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Slow-light: Fascinating physics or potential applications?
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Abstract

We study both theoretically and experimentally the dispersive properties of single or coupled active resonators. In the case of
single resonator systems, we present a simple experimental protocol which allows us to obtain in detail its coupling regime and thus
their dispersive properties. We show that the active coupled systems offer some degrees of freedom to tailor the high dispersion
orders. All the propositions are experimentally tested using a model system made of Er3+ doped fiber ring resonators. These
artificial media could be used as tunable or amplifying compact optical delay lines. We also show that the proposed experimental
protocol can be applied to passive whispering gallery mode resonators. To cite this article: S. Trebaol et al., C. R. Physique 10
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Dispersion artificielle de systèmes à résonateurs optiques actifs couplés. Nous étudions d’un point de vue théorique et
expérimental les propriétés dispersives de systèmes de résonateurs actifs couplés ou non. Dans le cas d’un unique résonateur, nous
présentons un protocole expérimental simple qui nous permet de connaître en détail le régime de couplage du résonateur et par
conséquent ses propriétés dispersives. Nous montrons que les systèmes de résonateurs actifs couplés offrent suffisament de degrés
de liberté pour façonner les différents ordres de dispersion. Toutes les propositions sont testées expérimentalement en utilisant
un système modèle fait de résonateurs à fibres dopées Er3+. Ces milieux artificiels pourraient être utilisés comme lignes à retard
optiques variables ou amplificatrices. Nous montrons également que le protocole expérimental proposé dans cet article peut aussi
être appliqué à des résonateurs à modes de galerie passifs. Pour citer cet article : S. Trebaol et al., C. R. Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Most slow-light systems basically rely on the resonant interaction of light and a sharp material resonance. To avoid
the absorption associated with strong material dispersion, it has been proposed to use quantum coherence effects such
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Fig. 1. Optical resonator coupled to a single access line. The input and output fields are Ein and Eout . u is the mode amplitude, τ0 is the intrinsic
photon lifetime and τe is the coupling photon lifetime. The inset represents the amplitude coupling coefficient κ .

as electromagnetically induced transparency [1,2] or coherent population oscillations [3]. The dissipation issue can
also be circumvented by using resonant gain. This last effect can be implemented in optical fiber, for example using
Brillouin coherent scattering [4]. It has also been proposed to use photonic structures with artificial resonances to
reduce the group velocity [5]. A lot of experimental evidences of slowing of light in photonic crystals [6] or coupled
resonators systems [7] have been already reported. Indeed, an optical resonator (e.g. Fabry–Perot interferometer, ring
resonator, . . . ) can be seen as an optical filter whose phase shift rapidly changes across its resonance introducing
a group delay [5]. In this article, we would like to present the dispersive properties of resonators made of active
materials. These systems should combine a strong dispersion, low optical losses and even optical gain. We first review
the dispersive properties of a single two port optical resonator. We also present a very convenient experimental method
allowing all the linear characteristics of passive and active resonators to be simply obtained. In the second part of the
article, we experimentally show that the coupling of active resonators offer supplementary degrees of freedom to
actively modify the dispersion orders of artificial slow-light media.

2. Single resonators

In this section, we study theoretically and experimentally the dispersive properties of single passive or active res-
onators. The building block we have described, in this paper, is shown in Fig. 1. It consists of a resonator coupled to a
bus waveguide with an amplitude coupling coefficient κ . Only one mode is considered both for the access waveguide
and for the resonator. n is the effective group index of the mode and L is its round trip length propagation. Thus,
the resonance frequencies are separated by the free spectral range (FSR) �ν = c/(nL) = 1/τL where τL is the round
trip duration. The resonator mode of amplitude u is excited using an input field Ein. The total photon lifetime τ/2 in
the resonator is related to the coupling with the waveguide lifetime τe/2 by: 1/τ = 1/τ0 + 1/τe, where τ0/2 is the
intrinsic photon lifetime. The coupling photon lifetime is related to the usual amplitude coupling (κ) and reflection
(ρ) coefficients by: τe = τL

√|ρ|/(1 − |ρ|) where we have |κ|2 + |ρ|2 = 1. The intrinsic photon lifetime is related to
the amplitude round trip attenuation a by: τ0 = τL

√
a/(1 − a), these last expressions are useful to obtain the corre-

spondence between the present model and the coupling matrix approach proposed by A. Yariv [8]. τ0 > 0 corresponds
to optical attenuation whereas τ0 < 0 corresponds to optical gain. By introducing the resonance angular frequency ω0
of the resonator mode, we can define the external Qe = ω0τe/2, the intrinsic or unloaded Q0 = ω0τ0/2 and the loaded
Q = ω0τ/2 Q-factors. The time evolution of u can be obtained using a simple harmonic oscillator model as proposed
by H.A. Haus [9]:

du

dt
=

(
jω0 − 1

τ

)
u(t) +

√
2

τe

Ein(t) (1)

The waveguide output field Eout is related to u by:

Eout(t) = −Ein(t) +
√

2

τe

u(t) (2)

Thus, we can define the amplitude transmission of the system by: y = Eout/Ein = √
T ejφ , where T is the power

transmission.
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2.1. Stationary regime

First, let us consider the stationary regime. Therefore we will assume that: Ein(t) = A exp(jωt) where ω = ω0 +
2πδ and δ is the frequency detuning from resonance. It is then straightforward to write the amplitude transfer function:

y(δ) = 1/τe − 1/τ0 − 2jπδ

1/τe + 1/τ0 + 2jπδ
(3)

The power transmission of the resonator can be deduced by:

T (δ) = ∣∣y(δ)
∣∣2 = (1/τe − 1/τ0)

2 + 4π2δ2

(1/τe + 1/τ0)2 + 4π2δ2
(4)

The transmission spectrum has a Lorentzian shape and its full width at half maximum (FWHM) is called 2δ1/2 which
is related to the overall Q-factor by:

Q = ν0

2δ1/2
(5)

where ν0 = ω0/(2π) is the optical frequency. The transmission at resonance (δ = 0) can be written:

T (0) =
(

τe − τ0

τe + τ0

)2

(6)

This expression shows that when τ0 = τe the transmission at resonance vanishes. This corresponds to the critical
coupling regime. One can also define the undercoupling (τ0 < τe) and the overcoupling (τ0 > τe) regimes [8]. If
τ0 < −τe < 0 (in this case 1 < a < 1/ρ), the resonator does not sustain laser oscillations but T (0) > 1 and it can be
seen as a selective amplifier with a bandwidth equal to 2δ1/2 [8]. All these regimes are summarized in Fig. 2(a) which
represents the resonant transmission T (0) in dB as a function of 1/τ0 for a given value of τe. We would also like
to highlight the laser oscillations (τ0 → −τe) and the transparency (τ0 → ∞) points. From an experimental point of
view, the value of Q can be deduced from the measurement of 2δ1/2 using Eq. (5). The direct measurement of Q0
and Qe from T (δ) is much more complicated since τ0 and τe play the same role in Eq. (4). The only coupling regime
which can be identified using the power transmission is the critical coupling when the transmission at resonance drops
to zero, in this case we obtain Qe = Q0 = 2Q. Still in the stationary regime, we can discuss the dispersive properties
of the single resonator. In the case of a monochromatic input wave, the following expressions give φ(δ) = arg [y(δ)]
which corresponds to the phase shift introduced by the resonator:

Amplification τ0 < −τe: φ(δ) = −arctan

(
2πδτ0τe

τ0 − τe

)
− arctan

(
2πδτ0τe

τ0 + τe

)
(7)

Overcoupling τ0 > τe: φ(δ) = −arctan

(
2πδτ0τe

τ0 − τe

)
− arctan

(
2πδτ0τe

τ0 + τe

)
(8)

Critical coupling τ0 = τe: φ(δ) = π + π

2

δ

|δ| − arctan(πδτ0) (9)

Undercoupling τ0 < τe: φ(δ) = π − arctan

(
2πδτ0τe

τ0 − τe

)
− arctan

(
2πδτ0τe

τ0 + τe

)
(10)

The phase shift is dependent on the coupling regime and thus, by measuring φ(δ) introduced by the resonator the
coupling regime can be unambiguously determined [10]. Since we are interested in the dispersion properties of the
resonator we also give here the expression of the group delay τg calculated using the following definition:

τg(δ) = ∂φ

∂ω
= 1

2π

∂φ

∂δ
(11)

which gives using the previous notations (excluding the case where we have simultaneously δ = 0 and τe = τ0):

τg(δ) = −τeτ0

[
τ0 − τe

2 2
+ τ0 + τe

2 2

]
(12)
(τ0 − τe) + (2πδτ0τe) (τ0 + τe) + (2πδτ0τe)
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(a) Transmission at resonance T (δ = 0) (b) Group delay at resonance τg(δ = 0)

Fig. 2. Transmission at resonance T (δ = 0) in dB and resonant group delay τg(δ = 0) as a function of 1/τ0 for the different regimes: undercoupling,
critical coupling, overcoupling, selective amplification. We also highlight the transparency of the resonator and the laser threshold. In (b) we also
show the slow- and fast-light regimes.

As it has been previously done for the transmission, we can calculate the group delay introduced by the structure at
resonance:

τg(0) = −2
τeτ

2
0

τ 2
0 − τ 2

e

(13)

In Fig. 2(b), we represent τg(0) for the different coupling regime, as it has been done in Ref. [11]. Unlike the transmis-
sion, the resonant group delay strongly depends on the coupling properties: for a given Q, a negative delay (slow-light)
is obtained for overcoupling whereas a positive delay (fast-light) is observed for the undercoupling case. As a con-
clusion, the dispersive properties of a single resonator strongly depend on the coupling properties which cannot be
elucidated using the transmission spectrum. Thus, phase or pulse propagation measurements [10,12] must be carried
out in order to fully characterize simple devices such as side coupled single resonators.

2.2. Dynamic behavior

We will now consider a linear temporal variation of the excitation frequency ω and we consider that Ein(t) =
A exp[jθ(t)] where θ(t) = ω(t) · t with ω(t) = ωi + Ωt/(2TS), thus the instantaneous frequency is given by:

dθ

dt
= ωi + Ω

TS

t (14)

At the beginning of the angular frequency sweeping (t = 0) the resonator is excited with a stationary wave of frequency
ωi and Ω is the total angular frequency range scanned during the duration TS . The integration of Eq. (1) leads to:

u(t) =
√

2

τe

A exp

(
jω0t − t

τ

)[
f (t) − f (0) + 1

j (ωi − ω0) + 1/τ

]
(15)

with:

f (t) − f (0) =
t∫

0

exp

[
jθ

(
t ′
) +

(
1

τ
− jω0

)
t ′
]

dt ′ (16)

which can be expressed using the complex error function erf(z) with z ∈ C:

f (t) = −
√

jπ

2VS

exp

[−j (2πδi − j/τ)2

2VS

]
erf

(
j/τ − 2πδi − VSt√

2jV

)
(17)
S
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(a) Critical coupling (τ0 = τe)

(b) Selective amplification (τ0 = −2.5τe)

Fig. 3. Theoretical transmission as a function of t/τ in the cases of a critically coupled resonator and a selective amplifier for different sweeping
speeds. i) ṼS = 0.0075Ṽ0, ii) ṼS = 0.3Ṽ0, iii) ṼS = 3Ṽ0 and iv) ṼS = 30Ṽ0 where Ṽ0 = 2/(πτ2).

where we define: 2πδi = ωi − ω0 as the initial detuning and VS = Ω/TS or ṼS = Ω/(2πTS) as the frequency sweep-
ing speed. Using Eqs. (2), (15) and (17), it is possible to analytically obtain the time dependent transmission T (t) of the
resonator. In Fig. 3(a), we represent the transmission as a function of t/τ in the case of a critically coupled resonator
for different sweeping speeds normalized for Ṽ0 = 2/(πτ 2) which is calculated assuming Ω/(2π) = 2δ1/2 = 1/(πτ)

for a duration equal to the photon lifetime TS = τ/2. For a low sweeping speed (0.0075Ṽ0), we are almost in the sta-
tionary regime and we obtain a Lorentzian profile for the transmission. For higher sweeping speeds, the transmission
is really different from the stationary response and we can obtain the ringing phenomenon already discussed by several
authors [13–15]. Note that this phenomenon is more pronounced when the sweeping speed increases. A similar effect
has been observed in semiconductor photonic crystal active structures [16]. In this system the refractive index of the
structure can be dynamically shift using a pump signal via the nonlinear dispersion. For the probe located at the edge
of a photonic band, the resonant wavelength is shifted and some oscillations appear in its reflection spectrum. Ring-
ing phenomenon also occurs in the case of resonant amplifiers (τ0 < −τe). Fig. 3(b) represents the transmission as a
function of t/τ in the case of selective amplification (here τ0 = −2.5τe). For low sweeping speed, the transmission
spectrum has a Lorentzian profile and provides a maximal gain value around 5.4. For higher sweeping rates, ringing
appears and the maximal visible gain value decreases. The inspection of Eqs. (15) and (17) reveals that unlike the
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(a) Stationary regime (b) Dynamic regime

Fig. 4. (a) Transmission in the stationary case as a function of the normalized detuning in the case of τ0 = 3τe and τe = 3τ0. The responses for the
two configurations are exactly superimposed. (b) Transmission as a function of time in the identical two cases with ṼS = 2.25Ṽ0. Note that the two
responses are totally different.

stationary case, τe and τ0 no longer play the same role. For a given value of τ , Fig. 4(a) is the stationary response
for overcoupled or undercoupled resonators with τ0 = 3τe and τe = 3τ0 respectively whereas Fig. 4(b) represents the
transmission for the same two sets of parameters when ṼS = 2.25Ṽ0. These two examples show that it is impossible
to distinguish two opposite coupling regimes (over or under coupling) in the stationary regime whereas it is possible
in the fast input frequency sweeping regime. As a conclusion of this theoretical section, fast sweeping transmission
measurements would allow the coupling regime and the dispersive properties of the single resonators to be fully
determined without any phase measurement or pulse propagation experiment.

2.3. Single resonator experiments

In this section, we test experimentally that dynamic measurements allow the coupling regime to be determined
unambiguously as it has been proposed in the theoretical section. We also apply this method to the measurement of
dispersive properties of a WGM resonator and active fiber resonators. Ref. [17] gives more details about the test of the
present method. We used a very simple model system which consists of a ring made from a standard SMF 28 fiber and
a spliced section of 1100 ppm Er3+ doped fiber [18–21]. The fiber ring resonator is coupled to an access fiber using
a tunable coupler [22]. Since we can simultaneously tailor the losses and the coupling of the resonator, this model
system allows different coupling configurations to be investigated.

2.3.1. Experimental setup and method
Fig. 5(a) represents the active fiber resonator we use in the experiments. The probe signal is a continuously tunable

narrow line (≈150 kHz) laser diode. In the experiments, we use two different frequency sweepings: a slow scanning
ṼS ≈ 0.40 MHz/µs which allows us to reach the stationary regime and a fast scanning ṼS = 5 MHz/µs which allows
ringing phenomenon to be observed. The doped fiber section is pumped using a 980 nm laser diode. We have chosen
to use an active fiber to explore all the coupling regimes by changing the pumping rate as we will show later. The
ring perimeter is approximatively L = 2.5 m, its effective group index n = 1.46 and the resonant wavelength is set to
1550 nm leading to ω0 = 1.2×1015 rad s−1. Note that in the slow sweeping regime, the theoretical value of the FSR is
used to deduce ṼS . Subsequently we can calibrate the abscissa axis in frequency units as usual. The outcoupled signal
from the ring is sent to an optical detector and normalized using the off-resonance value. Then, we are able to obtain
the experimental temporal variations of the transmission Tmes which was compared in the case of the fast scanning
experiments to the theoretical value Ttheo by using the least square method:

σ 2(τ0, τe,VS) =
N∑[

Tmes,i − Ttheo,i (τ0, τe,VS)
]2 (18)
i=1
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(a) Coupling regime determination (b) Coupling regime determination

Fig. 5. (a) Setup used to test the experimental method. The resonator consists of SMF 28 fiber with a spliced 50 cm long section of Er3+ fiber
pumped with a 980 nm laser diode using wavelength multiplexers M. C: tunable coupler, I: optical isolator, PC: polarization controller and D:
optical detector. The probe is a tunable 1550 nm laser diode (bandwidth 150 kHz) whose central frequency is linearly swept with a controllable
period. P0 is the optical power of the input signal. The fiber resonator is immersed in a water bath to limit thermal fluctuations. (b) Fast and slow
scanning experimental results (black lines) and fitting curves (gray lines) for two combinations of coupling coefficient and pumping rate (4.5 mW
and 7 mW) and an input power P0 = 1.5 mW. These two parameters are chosen to switch the role played by τ0 and τe . i) Undercoupling regime:
τ0 = 404 ns, τe = 958 ns and τ = 284 ns. ii) Over coupling regime: τ0 = 895 ns, τe = 321 ns and τ = 236 ns. The slow scanning (stationary
regime) provides almost the same transmission spectrum.

where N is the number of temporal sampling points. The value of σ 2 is minimized by automatically changing the
value of τ0, τe and VS to obtain the best fit. The knowledge of τ0 and τe allows all the dispersion properties of the
single resonator to be precisely determined using Eq. (13) for example.

2.3.2. Direct determination of the coupling regime
We tested the possibility of distinguishing between two opposite coupling regimes for a given overall Q-factor Q.

Therefore, we used two sets of coupling and pumping rates giving us nearly the same stationary responses (in the
slow scanning regime) as shown in the right column of Fig. 5(b). From these slow scanning experiments we approx-
imatively measured the same 2δ1/2 and the same transmission T (0), consequently it is impossible to determine the
coupling regime. Using the same conditions, we also performed fast scanning experiments which are presented in
the left column of Fig. 5(b). The amplitude of the ringing oscillations reveal the coupling regime and the fits give:
a) undercoupling: τ0 = 404 ns and τe = 958 ns; b) overcoupling: τ0 = 895 ns and τe = 321 ns. In the two cases, the
global Q-factors deduced from the fast scanning are comparable a) Q = 1.7 × 108 and b) Q = 1.4 × 108. To check
the validity of the measurements of loaded Q-factors obtained with the fast scanning method, we fit the slow scanning
results without changing τ0 and τe using Eq. (4). We obtained a good agreement for the two configurations. Note that
for higher Q-factors the slow scanning method has several drawbacks such as the need for a high frequency stability
laser or the parasitic contributions from nonlinear effects [23]. Moreover, the fast sweeping method does not require
ṼS to be calibrated which can be difficult to precisely measure by other techniques.

2.3.3. WGM resonators
We first apply the method to a WGM resonator, by replacing the fiber loop and coupler C of Fig. 5(a) by a MgF2

disk and its tapered fiber coupler as represented in Fig. 6(a). The disk has a diameter D = 5.2 mm, a thickness
e = 0.3 mm and its polished area has a diameter of about ρ = 60 µm. The diameter of the tapered fiber is reduced to
3 µm. In the case of fast sweeping of the probe wavelength, the transmission as a function of time is represented in
black in Fig. 6(b). The theoretical fit (gray line) gives Q0 = 3.3 × 108, Qe = 2.5 × 109 which shows that the resonator
is undercoupled (Q0 < Qe). In this case, the method is useful since it directly gives the intrinsic Q-factor Q0 which
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(a) MgF2 WGM resonator (b) Transmission of the WGM resonator

Fig. 6. (a) Description of the MgF2 WGM resonator with its coupling fiber taper. The minimal diameter of the taper is about 3 µm. D = 5.2 mm,
e = 0.7 mm and the spherical polished part has a diameter ρ = 60 µm. (b) Experimental results with the MgF2 WGM resonator (black line). The
theoretical fit (gray line) gives: Q0 = 3.3 × 108, Qe = 2.5 × 109.

depends only on the structural characteristics of the WGM resonator. Using Eq. (13), we can also infer the dispersion
properties of the group delay at resonance introduced by the WGM resonator τg(0) = 146 ns.

2.3.4. Active or amplifying resonators
With the doped fiber resonator already described in Section 2.3.1, it is possible to obtain an almost transparent

resonator equivalent to a Gires–Tournois interferometer by adjusting the pumping rate to compensate for all the
optical losses. To obtain such a resonator, we tried to obtain a constant transmission in the slow scanning regime.
Still to check the validity of our method, we then switched to the fast scanning regime and we obtained the response
given in Fig. 7(a). The numerical calculations shown in this figure give: Qe = 2.3 × 108 and Q0 = 4.9 × 1014. The
inferred intrinsic Q-factor is in very good agreement with a lossless resonator and show that the method works well
in limit cases. We can also deduce the dispersive properties of this resonator: τg(0) = −2τe ≈ −758 ns. By increasing
the pump power, we can even obtain highly selective amplification [21,24,25]. In our system we have obtained a gain
as high as 12.1 dB as presented in Fig. 7(b). In this case, the bandwidth of the selective amplification is 440 kHz.
Using Eq. (13), we can also deduce the group delay at resonance: τg(0) = −900 ns which shows that this resonator
could be used to delay a monochromatic signal by almost 1 µs and to amplify it by more than 10 dB. It is difficult
to measure highly selective gain (or very high-Q passive resonators) in the stationary regime since the bandwidth
is very narrow. The sweeping rate must be very low to avoid ringing whereas when taking into account the ringing
phenomenon it is possible to infer the characteristics of the amplifier. Moreover, one of the main limitations of the
stationary method comes from the laser probe linewidth which must be narrower than the resonator linewidth. This
limitation can be circumvented in the dynamic regime using high sweeping speeds [26]. All the analysis presented
in this paper, were obtained under assumption of linear regime, we assume that there is neither absorption nor gain
saturation. For higher gains or higher signal powers the gain or absorption saturation would be taken into account in
Eq. (1). The slight discrepancy between the experimental results and the theoretical fit of Fig. 7(b) may come from
the fact we have limited our calculations to the linear regime. If absorption or gain saturation have induced significant
nonlinear dispersion, we would have observed dynamic bistable profiles. This effect could also be easily taken into
account in the model [27]. We also neglect the dynamic behavior of the atomic medium since Er3+ characteristics
lifetimes are about 10 ms which is much longer than the typical photon lifetimes of our systems. In this case we can
assume that the populations of the gain medium are “frozen” during the observation duration [16].

3. Coupled-active-resonator-induced transparency

In the previous section, we analyzed in detail the properties of a single resonator. We have shown that the trans-
mission (or gain) and dispersion are totally determined by the values of τe and τ0. In other words, it is possible to
obtain all the combinations of gain and delay by changing the values of the coupling coefficients and adjusting the
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(a) Lossless resonator (b) Selective amplifier

Fig. 7. (a) Experimental results for P0 = 1.5 mW with the fiber resonator for a pumping rate of 7.8 mW. The theoretical fit (gray line) gives: τ0 =
818 ms, τe = 379 ns and thus a resonant transmission of T (0) ≈ 1, the resonator is equivalent to a Gires–Tournois interferometer. (b) Experimental
results for P0 = 1.5 mW with the fiber resonator under high pumping (22.1 mW). The theoretical fit (gray line) gives: τ0 = −476 ns, τe = 287 ns,
then T (0) = 16.3 (or T (0) = 12.1 dB) in a frequency bandwidth 2δ1/2 = 440 kHz.

optical losses. For example, if one want to obtain a transparent (T = 1) delay line the optical losses must be canceled
and then τg(0) = −2τe. In many applications, the delay line must be tunable. In the present situation, by changing the
coupling of the resonator (and thus τe) all the group delay values would be reachable. Unfortunately, in a lot of con-
figurations the coupling can be only changed by mechanical means. Moreover, the coupling of integrated devices is
really difficult to actively change. Consequently, it would be more convenient that the dispersive properties of the res-
onator were dependent on τ0. In this section, we will show that the coupling of two active resonators allows to obtain
such transparent tunable delay line. It has already been shown that by coupling two passive resonators one can obtain
a classical counterpart of EIT referenced as coupled-resonator-induced transparency (CRIT) [28–36]. The resonator
coupling creates a resonance frequencies split (analogous to Rabi splitting in EIT) which cancels the unavoidable
absorption of lossy single resonators [29,31].

3.1. Theoretical model

First, we will recall the basic theoretical method based on coupled mode theory for the description of linear prop-
erties of two coupled ring resonators [31]. Note that, in the previous section, we used the H.A. Haus model and thus
assumed a time dependence in exp(jωt). In this section, since we deal with stationary calculations we have chosen an
opposite time dependence which only changes the sign of the group delay. Fig. 8 schematically represents the config-
uration consisting of two coupled ring resonators allowing the observation of CRIT. The two ring fiber resonators (of
total lengths L1 and L2) are coupled using a 2 × 2 coupler C1. For the sake of clarity and without loss of generality,
we will consider that the coupler C1 is located at exactly L2/2 from coupler C2 which allows loop 2 and the access
fiber to be coupled. Couplers Ci with i ∈ {1,2} are characterized by a 2 × 2 matrix [8]:

Ci =
[

ρi jκi

jκi ρi

]
, i ∈ {1,2} (19)

where the coupling coefficients ρi and κi are related by: γi = ρ2
i + κ2

i with γi � 1. In this paper we deal with sin-
gle mode monochromatic fields of angular frequency ω. The field envelopes E5 and E2 after C1 are related to the
envelopes E4 and E1 before C1 by:[

E5

E2

]
= C1

[
E4

E1

]
(20)

During its round-trip in loop 1, E5 undergoes an attenuation a1 and a phase shift φ1 = nωL1/c where n is the effective
refractive index of the fiber, thus the field envelope E4 reads:
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Fig. 8. The coupled resonators system consists of two fiber loops (with effective refractive group index n) of length L1 and L2 coupled by a 2 × 2
coupler C1. The system is coupled to a bus fiber via the coupler C2. The input and output fields are Ein and Eout . Ei with i ∈ [0,5] are the field
envelope values at several points inside the coupled resonator system.

E4 = a1E5e
jφ1 (21)

Using Eqs. (20) and (21), we can write the expression of the transmission coefficient t1 associated with loop 1:

y1 = E2

E1
= ρ1 − γ1a1e

jφ1

1 − ρ1a1ejφ1
(22)

The same method applied for loop 2, the field envelopes E0, E3, Ein and Eout are related by:[
Eout

E0

]
= C2

[
Ein

E3

]
(23)

We call a2 and φ2 = nωL2/c the attenuation and the phase shift in loop 2, then we have:

Ei = √
a2Ei−1e

jφ2/2, i ∈ {1,3} (24)

By combining Eqs. (23) and (24), we obtain the amplitude transmission y of the whole system:

y = ρ2 − γ2a2y1e
jφ2

1 − ρ2a2y1ejφ2
(25)

which can be explicitly written using Eq. (22):

y = √
T ejφ = ρ2 − ρ1ρ2a1e

jφ1 − γ2ρ1a2e
jφ2 + γ1γ2a1a2e

j (φ1+φ2)

1 − ρ1a1ejφ1 − ρ1ρ2a2ejφ2 + γ1ρ2a1a2ej (φ1+φ2)
(26)

The dispersion properties of the coupled resonator system are quantified by the high dispersion orders βp = ∂pφ/∂ωp

p > 1 (note that for p = 1 we obtain the group delay already defined).

3.2. Coupled-resonator-induced transparency

A convenient choice of coupling coefficients ρi and optical attenuations ai where i ∈ {1,2} allows to obtain dif-
ferent coherent optical effects. In this paper, we will only deal with CRIT in the case of coupled optical fiber rings.
We consider here that L1 = L2 = L (so φ1 = φ2 = ϕ) and γ1 = γ2 = 1. Let us also assume no material dispersion
and that the two rings have a common resonance frequency ω0. We note δ the frequency detuning from the resonance
frequency: ω = ω0 +2πδ. Fig. 9(a) represents in solid line the whole absorption of the system A = 1−T as a function
of δ in a configuration of CRIT (a1 = 0.9995, a2 = 0.76, ρ1 = 0.995 and ρ2 = 0.95). We also represent in Fig. 9(a)
the total absorption A for resonator 2 alone (dash–dot line). We can note that the coupling of resonator 1 induces
a splitting of the large absorption resonance of resonator 2 in two absorption peaks and that a narrow transparency
window appears between the split resonances. The resonance splitting can be found as follows. We first write the field
envelope value inside resonator 2:
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(a) Absorption (b) Group delay

Fig. 9. Coupled resonator system with a1 = 0.9995, ρ1 = 0.995, a2 = 0.76, ρ2 = 0.95, L1 = L2 = L ≈ 1 m, λ0 = 1.55 µm and n = 1.46.
(a) Absorption A = 1 − T as a function of the detuning δ. We also represent the absorption A for the lower resonator (resonator 2). 2δS is the
frequency split coming from the coupling of the two resonators. (b) Dispersion properties of the coupled resonators. We also recall the group delay
of the lower resonator.

E0

Ein
= jκ2

1 − ρ2a2y1ejϕ
(27)

We note D = 1 − ρ2a2y1e
jϕ the denominator of Eq. (27). For the new resonance frequencies the field inside res-

onator 2 is maximal and then |D| is minimal. If we note δS the value of the detuning δ of the split resonance
frequencies, we have:

∂|D|
∂δ

∣∣∣∣
δS

= 0 (28)

Assuming that a1 ≈ 1 and using a first-order development in 1 − ρ1 we obtain the two values of the detuning for the
split resonances:

δS = ± 1

πτL

√
1 − ρ1

2
(29)

The solid line in Fig. 9(b) plots the group delay τg as a function of δ for the coupled resonators in the configuration
of CRIT. As it was the case for absorption A, we also represented in dash–dot line dispersion properties of the lower
resonator alone. The coupling between the two resonators induces a sharp positive phase variation which leads to a
positive group delay. The CRIT configuration allows both a high transmission and a large delay to be obtained simul-
taneously which constitute crucial properties for optical delay line [30,31]. If we choose ρ1 = a1, the transmission at
resonance is T (δ = 0) = ρ2

2 and independent on a2. Conversely, the resonant group delay depends linearly on a2:

τg(0) = a2
ρ1(1 − ρ2

2)

ρ2(1 − ρ2
1)

τL (30)

This configuration is potentially interesting for applications since the coupled resonator system acts as an almost
transparent delay line (ρ2 ≈ 1) whose group delay is changed by varying a2. Eq. (30) also shows that coupling
coefficients must be chosen as 1 − ρ1 	 1 − ρ2 in order to obtain a large delay. This could be done using active
resonators whose pumping rate is controlled. The main differences with the single resonator are: i) the delay is changed
without modifying the coupling rates, ii) the optical losses do not change the transmission value. Under the same
assumption that those made to obtain Eq. (30) we can also calculate the FWHM of the transmission of the two
resonator system:

2δ1/2 = 1 − ρ2
1 (31)
πτLρ1(ρ2a2 − ρ1)
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Fig. 10. The experimental setup is composed of two coupled active fiber loops inserted in one arm of a Mach–Zehnder fiber interferometer. C1 is a
99%/1% coupler, C2 is a 90%/10% coupler whereas C0, CA and CB are 3 dB couplers. PC is a polarization controller and I is an optical isolator.
M are wavelength division multiplexers allowing the insertion of the 980 nm pump lasers 1 and 2 into the two 30 cm long Er3+ doped fiber
sections. P0 is the optical power entering the interferometer, PA and PB are respectively the incident optical powers on detectors DA and DB . The
length of the lower arm of the interferometer is chosen to cancel the phase dispersion due to chromatic dispersion of SMF 28, it introduces a static
phase shift φ0. The probe is an external-cavity laser diode with a bandwidth of 150 kHz tunable around 1550 nm. To limit thermal fluctuations, we
immersed the coupled rings in a water bath.

which leads to a bandwidth-delay product:

2δ1/2τg(0) = 2(1 − ρ2)a2

π(1 − ρ2a2)
� 2

π
(32)

where 2/π is the bandwidth-delay product for a one resonator all-pass filter [37]. In this configuration the bandwidth-
delay product is smaller than for a single lossless resonator [37] but the group delay is controllable.

3.3. Experimental results

In this section, we propose an experimental demonstration of the tunable transparent delay line made of a coupled
resonator system. As it was the case for the single resonator experimental study we used Er3+ doped fiber allowing us
to actively and independently control the values of a1 and a2. The experimental arrangement is described in Fig. 10.
We used telecom single mode fiber (SMF 28) loops with spliced sections of 1100 ppm Er3+ doped fiber. The loops
are pumped in opposite directions individually by two 980 nm pump laser diodes. The loop 1 is pumped using laser 1
whose power is 8.6 mW. The probe signal is delivered by the tunable 1550 nm laser diode already described, P0 is
still the optical input power. In order to measure the total phase shift φ(δ) (and thus the group delay), the coupled
resonators are also coupled to one arm of a Mach–Zehnder fiber interferometer using two 3 dB couplers C0 and CB .
This technique has already been used to measure the dispersion of slow-light systems such as EIT media [38,39], single
passive fiber resonators [22] or atomic vapor [40]. Another 3 dB coupler CA is used to obtain a direct measurement
of the transmission T . It is straightforward to write the expressions of optical powers inside the upper arm:

PA(δ) = P0ρ
2
0T (δ)ρ2

A (33)

and at the output of the interferometer PB(δ):

PB(δ) = P0
{
X2(δ) + X2

0 + 2X(δ)X0 cos
[
φ(δ) − φ0

]}
(34)

where X(δ) = √
T (δ)ρ0κAρB . X0 = κ0κB and φ0 is the global static phase shift between the two arms. We carefully

measured several experimental parameters: i) the input power P0 = 2.62 mW, ii) the coupling coefficients of C0, C2,
CA and CB , iii) optical losses of each component which will be taken into account in the values of coupling coefficients
and iv) the sensitivities of detectors DA and DB . By scanning the probe wavelength and by simultaneously measuring
the optical power values PA(δ) and PB(δ), we firstly deduce the transmission T (δ) using Eq. (33), and then the whole
phase shift φ(δ) using Eq. (34):
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(a) Transmission T and phase φ as a function of δ

Fig. 11. In both figures black curves are experimental measurements and gray curves are theoretical calculations. The only parameter which
is changed in each row is the value of the attenuation a2 in loop 2. For the group delay, the experimental curves are deduced by numerically
calculating the first derivative of the experimental values. For the group delay dispersion β2 we only give the theoretical values. We give the
inferred values of a2 in the left columns. From the top to the bottom, the pump 2 power values are: 1.7 µW, 150 µW, 850 µW, 1.62 mW, 2.24 mW,
4.52 mW, 7.77 mW.

φ(δ) = φ0 + arccos

[
PB(δ)/P0 − X2(δ) − X2

0

2X(δ)X0

]
(35)

It is then possible to infer the value of τg(δ) by differentiating φ(δ). In order to reduce the noise impact on the
numerical evaluation of τg(δ), we smoothed PA(δ), PB(δ) and φ(δ) using successively FFT and Savitzky–Golay
filters. The probe wavelength is scanned over a spectral range of about 5 GHz in order to find a coincident resonant
angular frequency ω0 for the two loops. Black curves of Fig. 11(a) represent the experimental transmission T (left
column) and the phase shift φ (right column) as a function of the detuning δ for seven loop 2 pumping rates. The
zero detuning (δ = 0) is centered at the transmission maximum. The mean value of φ(δ) is subtracted to avoid φ0
measurement. These results are fitted (gray curves) using modulus and argument of Eq. (26). To perform theoretical
calculations, we independently measured the lengths of the fibers: L1 = 1.205 m, L2 = 1.410 m and we assumed
that doped fiber sections have roughly the same effective group index dispersion as SMF 28 fiber (i.e. we considered
that φi(δ) = n(δ)ωLi/c where i ∈ {1,2} and n(δ) is the effective group index of standard single mode fiber). We
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(b) Net group delay τg and β2 as a function of δ

Fig. 11. (continued)

also measured the value of the coupling coefficient of C2: κ2
2 = 8.7%, the only fitting parameters are i) the value

of the coupling coefficient of C1: κ2
1 = 0.6%, ii) a1 = 0.996 and iii) a2 which is changed for each pumping rate.

We considered lossless couplers. For an increase in the pumping rate of the lower ring, the off-resonance absorption
increases. This confirms the coherent behavior of the optical phenomenon observed and that the effect of spontaneous
emission is negligible. We have also checked that spontaneous emission does not introduce too much incoherent
noise by measuring the response of the system without probe signal. The amplitude of the phase-shift increases when
we increase the value of a2. In this case, we numerically checked that for 0.7 � |φ0| � π − 0.7, the effect of φ0
is only reduced to a phase offset or a sign reversal in the phase shift φ(δ). This justifies the use of Eq. (35). The
experimental data and theoretical calculations show a good agreement for several pumping rates of loop 2. We have
chosen a constant value for the pumping rate of the first loop (which corresponds to a fixed value for a1) in order
to fulfill the hypothesis made to obtain Eq. (30). From the measurement of the dispersion, it is possible to infer the
group delay. In the left column of Fig. 11(b), we have represented in black the group delay τg obtained by numerical
differentiation of the experimental values of φ(δ) as a function of the detuning δ. These results are compared to the
first derivatives of the theoretical calculation of φ(δ) (see gray curves in the left column of Fig. 11(b)). In the right
column of Fig. 11(b), we added the theoretical values of β2(δ) which vanishes when δ = 0 due to the parity of τg(δ).
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(a) Transmission T and delay τg as a function of optical losses (b) Third-order dispersion

Fig. 12. (a) The thin line (left scale) is the calculation of the group delay at resonance τg(δ = 0) as a function of optical power attenuation a2
2 of

loop 2. The open circles are the experimental evaluation of τg(δ = 0) deduced from Fig. 11(b). The thick line (right scale) is the theoretical value
of the transmission at resonance T (δ = 0) as a function of a2

2 . The open squares are the experimental measurements of T (δ = 0). (b) Theoretical
calculations of the third-order dispersion β3(δ) for three values of a2 in the case of our experimental system.

First, we can note that when the pumping rate of the lower resonator increases the resonant group delay also increases
without modifications of the resonant transmission as it has been theoretically proposed. We summarized the result in
Fig. 12(a) where we plotted both the resonant group delay and the resonant transmission as a function of the optical
attenuation a2

2 . Second, as the pumping rate increases we can also observe that the group delay spectrum broadens and
flattens. This enlarges the spectral range where the group delay dispersion β2 vanishes [see Fig. 11(b)]. This feature
is associated with simultaneous canceling of the third-order dispersion. To underline this effect, we calculated and
represented in Fig. 12(b) the third-order dispersion as a function of δ for three values of a2. For the particular value
of a2 = 0.925, β3 vanishes at resonance. This show that, for a given system of coupled resonators, the active feature
allows its dispersion properties to be tuned using external parameters such as the pumping rate.

4. Conclusion

We have described in detail the dispersion properties of active single and coupled resonators. For single resonators,
we have proposed a simple experimental protocol used in the time domain to obtain all their characteristics. We
experimentally applied the method to Er3+ doped fiber ring resonator and to WGM resonators. We also studied Er3+
doped coupled fiber ring resonators in the stationary regime. We have experimentally demonstrated that the active
behavior of the resonators allows the group delay and the high dispersion orders to be tailored keeping the system
transparent. These artificial media may find some applications in different domains. For example, high Q-factor optical
resonators are of interest for microwave generation [41]. In microwave photonics, optical resonators can be used as
filters or delay line in optoelectronic oscillators [41]. In this last case, the knowledge of the dispersive properties of
the resonator may be crucial. In this purpose, we can also notice that the case of selective amplification is interesting
since it allows both an amplification and a delay of the optical signal. From another point of view, the experimental
method of Q-factor measurement shown in this paper could have important applications in integrated optics since it
gives the value of the intrinsic Q-factor of the resonators (without its coupler) in one set of measurement. The use
of active coupled resonators could be of interest for tunable delay lines in the microwave domain [41,42]. We have
showed that the active feature of coupled resonators acts as a supplementary external parameter to tailor the different
dispersion orders of coupled resonators. It has already been proposed to flatten the group delay dispersion in order
to cumulate delay in coupled resonator by engineering the coupling coefficients [43,37,44]. Using active device, it
could be possible to adjust the dispersion after fabrication. These results could be useful for predicting of the behavior
of active coupled microresonators used in the integration of photonic functions [45–47], in this case the dynamic
of the gain will have to be considered [16]. Finally, coupled resonators could be used to increase the sensibility of
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interferometers [48,49] in particular, it could be envisaged to use CRIT systems to increase the sensitivity of optical
gyroscopes [50,51].
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