, it should however not be expected to reproduce the photoemission spectrum since spectral weight transfers and lifetime effects are
missing.
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(a) VO2 (b) V2O3

Fig. 1. Momentum-resolved spectra of (a) rutile VO2, (b) V2O3. The (green) dotted lines in (a) show the renormalized band-structure according to
Eq. (7). The (blue) dots in both figures indicate the solutions of the quasi-particle equation, Eq. (6). Both calculations use a low energy Hamiltonian
for the t2g orbitals of vanadium. The displayed energy window covers the entire range of the resulting t2g many-body spectrum. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

bulk sensitivity to track in detail the dispersion of the low energy excitations. To the best of our knowledge, no further
ARPES data on VO2 are published at this stage. The momentum-resolved LDA + DMFT spectral function, shown
along selected symmetry lines in Fig. 1(a) for the low energy t2g subset of the vanadium 3d orbitals, is thus a theoretical
prediction for future experiments. The current data is based on previous work [42,35], where the DMFT method was
applied to the t2g subset of the vanadium 3d orbitals, with a Hubbard–Hund type of interaction with U = 4.0 eV
and J = 0.68 eV. The DMFT impurity problem was solved using a quantum Monte Carlo method at T = 770 K
(see the original works [42,35] for further details). Of interest in the present context is the remark that the rutile
phase of VO2 is one of the few cases for which cluster DMFT calculations (using a dimer of vanadium atoms) have
been performed in addition to single site calculations [42], with numerically identical results, thus giving additional
confidence in the validity of the single site (i.e. momentum independent) DMFT approach in this case. As witnessed
experimentally (in the momentum integrated spectra), the lower Hubbard band resides at about −1.75 eV, and our
calculation suggests it to be almost dispersionless. Near the Fermi level, on the contrary, the quasi-particle derived
excitations exhibit a notable dispersion. With respect to e.g. LDA band-structure calculations [37] the bandwidth in
the many-body spectrum is considerably narrower. Yet, in the window of ±0.5 eV, the LDA + DMFT self-energy is
basically linear in energy, as well as almost orbital independent [35], with an average renormalization factor Z ≈ 0.6.
The spectral weight in this region is well described by a renormalized band-structure as provided by Eq. (7) and
as indicated in Fig. 1(a). Consequently, in this region, also the solutions of the full quasi-particle equation, Eq. (6),
follow the regions of high spectral intensity. However, according to the renormalization, the “band-like” features carry
a weight less than one, with (around the Fermi level) 1 − Z being transferred to (Hubbard) satellite features. Besides
this transfer, the life-time that is finite even on the Fermi surface (a non-vanishing imaginary part in the self-energy)
causes the excitations in this area to visibly broaden.4

Beyond 0.5 eV, in the unoccupied spectrum, i.e. in the realm of inverse photoemission, coherence is quickly lost,
and hence the pole structure can no longer be interpreted as representing the excitation spectrum. Clearly seen is

4 From optical experiments it was inferred that rutile VO2 might be a “bad metal” in the sense that the Ioffe–Regel–Mott resistivity limit is
surpassed [51].
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moreover the discrepancy between the quasi-particle poles and the renormalized band-structure, which is a conse-
quence of the non-linear frequency dependence of the electron self-energy above 0.5 eV [35]. Also, contrary to the
lower Hubbard band, the upper Hubbard band, seen in the spectrum above 2 eV, is a solution to Eq. (6), i.e., in
this case, dynamical correlations yield more “one-particle excitations” than the orbital dimension would allow in the
band-picture.

In conclusion for the spectrum of rutile VO2, two manifestations of correlation effects cause standard band-
structure approaches to even qualitatively fail: The transfer of spectral weight to incoherent satellite features, and
the finiteness of lifetimes of quasi-particle derived excitations.

4.2. V2O3

Vanadium sesquioxide (V2O3) has long been considered as the prototype of a Mott insulator [56]. Indeed, Cr-
doped V2O3 undergoes under pressure – for temperatures above the antiferromagnetic ordering TN ∼ 160 K – a
metal-insulator transition [57]. Probably this is also a reason why this compound has been studied extensively using
different techniques, including photoemission and X-ray absorption spectroscopy [43,44,58–62].

While early theoretical work viewed this transition in complete analogy to the metal-insulator transition in the one-
band Hubbard model (with which it indeeds bears much resemblance, see e.g. the optical spectra in [63]), more recent
calculations address the description of the transition within a first principles framework [64–70], stressing the impor-
tance of multi-orbital effects. The picture established in [69] views the transition as driven by a correlation-enhanced
crystal field splitting. Unlike the traditional Mott transition in the one-band Hubbard model, in which quasi-particles
are destroyed by a diverging effective mass [71], i.e. a vanishing lifetime, in V2O3, correlation effects disentangle
overlapping bands to the extent to open a charge gap at the Fermi surface [69].

Besides the mechanism of the metal-insulator transition, already the metal phase is characterized by interesting
multi-orbital correlation effects: The LDA + DMFT momentum-resolved spectrum of metallic V2O3 is displayed in
Fig. 1(b). Also shown are the solutions of the quasi-particle Eq. (6). These results are based on a previous work [69],
which used a downfolded vanadium t2g setup, with a Hubbard–Hund interaction with U = 4.2 eV and J = 0.7 eV.
The DMFT impurity problem was solved by a quantum Monte Carlo approach at a temperature T ∼ 390 K.

The lower Hubbard band (better discernible in Fig. 5 of Ref. [69]) is independent of the momentum. The quasi-
particle feature witnessed in angle integrated photoemission (see e.g. Ref. [58]) is resolved by the quasi-particle poles
into several band-derived excitations. However, we note that the correlation induced lifetime effects broaden most of
the occupied spectral weight to the extent that already at these low energies the notion of a band-structure becomes
meaningless. Only around the Γ -point a well-defined structure crosses the Fermi level, accounting for the metallic
character of the phase. Very recent ARPES experiments [62] confirm these findings.

In view of the limits of the band-picture, in this context, the effects of coherence are of particular interest. First, we
note that owing to the octahedral oxygen coordination, the vanadium t2g orbitals further split into eπ

g and a1g com-
ponents. The observation now is that when correlation effects are accounted for (here within DMFT), the broadening
of excitations in the occupied spectrum is concentrated at around −0.5 eV, which corresponds to the eπ

g spectral
weight, while the sharp feature that crosses the Fermi level is mainly of a1g orbital character. This means that for
the temperature T ∼ 390 K of the calculation, the eπ

g electrons are out of their Fermi liquid regime (i.e. incoherent).
The a1g electrons, on the other hand, while also having a finite life-time at the Fermi level [69], they are still rather
well defined (i.e. close to their coherence regime). In other words, the electronic coherence scale (the temperature
limit TFL of the Fermi liquid regime) is strongly orbital-dependent. We recall that any approach that assimilates the
finite temperature electronic structure of a solid to a pure band structure tacitly assumes this coherence scale to be
infinite by construction, irrespective of interactions and orbitals. While the existence of a Fermi liquid is limited to
low energies (ω < ωFL), it is also strictly defined only at T = 0. Yet, at reasonably low temperature, charge carriers
still behave like quasi-particles, e.g. verifying Boltzmann’s transport theory and the Ioffe–Regel limit for resistivity.
Beyond a temperature, TFL, however, the quasi-particle picture is no longer applicable, and this is here the case for
selected orbitals, namely the eπ

g ones, whereas the a1g excitations are still close to their coherence regime.
This distinction of orbital coherence scales manifests itself also in other experimental observables, and the current

scenario is indeed confirmed by optical measurements [72,73] in conjunction with an analysis of multi-orbital effects
in the theoretical conductivity [70]: As a matter of fact, optical transitions that involve the a1g orbitals will be subjected
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to greater changes upon heating beyond 390 K (i.e. approaching TFL of the a1g electrons) than the eπ
g contribution

which are already incoherent.
This adds a third limitation of standard band-structure approaches: The effect of the physical temperature upon the

electronic properties of the system.5

5. Discussion and perspectives

The above examples have demonstrated the limits of the band picture for the electronic structure of correlated
materials in view of ARPES experiments.

For Mott insulating compounds the deficiencies of effective one-particle theories are well established. We stress
that while in the one-band Hubbard model the Mott transition is driven by a vanishing quasi-particle life-time (i.e.
a diverging self-energy) the multi-orbital nature of solids provides us with a variety of possibilities: gap opening by
band shifts encoded in the real part of the self-energy, vanishing life-times as in the (half-filled) Hubbard model, or
combinations of both mechanisms in an orbital-selective manner. Except for the pure band-insulating case, all of these
effects are beyond band theory.

As we have discussed above, it is, however, not only the Mott insulating phase that can challenge the one-particle
picture. As shown for our example compounds, spectral weight transfers and associated coherence and temperature
related phenomena can be prominent also in metallic phases.

Indeed, already the seemingly canonical Fermi liquid exhibits correlation induced bandwidth narrowing, a loss of
coherence upon leaving the Fermi surface, and a temperature contribution to low-energy scattering, none of which is
included in effective one-particle theories that work at T = 0.

To mend the first issue, a true many-body technique should be applied. In the realistic context, well established
approaches are e.g. the GW approximation to Hedin’s equations, which meets tremendous success in describing
weakly to moderately correlated materials [20,21],6 or realistic extensions of DMFT. For the latter, we have shown
two applications taken from recent work on vanadium oxides.

Secondly, in order to account for the physical temperatures at which photoemission experiments are carried out,
also the theoretical method should work at finite temperatures. Indeed, in dynamical mean field calculations, temper-
ature is an input, and e.g. effects of orbital-dependent coherence are naturally obtained from the spectral functions,
and open to interpretation in terms of the electronic self-energy.7

Once these prerequisites are met, the principle endeavor should be to further increase the realism of ARPES calcu-
lations by including effects that were not touched upon in this review, in particular by accounting for transition matrix
elements [1,2,33] of the electron ejection process.
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