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Abstract

The rheology of suspensions of soft particles, such as red blood cells, is a long-standing problem in science and engineering
due to the complex interplay between deformable microstructure and the macroscale flow. The major challenge stems from the
free-boundary nature of the particle interface. Lipid bilayer membranes that envelop cells and vesicles are particularly complex
interfaces because of their unusual mechanics: the molecularly thin membrane is a highly-flexible incompressible fluid sheet. As a
result, particles made of closed lipid bilayers (red cells and vesicles) can exhibit richer dynamics than would capsules and drops.
We overview the key experimental observations and recent advances in the theoretical modeling of the vesicles and red blood cells
in flow. To cite this article: P.M. Vlahovska et al., C. R. Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Vésicules et globules rouges sous écoulement : De la dynamique individuelle à la rhéologie. La rhéologie des suspensions
de particules molles, telles les globules rouges, constitue depuis longtemps un défi pour les sciences et l’ingénierie à cause du
caractère complexe du couplage entre la microstructure et l’écoulement global. La source de la difficulté provient du caractère libre
des surfaces des entités en suspension. Les bicouches lipidiques qui composent les membranes des cellules vivantes et des vésicules
sont des surfaces particulièrement complexes à cause de leur mécanique inhabituelle : la membrane d’épaisseur moléculaire est très
flexible mais en même temps il s’agit d’une surface incompressible. Il en résulte que les particules composées de ces membranes
(comme les globules rouges et vésicules) révèlent plus de richesses que ne le font les gouttes ou les capsules. Nous passons en
revue les principaux résultats expérimentaux et les progrès théoriques réalisés dans l’étude des vésicules et globules rouges sous
écoulement. Pour citer cet article : P.M. Vlahovska et al., C. R. Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Fig. 1. A cartoon showing a vesicle and the molecular structure of its membrane. Picture taken from the web site of the NASA Astrobiology
Institute: http://astrobiology.nasa.gov/nai/ .

Fig. 2. A. Equilibrium shapes of vesicles [11]. B. Vesicle motions in shear flows: tumbling (TB) and vacillating–breathing (VB) [12].

1. Introduction

Cells and internal cellular organelles are enveloped by membranes composed primarily of lipid bilayers [1–3].
Biomimetic bilayer structures have opened new frontiers in biomedical- and nano-technologies [4]. For instance,
bilayer sacs (vesicles) are employed as containers for biochemical reactions as well as for transport and delivery of
samples [5,6]; as vectors for targeted drug and gene delivery [7,8]; and as artificial cells for hemoglobin encapsulation
and oxygen transport [9].

The biological significance and technological potential of lipid membranes have stimulated an increasing interest
in their physics. A giant unilamelar vesicle (see Fig. 1), which is a cell-size membrane envelope, mimics essential
characteristics of the red blood cell such as its equilibrium biconcave shape. Thus, vesicles have gained popularity as
a model system to study the red blood cell dynamics and membrane biophysics in general [10]. The giant vesicle of
large size (10–100 µm) allows the manipulation of individual vesicles and observation of their dynamics in real time
with optical microscopy.

Vesicles are fundamentally different from other membrane-bound objects such as polymeric capsules. Vesicles
adopt an amazing variety of equilibrium shapes, and exhibit even more complex non-equilibrium dynamics in external
flow, see Fig. 2. This rich vesicle behavior stems from the nonlinear coupling of lipid membrane deformation and
fluid motion that spans multiple scales. Under stress, lipid membranes store elastic energy in bending [13,14], while
polymerized membranes are more likely to be stretched and sheared [15,16]. In addition, the lipid membrane develops
a dynamical tension that adjusts itself to the forces exerted on the membrane in order to keep the local area constant.
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Finally, lipid membranes are extremely soft and can be easily bent by thermal noise on length scales smaller than√
κ/σ , where κ is the bending rigidity and σ is the tension of the membrane. For vesicles at rest, this critical length

is comparable to the vesicle radius and the vesicle shape “flickers”.
In this review we discuss the current understanding and open questions regarding the dynamics of an isolated

vesicle and the collective behavior of many vesicles in suspension. Detailed knowledge of this problem will serve as
a solid basis for understanding the red cell dynamics and blood rheology.

2. Background

A pure lipid membrane consists of two sheets of lipid molecules. Lipid bilayers spontaneously close to avoid
exposure of their hydrophobic core to water, and form vesicles. The physical properties of lipid bilayers and vesicle
configurations are surveyed in the classical reviews by Seifert [14] and Bloom et al. [17], and more recently by Dimova
et al. [18]. The bilayer thickness is 5 nm, about 1/1000 of the cell radius. Due to the large separation of length scales,
the membrane can be regarded as a two-dimensional surface embedded in a three-dimensional space, and continuum
mechanics description applies [19]. In what follows we shall describe first the basic features of membrane forces,
equilibrium shapes at rest, and then introduce an external flow in order to study the dynamics and rheology.

2.1. Forces exerted by a bilayer membrane on a surrounding fluid

The bilayer thickness imparts resistance to bending. Within the framework of the spontaneous curvature model
[14], the bending resistance gives rise to a surface force density

τκ = −κ
[
(2H − C0)

(
2H 2 − 2K + C0H

) + 2∇2
s H

]
n (1)

where κ is the bending modulus, H is the mean curvature, K is the Gaussian curvature, C0 is the bilayer spontaneous
curvature (intrinsic curvature due to asymmetry in packing density of the lipid molecule’s head and tail [20]), and
n is the normal vector. ∇s is the surface gradient (gradient along the membrane) and ∇2

s refers to the surface Lapla-
cian (also called the Laplace–Beltrami operator). Phospholipid membranes are remarkably soft, because the energy
required for bending is comparable to the thermal energy kBT ; the bending modulus is κ ∼ 20kBT [18].

The membrane leaflets represent an assembly of fixed number of lipids. The energy cost of increasing the area per
lipid is very high as evidenced by the large area expansion modulus Ka ∼ 0.2 N/m [18]. Accordingly, the membrane
can be regarded as a two-dimensional incompressible material (under moderate stresses). A membrane element only
deforms, but cannot change its local area. That is to say, we need to introduce a local Lagrange multiplier σ (i.e.
a multiplier that depends on position) that preserves area. From physical point of view, under stress, the membrane
develops tension, which adapts itself to the forces exerted on the membrane in order to keep the local and total area
constant. Hence, the tension may become non-uniform along the interface and varies with forcing. The membrane
tension gives rise to surface force density

τσ = 2σHn − ∇sσ (2)

where σ denotes the local membrane tension. The first term is normal (and is akin to the Laplace force), while the
second one is tangential.

At physiological temperatures, lipid molecules are free to move within the monolayer, and therefore, in contrast
to solid-like polymerized membranes, the lipid bilayer membrane is fluid with a zero shear-elastic modulus [18]. The
two-dimensional membrane viscosity of lipid bilayers is of about ηmm ∼ 10−9 N s/m. If d denotes the membrane
thickness (of order of 5 nm), then the equivalent three-dimensional viscosity is of about η3D

mm ∼ ηmm/d ∼ 0.2 N s/m2,
which is much larger than the water viscosity, η = 10−3 N s/m2. However, since the hydrodynamic dissipation inside
the membrane extends over the thickness d , while that in the surrounding fluid over a distance of the order of the
vesicle size R0, membrane dissipation prevails only if (η/η3D

mm)R0 < d . This entails that membrane dissipation would
be relevant only at quite small scales, below 1 µm. Since we are interested in the so-called giant vesicles the membrane
dissipation is quite negligible.

In the red blood cell (RBC), a key component of the membrane is a protein scaffold attached to the lipid bilayer
(Fig. 3). The polymer network endows the RBC membrane with resistance to shearing. As a result, RBCs are often
modeled as capsules with elastic membrane stresses described by Skalak’s constitutive law (see detailed discussion
in [21]).
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Fig. 3. Cartoon presenting the components of which a red blood cell membrane is made. Besides the bilayer structure (made of molecules having
a head and two tails), the membrane is made of many other species, like the cytoskeleton filaments.

2.2. Equilibrium shapes of vesicles

At equilibrium, the membrane tension is uniform. The fluids on both sides exert only hydrostatic pressure, which
acts normal to the interface. Hence, the only tangential component of the membrane forces (Eq. (2)), ∇sσ , is zero
which implies uniformity of σ . Equilibrium vesicle shapes correspond to solutions of the generalized Laplace’s equa-
tion [22–25]

pin − pex = 2σH − κ
[
4H 3 − 4KH + 2∇2

s H
]

(3)

where, for simplicity, we have set the spontaneous curvature to zero. It balances hydrostatic pressure, bending (Eq. (1))
and capillary tractions (Eq. (2)). Like the tension σ , the pressure p can also be viewed as a Lagrange multiplier that
enforces constant enclosed volume. The membrane area is constant because the number of molecules in the bilayer
is fixed. The enclosed volume is also constant, because the membrane is impermeable to ions and osmotic pressure
resists changes in volume. Equilibrium vesicle shapes have been exhaustively studied and vesicle topology has been
mapped as a function of the spontaneous curvature and excess area �, which is the difference between the vesicle
area and the area of an equivalent volume sphere [26,14,20]

� = A

R2
0

− 4π, R0 =
(

3V

4π

)1/3

(4)

� = 0 for a sphere, and � > 0 otherwise. For red blood cells � � 5. The characteristic red blood cell shape of a
biconcave disc corresponds to a minimum of the bending energy at excess area about 5 [14].

There are several extensions of the basic curvature model defined by Eq. (1). The bilayer couple and the area-
difference elasticity (ADE) models [14,20] were introduced in order to account for more complex shapes such as the
starfish one, see Fig. 2.A. Note that the equilibrium solutions correspond in reality to an average shape, since the
equilibrium tension of vesicles can be very low, σ0 ∼ 10−6 N/m, and the energy cost for bending is low κ ∼ kBT , so
that thermally induced membrane undulations make the surface “flicker” [27,28].
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Fig. 4. Sketch of the streamlines of Poiseuille flow. A cell is placed off-center at a distance y0.

2.3. Fluid motion and fluid–membrane coupling

At the length scale of a micron-size vesicle, water is effectively very viscous and low-Reynolds number (creeping
flow) conditions prevail. Forces are locally balanced and vesicle motion is described by the Stokes equations

∇ · T = 0, ∇ · v = 0 (5)

where T is the bulk hydrodynamic stress

T = −pI + η
(∇v + (∇v)†) (6)

p is the pressure, η is the fluid viscosity, I denotes the unit tensor and the superscript † denotes transpose, v is the
velocity. Far away from the vesicle, the flow field tends to the unperturbed external flow vex → v∞. The surrounding
fluids exert tractions on the membrane that are balanced by membrane forces

n · (Tex − Tin) = τκ + τσ + τ el (7)

Surface forces due to the lipid bilayer are given by Eqs. (1) and (2). τ el are elastic tractions due to the spectrin
network; these are evaluated using appropriate constitutive laws [21,15]. For fluid vesicle at rest, Eq. (7) reduces to
the Euler–Lagrange (generalized Laplace) equation (Eq. (3)).

3. Dynamics of an isolated vesicle and red blood cell in flow

Equilibrium vesicle and red blood cell (RBC) dynamics, i.e., membrane fluctuations around locally stable shape, is
a well researched topic in statistical physics [28,29]. Non-equilibrium dynamics is the more challenging and far less
explored regime. The past several years have marked an increasing interest in the motions and deformation of vesicles
and RBCs induced by external fields such as fluid flow.

The focus of this review is on flows relevant to the microcirculation. Let us consider the pressure-driven flow in
a capillary (Poiseuille flow), see Fig. 4. In the lab frame, an axisymmetric Poiseuille flow in the absence of cells or
vesicles is described by v∞ = [Uc − α(y′2 + z′2)]x̂′, where α is a measure of the curvature of the flow profile and
Uc is flow velocity at the centerline. If a cell is placed off-center, e.g., at position (x0, y0,0), it “sees” flow which is a
combination of linear shear and quadratic component

v∞ = [
γ̇ y + α

(
y2 + z2)]x̂ − Umig (8)

where γ̇ = 2αy0 is the local shear rate, and the migration velocity Umig is the difference between the velocities of the
cell and the undisturbed flow at the cell center. A rigid sphere lags the flow, Umig = (2α/3)Ucx̂, a result that follows
from Faxen’s law [30]. The questions are: Do vesicles and RBC deform in flow, and how does the deformation affect
their motions?
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Fig. 5. A. Sketch of the streamlines of a linear shear flow. The flow is a superposition of pure straining and rigid body rotation. B. A soft particle
deforms to an ellipsoid in a simple shear flow.

Fig. 6. (Color on line.) Left: A phase diagram representing the three regimes: TT, VB and TB in the (λ–Ca) plane. Right: Phase diagram in the
plane S–Λ, with S = c1Ca/�, Λ = c2

√
�(32 + 23λ), where c1 = 14π/

√
27, c2 = √

3/10π/24. This diagram shows that the boundaries between
the three regimes are sensitive to �, unlike the theory in Ref. [42]. These figures are extracted from Ref. [43].

If the vesicle or RBC is very far away from the centerline, the linear shear dominates. Therefore, first we consider
linear flows and after that discuss effects from flow curvature.

3.1. Linear flows

3.1.1. Experiments
Vesicles and red blood cells in unbounded steady shear flow (see Fig. 5) have been observed to exhibit at least three

different types of dynamics [31–33,12,34,35]: (1) tank-treading (TT), where the vesicle deforms into a prolate ellip-
soid inclined at a stationary angle with respect to the flow direction; (2) tumbling (TB), where the vesicle undergoes a
periodic flipping motion; and (3) vacillating breathing (VB) [36], where the vesicle long axis makes oscillations about
the flow direction and the shape exhibits breathing. This type of motion has been l alternatively called trembling [33]
and swinging [38].

The details of the dynamics depend on three parameters: the vesicle’s excess area, which governs its equilibrium
shape, the ratio between internal and external viscosities λ, and the dimensionless shear rate or capillary number,
Ca = ηγ̇R3

0/κ . If the shape is fixed as assumed by Keller and Skalak [37] only TT and TB exist. Allowing the shape
to freely evolve has led to the discovery of a new type of motion, namely VB [36]. This mode was initially (in the
very first step of the theory) [36,39] predicted to coexist with TB. Experiments have reported that VB exists for
intermediate λ or capillary number [33]. Another measurable effect of increasing the capillary number on tumbling
vesicles is a decrease of the tumbling frequency when approaching the transition to VB [12,40]. There is a consensus
from theoretical studies that the phase diagram of the three regime (TT, VB and TB) has the shape shown in Fig. 6
(left panel).

Recently Deschamps et al. [35] made extensive measurements of vesicle dynamics by varying all parameters and
recovered experimentally a phase diagram in good qualitative agreement with recent theories for weakly deflated
vesicles [41,42], see Fig. 7. The work by Lebedev et al. [42] reported that among the three independent parameters



P.M. Vlahovska et al. / C. R. Physique 10 (2009) 775–789 781
Fig. 7. Phase diagram of the vesicle dynamics in shear flow [35]. Blue symbols denote TT motion, red – VB, and green – TB. The dotted lines are
the theory of Ref. [42], while the full lines are the theory of Ref. [44].

Ca, λ and � only two are relevant; these are denoted S and Λ and are function of the above three parameters;
their definition is given in the caption of Fig. 6. The study of Danker et al. [41] has shown (due to their consistent
perturbation theory) that three parameters survive (which can be chosen to be Ca, λ and �, or equivalently S, Λ and
� as used in Fig. 6). More recently, Kaoui et al. [43] have discussed in details the issue regarding the relevance of
the three parameters. A result which has emerged there is that by keeping S and Λ constant, and varying the third
parameter (which may be taken to be �) the boundaries of the phase diagram of Fig. 6 change significantly (Fig. 6,
right panel), in contrast to Refs. [42,35]. Data of Fig. 7 obtained for different values of �, as extracted from Ref. [35],
were mixed together, since the authors assume the so-called similarity (in a sense that only S and Λ are relevant)
property put forward in Ref. [42]. Kaoui et al. [43] have further shown that, beside the location of the boundaries in
the phase diagram, other quantities (like the amplitude of oscillation of the long axis of the VB mode) are extremely
sensitive to the third parameter � (when S and Λ are kept constant).

Finally, it must be mentioned that results from analytical theories [41,42], while they agree on the qualitative shape
of the phase diagram (Fig. 6), they both found a significant shift towards significantly lower values of λ (or Λ) as
compared to experiments (Fig. 7; see dotted lines in that figure which have a quite large discrepancy as compared with
experiments). This problem has been recently cured both analytically [44] and numerically [45]. This is attributed to
the fact that in previous analytical theories only the second-order spherical harmonic in the vesicle shape equation has
been retained, while it turns out that the fourth-order harmonic contribution has an important impact [44].

Experiments at very low shear rates (namely when the ratio of shear stress to thermal energy ζ = γ̇ ηoutR
3�1/2/kT

is not too large [25,32]) show a significant influence of the thermal fluctuations on the shape and orientation of
vesicles. This is especially visible on the orientation in the tank-treading regime [32] and on vesicle shape in the
VB mode [33,12,35] where the membrane is quite flaccid in the contraction phase of the vacillating–breathing (or
trembling) mode. However, by performing ensemble average, they showed [32] that the average behavior is well
described by the noise-free models.

3.1.2. Analytical theory
Analytical solutions can be found in the limit of a nearly-spherical shape [25,46,36,39,41,47,42]. The departure

of the vesicle shape from a sphere is characterized by the excess area (Eq. (4)), thus the theory is valid for � 
 1.
Neglecting membrane thermal undulations, at leading order the shape evolution is described by the inclination angle ψ

and the length of the major axis R [36]

∂ψ = −1 + h
cos

[
2ψ(t)

]
(9)
∂t 2 2R(t)
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∂R

∂t
= h

(
1 − 4

R(t)2

�

)
sin

[
2ψ(t)

]
(10)

where h = 4
√

30π/(23λ + 32) and λ = ηi/ηo is the ratio of viscosities of the inner and outer fluids. If deformation
along the vorticity (z) axis is suppressed, R(t) = const and Eq. (9) reduces to the Keller–Skalak phenomenological
model, which describes the dynamics of a tank-treading ellipsoid with fixed shape [37].

The evolution equations show that the vesicle dynamics is remarkably different from capsules and drops. First,
the equations are nonlinear, unlike drops and capsules, whose response to external flow is linear at leading order.
Second, the dynamics is independent of the elastic properties of the interface; the capillary number, Ca, scales out
of the equations. This peculiar behavior is a consequence of the area constraint: at leading order, vesicle motion is
governed by the tension that arises from the membrane incompressibility. The tension is not a material property of
the membrane, but a dynamical variable that ensures that shape deformation exactly satisfies the area constraint. The
tension depends on the flow-induced deformation and increases with the flow strength, Ca; in shear flow σ0(t) ∼
CaR(t) sin 2ψ(t).

The set of coupled nonlinear equations has a stable fixed point (corresponding to TT) below λc; the TT–TB transi-
tion occurs at a critical viscosity ratio

λc = −32

23
+ 120

23

√
2π

15�
(11)

The theory [36,39] agrees qualitatively well with experimental data [115,117]. A rheological constitutive law has been
derived [114] that should serve as a first step from microscopic considerations towards blood rheology.

The perturbation analysis has been extended to include membrane bending elasticity [41,42] and thermal fluc-
tuations [25,48]. A higher-order theory captures the effects due to bending elasticity. The phase diagram of vesicle
motions agrees qualitatively well with experiments [35]. Thermal fluctuations are shown to induce intermittent tum-
bling and modify the tank-treading to tumbling transition [48,49]. Furthermore, effects of time-dependent external
flow have been investigated, albeit to a limited extent. Oscillatory shear reduces membrane fluctuations, probably
due to increase in the membrane tension [50]. Upon reversal of the flow direction, a vesicle displays transient mem-
brane wrinkles [51]. The small-scale undulations of the membrane have been attributed to the appearance of negative
tension [52], which enhances the thermally induced fluctuations of the membrane.

3.1.3. Numerical simulations
The dynamic behavior of vesicles with large excess area can be explored only by means of numerical simula-

tions. Numerical simulations of lipid membranes are abundant [19,53–55], but here we focus only on studies that
address vesicles in external flows. The computational approaches fall into three categories depending on how the fluid
and the membrane are modeled: continuum, e.g., the Boundary Integral Method (BIM) [56–59], particle-based, e.g.,
dissipative particle dynamics [60,61], or hybrid such as multi-particle collision dynamics [62,49,63,38,64,65]. The
continuum models apply to cell-sized vesicles. The BIM is arguably the most accurate but very computationally ex-
pensive technique. Alternative approaches are the phase-field method [66–68] (also successfully applied to compute
equilibrium vesicle shapes [69]) and the finite element method [70,71], which thus far has been employed only to
study equilibrium shapes. Numerical modeling of vesicles in flow is still at an early stage and numerical predictions
not always agree. For example, Noguchi and Gompper [49] report stationary tank-treading discocyte shape, while
Kraus et al. [56] find only prolate one. More extensive simulations are needed to establish the correct vesicle shape
variations with the flow.

In the case of RBCs, most classic studies have focused on the solid-elastic properties of the RBC membrane [72,22]
and neglected the characteristics due to the lipid bilayer, such as bending resistance [73] and even incompressibility
[74], with few exceptions [75–77].

3.1.4. Red blood cells: New features
The phase diagram of red blood cells is richer compared to vesicles, due to the elasticity of the spectrin network.

In addition to TT, VB, and TB, RBC’s display a new motion: tank-treading accompanied by small oscillations in the
inclination angle, dubbed swinging (SW) [78]. The denomination SW is also used to designate the VB mode by other
authors, since both modes have similar visual characteristics. A main difference between vesicles and RBC’s is that
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for small viscosity ratios vesicle show TT while RBC’s perform a tumbling motion at low shear rates, then switch to
swinging at intermediate shear rates, and tank-tread at high shear rates [79,78,34]. At high shear rates, though, the
dynamics is similar to vesicles, with TT at low viscosity ratio, VB at intermediate λ and TB at high λ.

The recently reported swinging motion [78] has also been observed with capsules [80] and drops covered with
adsorbed protein layer [81]. Hence, swinging dynamics has been credited to the shear elasticity of the encapsulating
membrane and the non-spherical rest shape of the RBC. Phenomenological models [78,82] based on the Keller–Skalak
theory [37] qualitatively capture the physics of the phenomenon. In these models, at low shear rates, RBCs tumble
because elastic tensions immobilize the interface, and at higher shear rates RBCs tank-tread. The swinging occurs
because owing to the non-spherical reference shape, a membrane element stores elastic energy. During one TT pe-
riod, the element passes twice through its unstressed position where it releases elastic energy. However, a quantitative
description of the swinging phenomenon is lacking. Notably, Skotheim and Secomb [82] predicted intermittent be-
havior, for which no conclusive evidence was found in the numerical simulations [83–85]. The model put forward by
Abkarian et al. [78] agreed with the experimental data only if the shear elastic modulus of the membrane was unreal-
istically large (by an order of magnitude). A rigorous analytical model that accounts for membrane incompressibility
and shape deformation is needed [86]. The topic of red blood cells in a channel is discussed at length in Ref. [87].

3.1.5. Wall-induced migration
In his pioneering studies on blood flow in capillaries, Poiseuille observed that the radial distribution of cells be-

comes inhomogeneous [88]. The existence of a cell-depleted region near the walls accounts for the Fahraeus–Lindqvist
effect, which is the decrease of the apparent blood viscosity in small blood vessels with diameter < 500 µm [89]. Cell
motion transverse to the flow direction can be driven by wall-repulsion or shear-gradients, which are discussed in
Section 3.2.2.

A classic result in microhydrodynamics is that lateral migration of a neutrally-buoyant, non-deformable spherical
particle is prohibited in the creeping-flow limit. This conclusion follows from the linearity of the Stokes equation and
boundary conditions, and the symmetry of the problem under flow-reversal [90,30]. However, a cross-stream drift
may occur if the symmetry is lost, e.g., by particle deformation in a shear gradient or in the presence of a wall [91].

It has been observed experimentally [92–95] that a vesicle in tank-treading motion in a shear flow near a wall
experiences a lift force which pushes it away from that wall. A considerable theoretical interest has been devoted
to this problem [96–101]. The hydrodynamic repulsion between the vesicle and the wall can be analyzed using the
method of images [102]: the boundary conditions at the wall can be satisfied by placing a vesicle hydrodynamic
image on the opposite side. The flow field due to the image pushes the “real” vesicle away from the wall. A vesicle
well separated from the wall, d � R0, where d is the distance to the wall and R0 is the vesicle radius, moves away
from the boundary with velocity [39]

Umig = ŷγ̇ R3
0

1

d2

3

32

�(23λ + 32)

8π

[
−1 + 1920π

�(23λ + 32)2

] 1
2

(12)

A similar scaling was found by Olla [99–101]. The lift force is simply Flift = 6πηR0Umig.
The first experimental studies on the lift from a wall dealt with the initial stages of the unbinding of a vesicle

adhering to the wall [92,93]. Abkarian et al. investigated the lift force on a vesicle detaching from a wall under shear
flow and under gravity [93,94]. In this scenario, the vesicle moves until the lift force is balanced by the vesicle weight.
The reported dependence of the migration velocity on the distance from the wall was 1/d , not 1/d2 as expected from
Eq. (12). This discrepancy can be attributed to the fact that the vesicle remains rather close to the wall. Indeed, Callens
et al. [95] performed experiments in microgravity conditions, where only the lift force is present, and found that at
distances larger compared to vesicle size, the lift velocity is quantitatively well described by Olla’s model [99–101],
which is also consistent with Eq. (12) cited above. So far, however, the quantitative influence of the viscosity ratio has
not been studied experimentally, although it seems clear that an increase of the viscosity ratio should decrease the lift
velocity due to a smaller inclination angle of the vesicle, and therefore a smaller fore-aft asymmetry.

The near-contact motion of the vesicle (very close to the wall) has been studied only to a limited extent. In this case,
shape deformation plays a prominent role. Accordingly, the migration velocity (and lift force) varies quadratically with
the shear-rate γ̇ as confirmed numerically [96]. However, studies on the thin liquid dynamics between the membrane
and the wall are non-existent.
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Fig. 8. Shapes of vesicles in capillaries (from [107]). (a) Deformation of one vesicle (R0 = 20.2 µm, � = 0.14, λ = 0.71) at increasing velocities
(U = 36, 292, 491 µm/s). (b) Other examples of shapes (corresponding parameters are R0 = 20.9, 18.8 and 8.7 µm; � = 0.46, 1.7 and 2; λ = 0.80,
0.67 and 0.40; U = 219, 541 and 505 µm/s and a = 0.15, 0.29 and 0.50). Scale: picture height is about 50 µm.

3.2. Capillary flows

3.2.1. Vesicles and red blood cells in narrow channels
In capillaries with diameter comparable to the cell size, vesicles and red blood cells align with the flow axis and

adopt a bullet or parachute shape depending on their excess area and speed, see Fig. 8. Due to the axial symmetry,
the tension gradients immobilize the interface so the vesicle moves as a solid body. In channels which are larger
than vesicle size, very deflated objects (such as red blood cells) can exhibit a slipper shape which is not centered in
the channel in the steady state [103–105,34]. Very recently [106], it has been shown that a vesicle can also deform
into a slipper and a theoretical explanation of this phenomenon has been given. This finding underscores the generic
character of the slipper phenomenon. The ratio of vesicle or cell velocity to the mean flow velocity (sometimes known
as mobility) is usually larger than 1 and increases when vesicle size decreases [107,108].

3.2.2. Curvature-induced migration
Recently, the cross-stream migration of vesicles in a parabolic velocity profile was investigated theoretically [109]

and numerically [58] in an unbounded flow, and experimentally in microchannels where interactions with walls cannot
be neglected [110]. The results have shown that vesicles always migrate towards the flow centerline, unlike surfactant-
free drops, for which the migration direction depends on the viscosity ratio [111,91]. In general, vesicles are governed
by the non-uniform tension and the migration is in direction which minimizes the asymmetry in the tension distribu-
tion.

A detailed analytical calculation [109] has identified the ratio between the inner and outer fluid viscosities λ as the
main controlling parameter and it has confirmed that the membrane bending and shear elasticity are of less importance.
At low λ, the vesicle deforms into a tank-treading shape, which is an ellipsoid if the vesicle is far-away from the flow
centerline. Above a critical λ, the vesicle tumbles and cross-stream migration is suppressed. The theory predicts
a surprising coexistence of two types of shapes at the centerline, a bullet-like and a parachute-like shape. Similar
shapes have been recently observed in numerical simulations [64]. Fig. 9 shows that as the vesicle moves towards
the centerline, its shape deforms more and more until it becomes a parachute (or assumes another shape, namely
bullet-like) when the centerline is reached.

Interestingly, in the case of an unbounded parabolic velocity profile, when the vesicle is far-away from the center-
line its cross-stream migration velocity becomes independent of the local shear rate and depends only on the gradient
of shear rate, which is uniform in the flow.

In experiments where both the curvature of the flow field and the walls are present [110], the migration velocity
scales like Rδ+1

0 γ̇ (d)/dδ , where R0 is the vesicle radius, γ̇ (d) the local shear rate, with an exponent δ � 1. The same
scaling seems to hold for 2D boundary integral method simulations of a vesicle near a wall in a parabolic velocity
profile [110]. The amplitude of the migration velocity depends strongly on the viscosity ratio λ and the excess area �.
For low viscosity ratios, for which only the tank-treading mode is seen in the range of studied excess areas, the
migration velocity increases as the vesicle gets more deflated. The migration velocity is a decreasing function of λ

(for a given value of �) and at high λ, it exhibits a non-monotonic behavior when varying �: starting from a sphere
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Fig. 9. Left: Evolution of the vertical position of the vesicle as a function of time. Some snapshots of the vesicle shape along the trajectory are
shown as insets. Right: Shapes at the centerline [109].

Fig. 10. Top: Migration of a vesicle towards the center of a microchannel (vesicle radius R � 9.5 µm, channel width 70 µm, viscosity ratio
λ = 1.1 and excess area � = 0.58). Bottom: Migration velocity at a distance y/R0 = 4 vs. reduced volume for different viscosity ratios; v =
(1 + �/4π)(−3/2) . Figures from [110].

(� = 0), the migration velocity increases when deflating the vesicle, then reaches a maximum and decreases back to
a very low value at � close to the transition to tumbling, see Fig. 10.

Flow through capillaries with variable cross-section has also been studied. Experiments have shown that a con-
striction in the flow dramatically widens the cell-free layer downstream [112]. This effect has been qualitatively
interpreted as a result of cell migration due to hydrodynamic repulsion by the wall, however rigorous description of
the phenomenon is lacking.

4. Rheology of vesicle suspensions

A suspension of particles can be described as a continuum at length scales large compared to the size of the
constituent particles. Adding particles typically increases the fluid viscosity. In dilute suspensions, where particles
are too far from each other to hydrodynamically interact, the increase in effective stress is just a sum of the stress
contributions of the individual particles [102,113].

The asymptotic analysis for a nearly-spherical vesicle predicts a shear-rate-independent suspension rheology at
leading order. The shear viscosity decreases with viscosity ratio and attains a minimum value at λc, corresponding
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Fig. 11. Viscosity of a RBC suspension (ηeff − η0)/η0ϕ versus
viscosity ratio λ [115]. The volume fraction is in the range 3% <

ϕ < 12%. The solid line shows the analytical result calculated from
Eq. (13). Minimum viscosity occurs at the t t–tb transition.

Fig. 12. The time-dependent orientation angle (upper panel),
the time-dependent viscosity (middle panel) and the first nor-
mal stress difference (lower panel) in the tumbling regime
[114].

to the TT–TB transition [36,39,114], in agreement with experiments [115] as seen in Fig. 11. For vesicles in the
tank-treading regime, the difference between the suspension viscosity, ηeff, and solvent viscosity, η0 is [36]

(ηeff − η0)

η0ϕ
= 5

2
− �

(23λ + 32)

16π
(13)

where ϕ is the vesicle volume fraction. In the limit of a spherical particle, � = 0, and since a sphere with fixed
area and volume in shear flow undergoes only a rigid body rotation, the Einstein’s result for a suspension of rigid
spheres is recovered. The effective viscosity decreases with the increase of the excess area because the deformable
vesicles elongate and thus offer less resistance to the flow. In the case of a tumbling vesicle, the suspension effective
stress becomes time-dependent and periodic [114], see Fig. 12. The viscosity shows a nontrivial dynamical behavior.
It exhibits a minimum at ψ = 0, which is intuitive, since the vesicle is aligned with the flow. Surprisingly, another
minimum is found at ψ = π/2, presumably due to the fact that at the same time the shape elongation is minimal.
Interestingly, while the experimental data of Vitkova et al. [115] agree with the theory [114,116], Kantsler et al. [117]
found that at low λ the effective viscosity increases with viscosity ratio λ.

Hydrodynamic interactions, i.e., correlations in the motions of particles mediated by flows in the embedding liquid
are perhaps the key to explain the experimental observations. The collective dynamics of vesicles and rheology of
semi-dilute and concentrated suspensions is an open question. The only experimental study of the hydrodynamic
interaction of a pair of giant vesicles [117] showed a cross-flow displacement after the vesicles have passed each
other, which gives rise to self-diffusion. However, a detailed and systematic study is still needed. Recent experiments
in microgravity conditions have investigated the equilibrium distribution of a vesicle suspension in a Couette flow
[118], where a steady distribution takes place under a balance between lift forces and the shear induced diffusion due
to hydrodynamic interactions. These experiments show that they have a significant influence on the structure of the
suspension even at rather low volume fractions and allow a measurement of effective diffusion coefficients.

5. Outlook

Vesicles and red blood cells in flow exhibit rich even surprising behavior. Despite active research, many open
problems remain. Concerning an individual vesicle, outstanding issues are its dynamics in time-dependent flows,
e.g. oscillatory shear, where chaotic behavior is expected [119,120] or the effect of multi-component membrane,
where flow-induced lipid redistribution may give rise to novel features in the shape dynamics. Collective dynamics of
vesicles is largely unexplored area. Recent simulation work has shown intriguing clustering phenomena in capillary
flows [64]; at high hematocrit, three phases have been reported: parachute-shaped RBCs aligned in a single file,
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disordered discocyte-shape, and zig–zag phase. Another topic is the coupling of electric and hydrodynamic fields:
number of puzzling phenomena have been reported [121–123] but modeling efforts are at a very early stage [124,125].

In conclusion, the complex dynamics of vesicles and red blood cells fascinates physicists, engineers, biologists and
mathematicians, and promises to be a fertile source of exciting questions for interdisciplinary research.
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