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Experimental determination of Boltzmann’s constant
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Abstract

Currently, the CODATA value of the Boltzmann constant is dominated by a single gas-based thermometry measurement with a
relative standard uncertainty of 1.8×10−6 [P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamen-
tal physical constants: 2006, Rev. Mod. Phys. 80 (2008) 633–730]. This article describes an electronic approach to measuring the
Boltzmann constant that compares Johnson noise from a resistor at the water triple point with a pseudo-random noise generated
using quantized ac-voltage synthesis. Measurement of the ratio of the two power spectral densities links Boltzmann’s constant
to Planck’s constant. Recent experiments and detailed uncertainty analysis indicate that Boltzmann’s constant can presently be
determined using Johnson noise with a relative standard uncertainty below 10 × 10−6, which would support both historic and new
determinations. To cite this article: S. Benz et al., C. R. Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Mesures de la constante de Boltzmann à l’aide d’un thermomètre résistif à bruit Johnson étalonné par une source de
tension quantique. La valeur de la constante de Boltzmann recommandée par CODATA résulte presque uniquement de mesures
obtenues par thermométrie à gaz avec une incertitude relative de 1.8 × 10−6 [P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA
recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys. 80 (2008) 633–730]. Cet article présente une
mesure électrique de la constante de Boltzmann effectuée en comparant le bruit Johnson d’une résistance placée à la température du
point triple de l’eau avec un signal pseudo aléatoire généré par un synthétiseur quantique de tension alternative. La détermination
du rapport des deux puissances spectrales obtenues relie la constante de Boltzmann à la constante de Planck. Une analyse détaillée
des incertitudes obtenues pour des mesures récentes de bruit montre que la constante de Boltzmann peut être obtenue avec une
incertitude relative inférieure à 10 × 10−6. Un tel niveau d’incertitude rend pertinente la mise en œuvre de cette méthode nouvelle
pour mesurer la constante de Boltzmann. Pour citer cet article : S. Benz et al., C. R. Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Johnson noise describes the fluctuations in voltage and current occurring in all normal-state electrical conductors
at a finite temperature [1–3]. These fluctuations are related to the energy dissipation associated with irreversibility and
have their origin in the thermally induced motion of conduction electrons. Nyquist’s explanation of the noise was the
second example of a fundamental result now called the fluctuation–dissipation theorem [3,4] (the first example was
Einstein’s 1905 explanation of Brownian motion [5]).

Johnson noise is usually characterized by its mean square voltage, conventionally called the noise power. For
frequencies below 1 MHz and temperatures above 25 K, it is approximated to better than 1 part in 106 by Nyquist’s
equation,

〈
V 2〉 = 4kTR�f (1)

where k is Boltzmann’s constant, T is the temperature of the resistance R, and �f is the measurement bandwidth.
Johnson–Nyquist noise is often described as a “white noise”, since the power spectral density (PSD) SR = 4kTR is
independent of frequency. Because the fluctuation–dissipation theorem is fundamental, Johnson noise thermometers
(JNT) are primary thermometers measuring “absolute” thermodynamic temperatures.1 The most significant measure-
ment challenge of JNT is apparent from (1), namely that the noise voltages are extremely small, ∼1.2 nV/Hz1/2, for
a 100 � resistor at the triple point of water. Very-high-performance electronics, cross-correlation measurement tech-
niques, and long averaging times are required to make metrologically useful JNT measurements [11] (for an extensive
JNT review see [12]).

Johnson, with his 1928 measurements of the noise, made an interesting first demonstration of noise thermometry
by inferring a value of k that agrees with the current value within the uncertainty of his measurements [2]. However,
because of the technical difficulties and the non-ideal performance of electronic components, noise thermometry has
never achieved uncertainties comparable to those obtained with other primary techniques, especially the various forms
of gas thermometry, and has never contributed to a determination of the Boltzmann constant. Nevertheless, with the
advent of fast computers and fast, ultra-linear analog-to-digital converters, Johnson noise thermometers are reaching
uncertainties of parts in 104 and lower, and finding application in temperature-scale comparisons and fixed-point-
temperature determinations [12–24].

In conventional JNT systems, one measures the noise power from a sensor at a known temperature (often the triple
point of water, which conveniently has a defined temperature in the International System of Units: Tw ≡ 273.16 K)
and the noise power of a second sensor at the unknown temperature. The temperature is inferred using (1) from the
ratio of the measured noise powers and the ratio of the sensing resistances. The most successful JNT technique for the
medium- and high-temperature ranges is the switched-input correlator pioneered by Brixy for application in nuclear
reactors [14] and is now used routinely for most metrological noise thermometry. It combines the amplifier-noise
immunity of cross-correlators, first used by Fink [13], and the gain-instability immunity of the Dicke radiometer [25].
Modern versions eliminate the analog multiplier as a major source of error by digitizing the signals from the two
correlator channels and performing the multiplication and averaging functions in software. NIST has adopted the
switched digital cross-correlator for its JNT system, but has added a programmable quantized-voltage noise source
(QVNS) based on ac-Josephson voltage standards [26–35] as a calculable noise reference. This enables the correlator
to compare the power spectral density of the thermal noise of the resistor at the triple point of water with the quantum-
mechanically stable synthetic noise generated by the QVNS, and infer a value of k.

In the following sections we describe the experimental apparatus, including the operating principles, and the de-
signs of the QVNS and correlator. The remaining section gives a summary of the uncertainty analysis and recent
experimental results.

1 Other primary thermometers based on electron physics include: all-cryogenic JNTs employing Josephson junctions as voltage-to-frequency
converters [6,7]; Coulomb-blockade devices; shot-noise methods; and single-tunnel-junction devices; all having demonstrated relative uncertainties
approaching 10−3 [8–10].
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Fig. 1. A simplified schematic diagram of the 2007 NIST Johnson noise thermometer using the quantized-voltage noise source as a synthetic noise
reference.

2. Experimental apparatus

2.1. Operating principle

Fig. 1 shows a simplified schematic diagram of the NIST JNT. At the input are the two noise sources. The first is
a conventional resistor sensor maintained at the triple point of water, producing Johnson noise with a power spectral
density according to (1)

SR = 4kTwXRRK (2)

where the sensing resistance is now expressed as the product of the dimensionless ratio XR times the von Klitzing
resistance RK ≡ h/e2 [36], h is Planck’s constant, and e is the charge of the electron. The second source produces
a synthetic noise with a power spectral density calculable from the various operating parameters of the QVNS and
fundamental constants:

SQ = D2N2
J fsM/K2

J (3)

where KJ ≡ 2e/h, is the Josephson constant [37], fs is a clock frequency, M is the bit-length of the digital code for the
waveform, D is a precisely known parameter that is chosen to closely match the QVNS power spectral density to that
of the resistor SQ ≈ SR, and NJ is the number of junctions in the Josephson array used to generate the pseudo-noise
waveform.

The cross-correlator measures the noise powers of the thermal and QVNS signals. When the bandwidth of the
system in the two configurations is the same, the ratio of the noise powers gives the ratio of the power spectral
densities SR/SQ, which is then used to infer

k = h
D2N2

J fsM

16TwXR

SR

SQ
(4)

The most significant contribution to the uncertainty in the determination of k is the uncertainty in the noise-power
measurements; the uncertainties in Planck’s constant, the realization of the triple point of water, and the resistance
measurement are practically negligible in comparison (see Section 3 for details).

2.2. The QVNS

The QVNS is a delta-sigma digital-to-analog converter that uses oversampling techniques to produce a programmed
sequence of pulses clocked at 5 GHz. With appropriate algorithms and biasing, it produces a pseudo-noise waveform
with the desired harmonic content over a 4 MHz baseband, well beyond the nominal 1 MHz bandwidth of the JNT.
The primary advantage of the QVNS is that the voltage pulse from each Josephson junction has a quantized area∫

V (t)dt = nh/2e (5)
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Fig. 2. The first 10 MHz of a typical QVNS spectrum calculated from the code sequence. The upper branch shows the odd harmonics up to 4 MHz
(f1 ≈ 400 Hz). The lower branch shows the even harmonics up to 4 MHz, and all harmonics above 4 MHz. Below 4 MHz, the amplitudes of the
even harmonics are indicative of the voltage targeting (deviation from desired voltage for increasing frequency) of the modulator algorithm for the
odd harmonics [28].

where n is an integer (normally n = 1 in the NIST QVNS) [28,37]. This enables the synthesized baseband voltage to
be calculated exactly from the known sequence of pulses, the clock frequency of the pulse generator, and fundamental
physical constants, according to (4).

The synthesis technique underlying the QVNS was originally developed for ac-Josephson voltage standards [26,
27]. However, the low voltages and long integration times of noise thermometry necessitate a specialized QVNS circuit
consisting of a pair of symmetric, grounded, lumped arrays, having only a small number of junctions (typically NJ = 8
to 256) [30]. Each array is separately biased with a unipolar pulse drive that is clocked at half the 10 GHz sampling
frequency, fs. The QVNS is biased with a continuously recycled digital code that determines the pulse sequence.
The code, M bits long, is generated with a delta-sigma analog-to-digital conversion algorithm that is programmed to
produce a synthesized waveform with the desired and precisely calculable power spectrum. The spectrum is composed
of a series of tones at multiples of the pattern repetition frequency, f1 = fs/M . The usual JNT waveform is a series
of tones at the odd harmonics f1,3f1,5f1, . . . , all of the same amplitude but random phase (see Fig. 2). When used
to measure k, the rms voltage amplitude V of the tones is adjusted (with the appropriate value of D, see (4)) so that
the synthesized waveform’s average power spectral density SQ = 〈V 2〉/2f1 matches the thermal noise power spectral
density, SR, to within 0.05%. The four impedance-matching resistors terminating the QVNS transmission line are
placed in each lead of the transmission line so that they produce only uncorrelated noise, and are maintained at 4 K so
that they do not unduly increase the uncorrelated noise in each channel of the correlator.

In addition to providing the link to Planck’s constant, the QVNS has important advantages that have enabled
significant improvements in the measurements. Unlike a resistor noise source, the QVNS output voltage is inherently
independent of its output impedance. This overcomes the matching conflict inherent in conventional Johnson noise
thermometers. Now, the thermal and QVNS sources have the same noise power, in order to minimize effects of
any amplifier or ADC nonlinearity. An output resistance is chosen to ensure the same frequency responses of the
transmission lines between the resistor and QVNS sources and the preamplifiers. This reduces the ‘spectral match’
error and allows a reduced measurement period due to a greater operating bandwidth [33,35]. The QVNS can also
be programmed to produce a variety of different waveforms for diagnostic purposes. In contrast, the noise power and
impedance cannot be independently varied in a conventional Johnson noise thermometer, resulting in some degree of
mismatch of frequency response and noise power between measurement and reference sensors.

2.3. The correlator

The noise power from the resistor and QVNS are alternately measured by the correlator, depending on the position
of the switching network, as indicated in Fig. 1. Each channel of the correlator is composed of a low-noise preamplifier
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Table 1
Summary uncertainty budget for a determination of the Boltzmann constant by QVNS noise thermometry. All uncertainties are expressed as relative
standard uncertainties in parts in 106.

TPW temperature realization

Source 2007 Soon

Chemical purity 0.15 0.15
Isotopic composition 0.11 0.11
Hydrostatic head 0.18 0.18
Immersion effects 1.8 0.4

Total 1.88 0.58

QVNS waveform

Source 2007 Soon

Planck’s constant 0.05 0.05
Frequency reference 0.001 0.001
Quantization effects 0.1 0.1

Total 0.1 0.1

Resistance measurement

Source 2007 Soon

Transfer standard – 0.25
Ratio measurement – 1
Ac-dc difference – 0.4
Stability and drift 10 0.25

Total 10 1.13

Noise-power ratio

Source 2007 Soon

Statistical 19 5.2
Nonlinearity 5 1
Frequency response 5 1
EMI 10 2

Total 22.6 5.8

Grand total 24.8 5.9

and gain blocks with a total gain of about 85 dB, filters to define the bandwidth and prevent aliasing, and a fast ADC.
The preamplifier input stage is based on a common-source–common-base FET-bipolar cascode without feedback. This
is necessary to meet the demanding requirements of low-input-noise voltage, very-low-input-noise current, low noise-
current–noise-voltage correlation, high input resistance, low input capacitance, and a high common-mode rejection
ratio [16,35]. The filters are passive LC-ladder filters implementing an 11th-order Butterworth response with a cutoff
frequency of 600 kHz. The high filter order ensures that the contribution of aliased signals to the measured noise
power is negligible.

The ADCs simultaneously sample the signals in each channel for 1 s periods with a 2.08 MHz sampling frequency.
The fast Fourier transform (FFT) of the signals is then computed, yielding 1 Hz frequency-resolved FFT bins and a
1.04 MHz Nyquist frequency. To ensure that the QVNS tones are located in a single FFT bin, the ADC clocks are
locked to the same frequency reference as the QVNS clock.

The computer carries out a complex frequency-domain cross correlation of the FFT spectra for the two channels
to eliminate the amplifier noise voltages, and the autocorrelation for each channel for diagnostic purposes. The com-
putations are carried out in real time, and every 100 s the correlator is switched between the resistor and the QVNS.
Once a sufficient number of power spectra have been measured and summed, the ratio of the thermal and QVNS
spectra is computed. This removes the filter response from the calculations, ensures equal weighting of all spectral
elements in the calculation, and maximizes the correlation bandwidth of the thermometer [34]. Care is required in the
implementation of this algorithm in order to avoid a bias caused by the (nonlinear) division calculations operating on
the stochastic data (see Section 4 in [34]).

3. Sources of error and uncertainty

Table 1 summarizes the various sources of uncertainty in a JNT Boltzmann-constant determination [35]. Two
values are given for many of the terms: our current uncertainty and a projected value indicating what will be readily
achievable in the near future. The following subsections discuss some of the contributions to both systematic error and
uncertainty, with a focus on the terms that are most significant or where recent significant progress has been made.
Most of the sources of uncertainty have been discussed in detail elsewhere, and for further information readers should
consult the references.
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3.1. Statistical uncertainty

Ideally, the most significant contribution to uncertainty in JNT measurements is the statistical uncertainty arising
from the measurement of random processes. The relative uncertainty u2

V/V 2 in the measurements of the average noise
powers 〈V 2〉 is found from the relative variance [34],

u2
V 2

〈V 2〉2
= 1

2τ�fc

[(
1 + Sn

S

)2

± 1

]
(6)

where S is the power spectral density of the measured (correlated) noise, Sn is the power spectral density of the
(uncorrelated) amplifier noise, τ is the averaging period for the measurement, �fc is the correlation bandwidth of
the JNT, the + sign refers to the thermal noise-power measurement, and the − sign refers to the QVNS noise-power
measurement. The case of (6) for the thermal noise measurement, with the positive sign, is well known. The case of
(6) for the QVNS measurement, with the negative sign, arises because the QVNS signal is not truly random; instead
it has a constant noise power when integrated over multiples of the code recycle period. Thus, the uncertainty is lower
than for the conventional noise-power measurement. Note that the uncertainty in the QVNS measurement is zero when
the amplifier noise is zero.

The total measurement period is the sum of the integration periods for the thermal and QVNS measurements; the
relative variance in the ratio of the measured power spectral densities is the sum of both versions of (6). The current
relative uncertainty for a complete 36-hour measurement is 1.9 × 10−5. With an integration period of 20 days the
uncertainty would be reduced to 5 × 10−6. To reduce this uncertainty to 2 × 10−6, would require about 125 days,
which was considered to be impractical with our current system.

3.2. Nonlinearity

In order to amplify the ∼35 nV rms signals (∼10 µV total peak voltage for QVNS waveforms with tones up to
4 MHz) to an amplitude appropriate for the ADCs, the gain in each channel of the correlator must be about ∼2 × 104.
Inevitably, the nonlinearity in the various amplifier stages, filters, and ADCs accumulates to introduce a significant
error in the noise-power measurement. This is mitigated by operating the correlator with the noise-power ratio (PSD
ratio SR/SQ) close to unity, and hence any systematic errors common to both noise-power measurements have no
impact on the measured ratio. For this to occur, several conditions must be satisfied: the synthetic waveform must
extend over the entire bandwidth of the system; it must have the same average power spectral density as the thermal
noise; and the uncorrelated noises in each channel of the correlator due to the amplifier noise and lead resistances
must also be individually matched [33,38]. The uncorrelated-noise match is achieved by inserting low-value (0.1 � to
1 �) resistors into the leads of the transmission lines.

Some of the causes of nonlinearity are particularly insidious. These include damaged wire, worn connectors, and
some solder joints where a small change in the work function of the metal, or a weak insulating barrier, occurs.
Ordinarily the potential barriers associated with these phenomena are well below normal signal levels and cause
negligible distortion [39]. However, with the very low voltage levels and the multitone waveforms associated with the
QVNS, the nonlinearity is apparent. The effects can be difficult to isolate and can impact the measurements directly
if they occur in different transmission lines, so are not shared by both signals.

One of the advantages of the QVNS is that it enables in-situ detection of nonlinearities in the correlator. For
example, nonlinearities acting on the odd-tone spectrum invariably produce even harmonics easily seen in the averaged
spectra. At present we see very little dependence of measured noise power on the spectral distribution of the QVNS
signal, and estimate that the relative uncertainty due to nonlinearities is about 5 × 10−6. The electronics nonlinearities
are being evaluated, and new waveform synthesis techniques are being investigated that should allow the uncertainty
due to nonlinearities to be reduced below 1 × 10−6. Work is also underway to develop a quantitative spectral test to
measure nonlinearity through the whole of the system for both the QVNS and thermal signals [40].

3.3. Frequency response

Because the same correlator is used to measure the noise power for both signals, the measured ratio of the noise
powers is independent of the gain and frequency response of the correlator. Frequent (∼100 s) switching between the
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Fig. 3. (a) Measured FFT cross-correlation spectra of resistor noise and QVNS pseudo-noise waveform with only odd-harmonic tones of the 2007
system circuit (passively filtered, eight junctions, f1 ≈ 400 Hz). Even QVNS bins show how the uncorrelated noise has decreased well below the
PSD after cross-correlating for 7.3 hours. (b) Ratios of the measured power spectra of the resistor Johnson noise and the QVNS pseudo-noise
waveform, comparing the frequency response of the 2006 and 2007 systems circuits showing the improvements in frequency response (∼36 h
measurement period each) [35].

two sources also minimizes drifts in gain and frequency response. However, because the transmission lines connect-
ing the signals to the correlator are independent, differences in the transfer function of the transmission lines have an
impact on the measured noise-power ratio. To ensure a good match, the interactions of the source impedance, lead
resistances, inductance, and capacitance must be considered. Departures from an ideal match are easily detected from
the ratio of the thermal and QVNS spectra, which should be independent of frequency (see Fig. 3). A carefully cho-
sen combination of impedance-matching resistors and transmission-line lengths ensures a match between the QVNS
and resistor transfer functions over a very wide bandwidth. Residual errors in the spectral match have a weak f 2

dependence, which is easily measured and corrected. At present the relative uncertainty due to poor spectral match is
estimated to be below 5×10−6, and could probably be reduced to ∼1×10−6, if necessary, by reducing the correlation
bandwidth of the thermometer and increasing the integration period.

3.4. Preamplifier noise currents

While the correlator eliminates systematic effects due to the amplifier noise voltages, there remain errors due to
the amplifier noise currents and noise-current–noise-voltage correlation. When connected to the thermal noise source,
the preamplifier noise currents pass through the sensing resistor and are measured by both channels of the correlator,
leading to an error in the noise-power measurement. Correlation between the noise current and the noise voltage is
normally purely imaginary, but in combination with the phase shift due to the transmission line capacitance, a second
error of a similar magnitude occurs [16]. Both of these errors are relatively small and have an f 2 dependence.

When the correlator is connected to the QVNS, the Josephson array appears as a short circuit, so that both the
noise-current and noise-current–noise-voltage errors vanish. The difference in the behavior of two sources therefore
leads to a systematic error in the measurement of the noise-power ratio. The effect is eliminated by the same fitting
and correction process used to compensate for the f 2-dependent spectral mismatch in the transmission-line frequency
response [34].

3.5. Electromagnetic interference (EMI)

EMI is another unavoidable source of error. It is typically intermittent, caused by nearby electrical machinery not
associated with the JNT, and for magnetically coupled EMI is difficult to shield. To minimize possible EMI effects,
all of the analog electronics and the ADCs are operated from independent battery power supplies, and the ADCs are
coupled to the computer via fiber-optic links. While statistical tests on the averaged power spectra can detect stationary
single-frequency EMI, in general the tests are not sufficiently powerful to detect all types of EMI [15].

Evidence of the absence of EMI effects in the QVNS measurements is obtained by operating the QVNS so that it
generates zero volts. Any non-zero noise-power measurement then indicates the error due to EMI. A similar test can
be carried out with the thermal noise source, but this requires a ‘dummy’ sensor of the same impedance and geometric
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layout as the real sensor, but generating no correlated noise [21]. Through direct measurements and analysis of the
EMI and appropriate placement of the electronics, we anticipate that the EMI uncertainty can be reduced to 2 ppm.

3.6. QVNS waveform

The quantized nature of the voltages produced by the QVNS and its wide bandwidth ensure that the uncertainties
arising from the QVNS are small. However, there is still potential for errors, and the most significant error contribution
comes from undesired nonquantized signals associated with the current sources biasing the QVNS, such as input–
output coupling and bias currents driving inductance in the QVNS circuit. These errors, which fortunately have been
undetectable thus far, are most significant at higher frequencies, so they would likely be removed through the fitting
analysis.

Another effect that can limit measurement uncertainty is variations in the voltage amplitudes of the synthesized
harmonic tones for the QVNS waveform due to digitization or “quantization” noise, which is inherent in the digital-to-
analog generation of desired waveform signal from the discrete high-frequency QVNS pulses. The software generating
the code for the QVNS shapes this digitization noise and moves most of it to the high-frequency end of the spectrum
(see Fig. 2). The resulting error integrated over the bandwidth used in the JNT contributes about 1 × 10−7 to the
relative uncertainty. It can be made even lower by choosing a higher-order modulator algorithm and fewer numbers of
junctions. Even if this error were currently large enough to limit the measurement uncertainty, the voltage variations
are exactly calculable from the waveform, so calculated corrections could be applied to remove this variation from
the measurement. Other negligible sources of uncertainty include the uncertainty in the reference frequency and in
Planck’s constant [41].

3.7. Triple point of water realization

By definition, the triple-point temperature of water is exactly 273.16 K. However, there are uncertainties associated
with the realization of the triple point [12,34]. Effects to consider include the isotopic composition of the water, chem-
ical impurities, hydrostatic pressure, and sensor immersion effects (heat leaks). At present, no particular effort has
been put into minimizing the effects for which total relative uncertainty is about 2×10−6. Straightforward procedures
exist to reduce the uncertainty to 6 × 10−7.

3.8. Resistance measurement

DC-resistance measurements can be made with relative uncertainties well below 1 × 10−6. For the JNT, complica-
tions arise because we are interested in the real part of the sensor impedance over a very wide range of frequencies. To
minimize the frequency dependence of the sensor due to stray inductance, stray capacitance, dielectric loss, and skin
effect, a very small thin-film sensor is used. Any remnant reactance is lumped with the transmission-line reactance
and corrected by the f 2 fitting and correcting process [23]. At present the uncertainties in the measurement total about
1 × 10−5. Although care has been taken with the materials used in the transmission line, we have made no particular
efforts to reduce the uncertainty. With more work on the traceability chain for the ohm-meter, it can be reduced to
about 1 × 10−6.

4. Conclusion

The addition of the quantized ac-voltage synthesis to Johnson noise thermometry significantly advances the cause
of developing a purely electronic high-accuracy primary thermometer. The benefits of the quantized-voltage noise
source include improved matching of sensor impedance, enabling a wider bandwidth and reduced measurement pe-
riod, a simultaneous match of sensor impedance and noise power, enabling a reduction in the effects of nonlinearities,
and an ability to synthesize a variety of waveforms suited to diagnosis and assessment of different aspects of the
system accuracy. Recent and planned improvements to the QVNS-JNT system and recent experiments suggest that
a relative uncertainty of better than 1 × 10−5 will be achieved in the very near future. A measurement at this level
of accuracy will provide valuable confirmation for other experiments used to determine the value of the Boltzmann
constant.
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