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Abstract

A detailed theory of the line shape in linear absorption spectroscopy of low-pressure gases is developed. The goal is to take into
account all effects that come into play in the determination of Boltzmann’s constant from measurements of the Doppler width. We
demonstrate that there is no additional broadening from finite transit time across the laser beams. The molecular recoil and the
second-order Doppler effect are included in the line shape thanks to a complete quantum treatment. The Mössbauer–Lamb–Dicke
narrowing of Doppler lines by collisions is also included and the special cases of Galatry and Nelkin–Ghatak profiles are presented.
To cite this article: C.J. Bordé, C. R. Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur la théorie de la forme des raies d’absorption linéaire des gaz. Une théorie détaillée de la forme des raies d’absorption
linéaire des gaz à basse pression est développée. L’objectif est de mieux cerner tous les effets susceptibles d’intervenir dans la
détermination de la constante de Boltzmann à partir d’une mesure de la largeur Doppler. On démontre en particulier qu’il n’y a pas
d’élargissement supplémentaire lié au temps fini de traversée du faisceau laser par les molécules. Les effets de recul et Doppler du
deuxième ordre sont intégrés dans la forme de raie grâce à un traitement quantique complet. L’effet Mössbauer–Lamb–Dicke de
rétrécissement des raies Doppler par les collisions est lui aussi incorporé dans la théorie avec comme cas particuliers les profils de
Galatry et de Nelkin–Ghatak. Pour citer cet article : C.J. Bordé, C. R. Physique 10 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Several experiments are presently underway to determine Boltzmann constant from the Doppler width of an ab-
sorption line in an atomic or in a molecular gas. Three of these are presented in this volume [1–3] but at least three
others are in preparation. This possibility was suggested by the author on the occasion of the 125th anniversary of the
meter convention [4–9]. In order to extract this Doppler width from the absorption profile, a detailed knowledge of the
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Fig. 1. Interferometric representation of the linear absorption process. This is one out of four different diagrams and their complex conjugates [11]
representing the various terms of Eq. (4).

line shape is required which includes a number of small effects coming into play at a 10−6 level of accuracy. A key
issue was the possible occurrence of transit effects owing to the transverse structure of the laser beams. It is shown in
this article that this is not the case in linear absorption spectroscopy provided that the medium is uniform and isotropic.
Other effects that are considered are the recoil effect and the second-order Doppler shift. We start with the traditional
classical motion approach of molecules flying across the laser beams. The absence of transit effects is better under-
stood in a plane wave approach. For a more rigorous theory of the molecular recoil, we quantize the molecular motion.
The connection with the theory of neutron diffusion and gamma-ray spectroscopy is then presented and in this context
the Brownian motion of molecules can be included through Van Hove’s self-correlation function Gs . This leads to the
well-known Galatry profile, which is one way to introduce the Mössbauer–Lamb–Dicke (MLD) narrowing. Finally,
the complete theory in which momentum-changing collisions are introduced through collision kernels in the density
matrix equations is outlined and confirms the absence of transit broadening in usual conditions. As an example the
Nelkin–Ghatak profile is also derived as another way to describe the MLD narrowing. We start from the most basic
level with Schrödinger equation for a two-level atomic system interacting with laser light and derive a very general
expression for the gas absorbance.

2. Transition probability and absorbed luminous power in effective two-level atomic systems

2.1. Density operator evolution and associated diagram [10]

Let us consider a two-level system (Fig. 1) with internal state ket vectors |a〉, |b〉 (with Ea < Eb) interacting with
a radiation field through the effective Hamiltonian V (t). In a first approach, we shall consider that the evolution of
the density operator ρ(t) is the same as in the pure case ρ(t) = |ψ(t)〉〈ψ(t)| where the state vectors |ψ(t)〉 satisfy
Schrödinger equation:

ih̄∂t

∣∣ψ(t)
〉 = (

H + V (t)
)∣∣ψ(t)

〉
(1)

except for a simple relaxation term1 towards a time-independent equilibrium density operator ρ(0)

ih̄
∂ρ(t)

∂t
= [

H + V (t), ρ(t)
] − ih̄

2

{
Γ,ρ(t) − ρ(0)

}
(2)

1 Strictly speaking any relaxation model involves a trace operation over an external reservoir and the two-level system has no longer a wave
function but must be described by a reduced density operator. However as long as we stick to a simple relaxation constant for each level it is
convenient and mathematically correct to continue to keep a pure case description in terms of a state vector.
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with standard notations: [ , ] for commutators and { , } for anticommutators. The unperturbed Hamiltonian H includes
both the internal Hamiltonian operator and the kinetic energy operator. The relaxation operator Γ has eigenvalues γa

and γb and we shall use the traditional notation γba = γab = (γa + γb)/2 for the relaxation constant of the optical
dipole.

The integral form of the equation for ρ(t) is:

ρ(t) = ρ(0) + 1

ih̄

t∫
−∞

dt ′ U
(
t, t ′

)[
V

(
t ′
)
, ρ

(
t ′
)]

U†(t, t ′) (3)

where the free evolution operator U(t, t ′) satisfies ih̄∂tU(t, t ′) = (H − ih̄Γ /2)U(t, t ′) with U(t, t) = I . Combining
the two previous equations for the density operator ρ(t), we obtain its rate of change under the influence of the
radiation:[

∂ρ(t)

∂t

]
interaction

= 1

ih̄

[
V (t), ρ(0)

] − 1

h̄2

t∫
−∞

dt ′
[
V (t),U

(
t, t ′

)[
V

(
t ′
)
, ρ

(
t ′
)]

U†(t, t ′)] (4)

We shall assume that ρ(0) is diagonal in the internal state basis. To second-order in V , the rate of formation of the
excited state from the lower state under the influence of the radiation is obtained from the previous equation by
introducing closure relations and keeping only the two relevant conjugate terms among eight possible ones:

[
∂ρ

(2)
bb (�r, t)
∂t

]
interaction

= �
−2Vba(�r, t)

t∫
−∞

dt ′
∫

d3r ′ d3r ′′〈a|〈�r|U(
t, t ′

)∣∣�r ′′〉|a〉〈a|〈�r ′′∣∣ρ(0)
∣∣�r ′〉|a〉

× Vab

(�r ′, t ′
)〈b|〈�r ′∣∣U†(t, t ′)|�r〉|b〉 + c.c. (5)

with Vba(�r, t) = 〈b|〈�r|V (t)|�r〉|a〉 = V ∗
ab(�r, t). This equation is represented by a density matrix diagram (see Fig. 1).

The source term is the atomic coherence (in the atom optics sense): 〈a|〈�r ′′|ρ(0)|�r ′〉|a〉. The matrix elements
〈a|〈�r|U(t, t ′)|�r ′′〉|a〉 and 〈b|〈�r|U(t, t ′)|�r ′〉|b〉 are the propagators of states a and b:

〈a|〈�r|U(
t, t ′

)∣∣�r ′〉|a〉 = Ka

(�r, �r ′, t − t ′
)

exp
(−γa

∣∣t − t ′
∣∣/2

)
(6)

with

Ka

(�r, �r ′, t − t ′
) = 〈a|〈�r| exp

[−iH
(
t − t ′

)
/�

]∣∣�r ′〉|a〉 (7)

and similarly

〈b|〈�r ′∣∣U†(t, t ′)|�r〉|b〉 = K∗
b

(�r, �r ′, t − t ′
)

exp
(−γb

∣∣t − t ′
∣∣/2

)
(8)

In the following we shall assume the usual canonical ensemble of states with a constant number of molecules N . The
thermal equilibrium density operator ρ(0) satisfies the Bloch equation:

∂ρ(0)

∂β
= −1

2

{
H − 〈E〉, ρ(0)

}
(9)

with β = 1/kBT and average energy

〈E〉 = Tr[H exp[−βH ]]
Tr exp[−βH ] = −∂ lnZ

∂β
(10)

where Z is the total partition function (internal and external):

Z = Tr exp[−βH ] = ZintZext (11)

The Hamiltonian H is the same as in Schrödinger (1) and Liouville–von Neumann (2) equations. Thus the equilibrium
density operator is given by

ρ(0) = (N/Z) exp[−Hβ] (12)
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and is normalized so that its trace is the total (constant) number of molecules in the volume V :

Trρ(0) = N (13)

and the number of molecules per unit volume will be written

n(0) = N/V (14)

The atomic coherence is Gaussian:

〈a|〈�r|ρ(0)
∣∣�r ′〉|a〉 = (N/Z)

∫
d3p d3p′ 〈�r| �p〉〈a|〈 �p| exp[−βH ]∣∣ �p′〉|a〉〈 �p′|�r ′〉

= (N/Z) exp(−Eaβ)
1

λ3
T

exp
[−π

(�r − �r ′)2
/λ2

T

]
(15)

and its width is equal to the thermal de Broglie wavelength

λT = h√
πMu

(16)

corresponding to the molecular mass M and to the most probable velocity u at temperature T :

u =
√

2kBT

M
=

√
2

Mβ
(17)

so that

Zext = V/λ3
T (18)

Linear absorption thus appears as an interferometric process [13] probing the thermal coherence of the gas. The
visibility of the interference pattern is limited by the coherence length λT and the Doppler width 
ν

D
(e-fold half-

width) is the width of the central fringe of the interferogram


ν
D
/ν = λC/(

√
π λT ) (19)

where λC = h/Mc is the de Broglie–Compton wavelength of the molecules. Side fringes are wiped out by the aver-
aging over the separation of the two interactions of Fig. 1. They would appear for spatially or temporally separated
fields in a Ramsey configuration with a fixed separation.

2.2. Thermal propagator and absorbed power

A simplification occurs when the same Hamiltonian drives the time and temperature evolutions, since we may
write:

[
∂ρ

(2)
bb (�r, t)
∂t

]
inter

action

= �
−2Vba(�r, t)

t∫
−∞

dt ′
∫

d3r ′ {〈a|〈�r|U(
t, t ′

)
ρ(0)

∣∣�r ′〉|a〉

× Vab

(�r ′, t ′
)〈b|〈�r ′∣∣U†(t, t ′)|�r〉|b〉} + c.c. (20)

where:

〈a|〈�r|U(
t, t ′

)
ρ(0)

∣∣�r ′〉|a〉 = (N/Z)〈a|〈�r| exp
[−iH

(
t − t ′ − i�β

)
/�

]∣∣�r ′〉|a〉 exp
(−γa

∣∣t − t ′
∣∣/2

)
= (N/Z)Ka

(�r, �r ′, t − t ′ − i�β
)

exp
(−γa

∣∣t − t ′
∣∣/2

)
(21)

The product Ka(�r, �r ′, τ − i�β)K∗
b (�r, �r ′, τ ) exp(−γba |t − t ′|) is the thermal propagator of the off-diagonal density

matrix element (optical coherence in the atomic physics sense).
For one-photon transitions in a two-level system, the matrix element of the Hamiltonian of interaction with a

monochromatic electromagnetic wave of circular frequency ω = 2πν is
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Vba(�r, t) = −h̄Ωbae
i(ωt+ϕ)U(�r) + c.c. (22)

where Ωba is a Rabi frequency μbaE0/2� and where:

U(�r) = e−ik(z−z0)U0(�r) (23)

is the geometrical dependence of the light beam propagating forward in the z direction. If the absorbing gas is optically
thick, we shall use a complex value for k in order to account for the exponential decrease of the wave amplitude:

k = k′ − ik′′ (24)

where

2k′′ = kν = − 1

PL(z)

dPL(z)

dz
(25)

is the absorption coefficient for the laser power PL:

PL(z) = c
ε0E

2
0(z)

2
S (26)

carried in the effective surface

S =
∫

dx dy U0(�r)U∗
0 (�r) (27)

In the case of an absorption coefficient independent of z this leads to Bouguer–Lambert law over the length L of
absorbing material:

PL(z0 + L) = PL(z0) exp
(−2k′′L

)
(28)

More generally we shall calculate the dimensionless absorbance (optical density or extinction):

Aν =
z0+L∫
z0

kν dz = ln
PL(z0)

PL(z0 + L)
(29)

From

[
∂ρ

(2)
bb (�r, t)
∂t

]
inter

action

= n(0)λ3
T

Zint
Ω2

bae
−2k′′(z−z0)2 Re

+∞∫
0

dτ e−(iω+γba)τ

×
∫

d3r ′ U∗
0 (�r)U0

(�r ′)e−ik(z′−z)Ka

(�r, �r ′, τ − i�β
)
K∗

b

(�r, �r ′, τ
)

(30)

we can express the absorbed power per unit length as:

dPabs

dz
= −dPL(z)

dz
= �ω

∫
dx dy

[
∂ρ

(2)
bb (�r, t)
∂t

]
inter

action

and the absorption coefficient as:

kν = 4π2ναd2
ba

n(0)λ3
T

Zint
2 Re

+∞∫
0

dτ e−(iω+γba)τ

× 1

S

∫
dx dy

∫
d3r ′ U∗

0 (�r)U0
(�r ′)e−ik(z′−z)Ka

(�r, �r ′, τ − i�β
)
K∗

b

(�r, �r ′, τ
)

(31)

where α = e2/(4πε0�c) is the fine structure constant and dba = μba/e. Finally, the dimensionless absorbance Aν can
be written
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Aν =
z0+L∫
z0

kν dz = 2πα
n(0)d2

baL

Zint
2ω Re

+∞∫
0

dτ e−(iω+γba)τ

× λ3
T

SL

∫
d3r

∫
d3r ′ U∗

0 (�r)U0
(�r ′)e−ik(z′−z)Ka

(�r, �r ′, τ − i�β
)
K∗

b

(�r, �r ′, τ
)

(32)

This is the quantity directly obtained from the measurement by taking the logarithm of the transmitted power as a
function of the laser frequency. It is the product by 2π of the universal coupling constant α, of a spatial filling factor
ηba = n(0)d2

baL, of a thermal filling factor e−Eaβ/Zint, of a line quality factor Q = ωf (ωba) and of a normalized line
shape f (ω − ωba) such that

∫ +∞
−∞ f (ω − ωba)dν = 1. As for the integrated absorbance, it is thus simply:

A =
+∞∫

−∞
Aν dν = 2παηbaω

e−Eaβ

Zint
(33)

It is independent of the line shape and can be obtained by integration of the observed spectrum to yield the value of
the transition moment μba . We have assumed that the upper state was not populated in the absence of light in order
to simplify the expressions but it is easy to substract a term in which the labels a and b are exchanged. In the case of
degenerate magnetic sublevels an additional sum of Clebsch–Gordan coefficients squared (1/3) in association with
the square of a reduced transition moment would result from the application of Wigner–Eckart theorem [14].

3. Classical motion approach

In the classical motion limit, the thermal propagator of the off-diagonal density matrix element will be derived
below but it is naturally written by introducing a classical velocity �v for the external motion:

Ka

(�r, �r ′, τ − i�β
)
K∗

b

(�r, �r ′, τ
)

exp(−γbaτ )

= exp(−Eaβ) exp
[(

i(ωba + δ) − γba

)
τ
] 1

λ3
T

∫
d3v FM(�v)δ

(�r ′ − �r + �vτ
)

exp
[−iωba

(
v2/2c2)τ ]

(34)

where the atomic frequency ωba is corrected by the recoil shift δ = �k2/2M and by the second-order Doppler effect
and where FM(�v) is the normalized Maxwell–Boltzmann distribution of velocities:

FM(�v) = 1

(
√

πu)3
exp

(
−v2

u2

)
(35)

More generally, we shall assume an anisotropy in the velocities corresponding for example to a molecular flow or to
a difference in longitudinal and transverse temperatures

1√
πu‖

2vr

u2⊥
exp

[
−v2

z

u2‖

]
exp

[
− v2

r

u2⊥

]
(36)

3.1. Traditional treatment with space-dependent Gaussian modes [10]

With the previous propagator the power absorbed per unit length is written as:

dPabs

dz
= �ω

n(0)e−Eaβ

Zint
Ω2

bae
−2k′′(z−z0)

∫
dx dy

∫
d3v FM(�v)

× 2 Re

+∞∫
0

dτ U∗
0 (�r)U0(�r − �vτ)e[−i(ω−ωba(1−v2/2c2)−δ−kvz)−γba ]τ (37)

which coincides with the expression derived in [10].
In the paraxial approximation, the lowest-order Gaussian mode (TEM00) corresponds to [12,15]:
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U0(�r) = L(z) exp
[−L(z)

(
x2 + y2)/w2

0

]
(38)

The function L(z) is a complex Lorentzian of z describing both the Gouy phase and the wavefront curvature of
Gaussian beams:

L(z) = (1 − 2iz/b)−1 (39)

in which b is the confocal parameter (Rayleigh length). The integration over the transverse coordinates is trivial and
the resulting correlation function of τ

U (�vτ) =
∫

dx dy U∗
0 (�r)U0(�r − �vτ) = πw2

0

2(1 + ivzτ/b)
exp

[
−v2

r τ
2

2w2
0

1

1 + ivzτ/b

]
(40)

is independent of z.
The integration over the transverse velocity is also easy to perform:

+∞∫
0

dvr

2vr

u2⊥
exp

[
− v2

r

u2⊥

]
exp

[
−i

ωbav
2
r τ

2c2

]
U (�vτ) = πw2

0

2

1

1 + ivzτ/b′ + u2⊥τ 2

2w2
0

+ iωba
u2⊥
2c2 τ

(41)

with

b′ = b
/(

1 + iωba

u2⊥
2c2

τ

)
(42)

and we are left with a double integral for the absorbed power per unit length:

dPabs

dz
= �ω

n(0)e−Eaβ

Zint
Ω2

bae
−2k′′(z−z0)

πw2
0

2

× 2 Re

+∞∫
0

dτ

+∞∫
−∞

dvz

1√
πu‖

e
− v2

z

u2‖ e[−i(ω−ωba−δ−kvz+ωbav2
z /2c2)−γba ]τ

1 + ivzτ/b′ + u2⊥τ 2

2w2
0

+ iωba
u2⊥
2c2 τ

= �ω
n(0)e−Eaβ

Zint
Ω2

ba

πw2
0

2
2 Re

+∞∫
0

dτ Φ(τ)e[−i(ω−ωba−δ)−γba]τ (43)

where the function Φ(τ) is expressed in terms of the error function for complex arguments: w(z) = e−z2
erfc(−iz)

Φ(τ) =
+∞∫

−∞
dvz

1√
πu‖

e
− v2

z

u2‖
[1+iωbau2‖τ/2c2]+ikvzτ

1 + ivzτ/b′ + u2⊥τ 2

2w2
0

+ iωba
u2⊥
2c2 τ

=
√

πb′

u‖τ
eαβ2

e−βy erfc

(
α1/2β − 1

2
α−1/2y

)

=
√

πb′

u‖τ
e−y2/4αw

[
i

(
α1/2β − 1

2
α−1/2y

)]
(44)

with

α = (
1 + iωbau

2‖τ/2c2) (45)

β = b′

u‖τ

(
1 + u2⊥τ 2

2w2
0

+ iωba

u2⊥
2c2

τ

)
(46)

y = ku‖τ (47)

and neglecting the second order Doppler effect:
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Φ(τ) =
√

π b

u‖τ
e−(ku‖τ)2/4w

[
i

(
b

u‖τ

(
1 + u2⊥τ 2

2w2
0

)
− 1

2
ku‖τ

)]
(48)

If b
u‖τ � 1 the asymptotic expansion of the error function

√
πzez2

erfc(z) ∼ 1 shows that transverse transit effects
play their usual role in line broadening [12,10]. However, a new remarkable result is the compensation which occurs
between transverse and longitudinal transit effects when the medium is isotropic. Since b = kw2

0, if u⊥ = u‖ = u,
then:

Φ(τ) =
√

π b

uτ
e−(kuτ)2/4w

(
i

b

uτ

)
(49)

The Fourier transform of this function can be calculated from its expansion in uτ/b and we obtain the Doppler line
shape with a transit correction:

2
√

π

ku
e−(ω−ωba)2/(ku)2

[
1 − 1

k2b2

(
1 − 2

(ω − ωba)
2

k2u2

)]
(50)

from which we check that transit broadening is reduced to second order. The e-fold Doppler half-width is 
ωD = ku

and if transit effects are completely neglected as they should be, as we shall see in the next section, a Voigt profile is
obtained with:

Φ(τ) = e−(kuτ)2/4 (51)

However, if the gas is optically thick, we have seen that k was complex and should be written k′ − ik′′ in the
previous function. As a result, the Voigt and also the pure Doppler profiles become distorted since an asymmetry is
created by the exponential decrease of the optical field in the z-direction, which gives different accumulated Doppler
phases to molecules moving upwards or downwards on the z-axis. A shift and an asymmetry are created to first order
in k′′/k′, ratio of the optical wavelength to the optical thickness but fortunately the broadening is proportional to the
square of this ratio and hence completely negligible.

3.2. Fourier-transformed laser modes and generalized Voigt profile

The previous treatment does not give a clear picture of the reason why the transit-time broadening cancels. To
obtain this insight and establish this result in full generality, it is preferable to deal with the plane wave content of the
laser beam:

U(�r) = 1

(2π)3/2

∫
d3k α(�k) exp(i�k.�r) (52)

As in Ref. [15] the functions α(�k) may be expressed in a way which favors the z-axis as the propagation axis and
obviously satisfies the propagation equation (dispersion relation):

α(�k) = √
2π α⊥(�k⊥)δ

(
kz +

√
k2 − k2⊥

)
(53)

where k = ω/c is fixed by the frequency ω of the monochromatic field. To account for absorption along the z-axis,
we shall simply assume as before that these functions are multiplied by exp[−k′′(z − z0)].

The expression of the absorbance becomes

Aν = 2πα
n(0)d2

baL

Zint
ω

+∞∫
0

dτ e−(iω+γba)τ 1

(2π)3

λ3
T

SL

∫
d3r d3r ′ d3k d3k′ α∗(�k)α

(�k′)e−k′′(z′−z)

× exp i
(�k′.�r ′ − �k.�r)Ka

(�r, �r ′, τ − i�β
)
K∗

b

(�r, �r ′, τ
) + c.c. (54)

where S is the mode transverse surface

S =
∫

d2k⊥ α∗⊥(�k⊥)α⊥(�k⊥) (55)
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If the propagators depend only on �ρ = �r ′ − �r , we can shift to the variables �r and �ρ and use:∫
d3r exp

[
i
(�k′ − �k)

.�r] = (2π)2δ
(�k′⊥ − �k⊥

)2 sin[(kz − k′
z)L/2]

(kz − k′
z)

(56)

where L is the length of the absorption path. We can perform the integrations on �r and �k′:
1

(2π)3

∫
d3r d3r ′ d3k d3k′ α∗(�k)α

(�k′)e−k′′(z′−z) exp i
(�k′.�r ′ − �k.�r)Ka

(�r − �r ′, τ − i�β
)
K∗

b

(�r − �r ′, τ
)

= L

∫
d3k α∗⊥(�k⊥)α⊥(�k⊥)δ

(
kz +

√
k2 − k2⊥

)∫
d3ρ exp(i�k. �ρ)Ka( �ρ, τ − i�β)K∗

b ( �ρ, τ)e−k′′(z′−z) (57)

which gives for the absorbance

Aν = 2παn(0)d2
baL

1

S

∫
d3k α∗⊥(�k⊥)α⊥(�k⊥)δ

(
kz +

√
k2 − k2⊥

)
ωFab(ω, �k) + c.c. (58)

with

Fab(ω, �k) = λ3
T

Zint

+∞∫
0

dτ e−(iω+γba)τ

∫
d3ρ exp(i�k. �ρ)Ka( �ρ, τ − i�β)K∗

b ( �ρ, τ)e−k′′(z′−z) (59)

Each plane wave component of the laser beam is associated only with itself in the absorption process. This is only
true, of course, in linear absorption. As we shall see, when the medium is isotropic, Fab(ω, �k) does not depend
on the direction of �k but only on its modulus |�k|. Using the dispersion relation, we shall perform the integration

Fab(ω) = ∫
dkz δ(kz +

√
k2 − k2⊥ )Fab(ω, �k). Finally, the surface (55) will cancel and any dependence on the laser

mode content will disappear.
Using the classical expression (34) given above for the propagator

Fab(ω, �k) + c.c. = exp(−Eaβ)

Zint
2 Re

∫
d3v FM(�v)

+∞∫
0

dτ ek′′vzτ

× exp
[(−i

(
ω − ωba

(
1 − v2/2c2) − δ − �k.�v) − γba

)
τ
]

(60)

and

Aν = 4παn(0)d2
baL

e−Eaβ

Zint

1

S

∫
d2k⊥ α∗⊥(�k⊥)α⊥(�k⊥)ω Re

+∞∫
0

dτ
exp[(−i(ω − ωba − δ) − γba)τ ]

(1 + iωbaτu2‖/2c2)1/2(1 + iωbaτu2⊥/2c2)

× exp

[
− k2⊥u2⊥τ 2

4(1 + iωbaτu2⊥/2c2)
− (k2 − k2⊥)u2‖τ 2

4(1 + iωbaτu2‖/2c2)

]
(61)

With the isotropic velocity distribution (35) the k⊥-dependence disappears:

+∞∫
0

dτ
exp[(−i(ω − ωba − δ) − γba)τ ]

(1 + iωbaτu2/2c2)3/2
exp

[
− k2u2τ 2

4(1 + iωbaτu2/2c2)

]

=
∫

d3v
FM(�v)

(i(ω − ωba(1 − v2/2c2) − δ − �k.�v) + γba)
=

√
π

ku
z(ζ,u/2c) (62)

where we have introduced a generalization of the Voigt profile to include the second-order Doppler effect. The reduced
variable is

ζ = ξ + iη = [
(ω − ωba − δ) + iγba

]
/
ωD (63)

The new function z(ζ,u/2c) is the convolution of the Gaussian distribution FM( �p) and of the shifted Lorentzian. The
absorbance is
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Aν = 2παn(0)d2
baL

e−Eaβ

Zint

2ω
√

π

ku
Re z(ζ,u/2c) (64)

There is no transit broadening in this line shape, which reduces to the usual Voigt profile when the second-order
Doppler effect is neglected:

Aν = 2παn(0)d2
baL

e−Eaβ

Zint

2ω
√

π

ku
Rew(ζ ) (65)

The influence of the second-order Doppler effect is easily seen with Mathematica and shows up as an asymmetry
without significant broadening. The same conclusion results from a complex k in the case of an optically thick gas as
discussed above. These conclusions hold without any assumption on the mode structure of the optical beam. To recover
and extend the result derived in the previous section, the functions α(�k) may be expanded on the complete basis of
Hermite–Gauss functions without any loss of generality [12,15]. For the lowest-order Gaussian mode (higher-order
modes can be dealt with by keeping Hermite polynomials):

α(�k) = √
2π α⊥(�k⊥)δ

(
kz +

√
k2 − k2⊥

) =
√

2π


2
exp

(
− k2⊥

2
2

)
δ
(
kz +

√
k2 − k2⊥

)
(66)

The paraxial approximation uses the expansion:√
k2 − k2⊥ → k − k2⊥/2k (67)

and the usual structure of the Gaussian modes is easily derived by calculating the Fourier transform as in Refs. [12,15].
This calculation gives the relation between the parameter 
 and the beam waist radius: 
 = √

2/w0. The isotropy
of space is obviously broken either by this paraxial approximation or by a non-isotropic velocity distribution and the
absorbance is given by:

Aν = 2παn(0)d2
baL

e−Eaβ

Zint
2ω Re

+∞∫
0

dτ Φ(τ)e−iωτ exp
[(

i(ωba + δ) − γba

)
τ
]

(68)

where one recovers the function Φ(τ) calculated above, which is now an integral over k2⊥:

Φ(τ) = 1

π
2

1

(1 + iωbaτu2‖/2c2)1/2(1 + iωbaτu2⊥/2c2)

∫
d2k⊥ exp

(
− k2⊥


2

)

× exp

[
− k2⊥u2⊥τ 2

4(1 + iωbaτu2⊥/2c2)
− (k − k2⊥/2k)2u2‖τ 2

4(1 + iωbaτu2‖/2c2)

]
(69)

easily calculated with the same result (44). This shows that a transit broadening is artificially introduced when we
break the isotropy of space by the paraxial approximation.

4. Quantized molecular motion approach

In a fully quantized treatment of the molecular motion the propagators can be written as simple exponentials
and Gaussians in the case of Hamiltonians at most quadratic in position and momentum operators, thanks to ABCD
matrices [15,16,5,17]:

K
(�r, �r ′, t − t ′

) =
(

M

2πih̄

)3/2

|detB|−1/2 exp[iSc/h̄] (70)

where Sc is the classical action integral. In the case of free flight, these propagators are easy to calculate from the
kinetic energy operator and are functions of �ρ = �r ′ − �r only:

Kα

(�r, �r ′, τ
) = exp(−iEατ/�)

(
Mα

)3/2

exp

[(
iMα

)(�r − �r ′)2
]

(71)

2πih̄τ 2h̄τ
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with Mα = Eα/c2. The thermal propagator for the off-diagonal density matrix element is then:

λ3
T Ka( �ρ, τ − i�β)K∗

b ( �ρ, τ) = λ3
T exp(−Eaβ) exp[iωbaτ ]

(
Ma

2πih̄(τ − i�β)

)3/2(
− Mb

2πih̄τ

)3/2

× exp

[
i

2h̄

(
Ma

(τ − i�β)
− Mb

τ

)
ρ2

]
(72)

The spatial Fourier transform is

λ3
T

∫
d3ρ exp(i�k. �ρ)Ka( �ρ, τ − i�β)K∗

b ( �ρ, τ)

= exp(−Eaβ)
exp[iωbaτ ]

(1 + iωbaτu2/2c2)3/2
exp

[
− |�k|2u2τ(τ − i�β)

4(1 + iωbaτu2/2c2)

]
(73)

Here again, thanks to isotropy, Fab(ω, �k) is independent of the direction of �k and taking into account the dispersion
relation this leads to a function Fab(ω) of ω only.

This gives for the absorbance

Aν = 2παn(0)d2
baL

1

S

∫
d3k α∗⊥(�k⊥)α⊥(�k⊥)δ

(
kz +

√
k2 − k2⊥

)
ωFab(ω, �k) + c.c.

= 4παn(0)d2
baLω ReFab(ω) (74)

We recover the generalized Voigt profile by adding a decay constant γba in the propagators. The recoil shift δ =
�βk2u2/4 = �k2/2M comes out naturally as well as the second-order Doppler shift and broadening:

Fab(ω) + c.c. = exp(−Eaβ)

Zint
2 Re

+∞∫
0

dτ
exp[−i(ω − ωba)τ − γbaτ ]

(1 + iωbaτu2/2c2)3/2
exp

[
− k2u2τ(τ − i�β)

4(1 + iωbaτu2/2c2)

]
(75)

If we use other choices for the propagator, e.g. the expression corresponding to harmonic traps [15,17], we find
the usual MLD narrowing in a trap. With this theoretical approach the diagram of Fig. 1 is really treated as an
interferometer, in which atom waves propagate and interfere.

4.1. Classical limit of the propagator and connection with Van Hove’s self-diffusion function

In the limit h → 0 the thermal density matrix propagator

λ3
T Ka( �ρ, τ − i�β)K∗

b ( �ρ, τ) exp(−γbaτ )

= λ3
T exp(−Eaβ) exp

[−i(ωba − iγba)τ
]( Ma

2πih̄(τ − i�β)

)3/2(
− Mb

2πih̄τ

)3/2

× exp

[
i

2h̄

(
Ma

(τ − i�β)
− Mb

τ

)
ρ2

]
(76)

goes to

exp(−Eaβ) exp
[(

i(ωba + δ) − γba

)
τ
] ∫

d3v FM(�v)δ( �ρ + �vτ) exp
[−iωba

(
v2/2c2)τ ]

(77)

As expected for a quantum correction, the recoil shift does not come out naturally in this approximation. We have
maintained it artificially on the basis of the equation satisfied by the density matrix elements derived in [10]. Another
way to obtain a classical propagator and still to retrieve this shift is described now.

First let us make the link with the Van Hove self-correlation function Gs [21]. We introduce the propagator K( �ρ, τ)

for a particle with a single mass M such that

Ka( �ρ, τ − i�β)K∗
b ( �ρ, τ) exp(−γbaτ ) = exp(−Eaβ) exp

[(
i(ωba + δ) − γba

)
τ
]

exp
[−iωbaρ

2/
(
2�c2τ

)]
× K( �ρ, τ − i�β)K∗( �ρ, τ) (78)
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or

Kα( �ρ, τ) = exp[−iEατ/�] exp
[
i(
Eα)ρ2/

(
2�c2τ

)]
K( �ρ, τ) (79)

We have factorized all complex phase factors including the relativistic correction corresponding to the mass change

Eα/c2. Then, using our exact quantum propagator, one finds that Van Hove self-correlation function Gs is given by:

Gs( �ρ, τ) = λ3
T K( �ρ, τ − i�β)K∗( �ρ, τ) = 1

(2π)3/2R3(τ )
exp

[
− ρ2

2R2(τ )

]
(80)

with
√

2R(τ) = u
(
τ 2 − i�βτ

)1/2 (81)

Because of its complex character the function Gs( �ρ, τ) does not have a clear classical interpretation but as suggested
in [21] we may introduce instead the real function2:

Fs( �ρ, τ) = Gs( �ρ, τ + i�β/2) (85)

which plays the role of a classical probability of finding the particle after the time τ at the position �ρ. Eq. (59) gives:

Fab(ω, �k) + c.c. = λ3
T

Zint

+∞∫
−∞

dτ e−iωτ

∫
d3ρ exp(i�k. �ρ) exp(−Eaβ)

× exp
[(

iωbaτ − γba|τ |)] exp
[−iωbaρ

2/
(
2c2τ

)]
K( �ρ, τ − i�β)K∗( �ρ, τ)

= exp(−Eaβ)

Zint
e�β(ω−ωba)/2

+∞∫
−∞

dτ e−i(ω−ωba)τ−γba |τ |
∫

d3ρ exp(i�k. �ρ)

× exp
[−iωbaρ

2/
(
2c2τ

)]
λ3

T K( �ρ, τ − i�β/2)K∗( �ρ, τ + i�β/2)

= exp(−Eaβ)

Zint
e�β(ω−ωba)/2

+∞∫
−∞

dτ e−i(ω−ωba)τ−γba |τ |
∫

d3ρ exp(i�k. �ρ)

× exp
[−iωbaρ

2/
(
2c2τ

)]
Fs( �ρ, τ) (86)

with

Fs( �ρ, τ) = 1

(2π)3/2R3(τ )
exp

[
− ρ2

(2R2(τ ))

]
(87)

It would be natural to take

Fs( �ρ, τ) =
∫

d3v FM(�v)δ( �ρ + �vτ) (88)

2 To see that the natural complex variable is indeed θ = τ + i�β/2 , we should compare the Liouville–von Neumann and Bloch equations for the
density matrix:

ih̄
∂ρ

∂t
= [H,ρ] (82)

∂ρ

∂β
= − 1

2

{
H − 〈E〉, ρ}

(83)

Both equations can be combined as a single equation with respect to the complex time θ :

ih̄
∂ρ

∂θ
= (

H − 〈E〉)ρ (84)

and its Hermitian conjugate partner.
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However this probability has no width for τ = 0 and a finite quantum extension should be added to the classical width
corresponding to Heisenberg’s uncertainty for a particle with velocity u. From (81) and the shift τ → τ + i�β/2 we
get:

R2(τ ) = u2τ 2 + λ2
T /8π (89)

When this is done the final result has the same recoil shift as what is obtained by using the factor exp[iδτ ] in the
classical propagator.

4.2. Galatry’s profile [28]

Up to this point we have treated relaxation in a very crude manner with a simple relaxation constant of the optical
dipole. Collisions also affect the external motion of molecules. We shall first introduce this possibility in a classical ap-
proach describing the effect of collisions on the classical motion of molecules and turn later to a quantum-mechanical
treatment by collision kernels. For this we reproduce the same approach as in the previous paragraph where, this time,
the classical self-diffusion function

Fs( �ρ, τ) = 1

(2π)3/2R3(τ )
exp

[
− ρ2

(2R2(τ ))

]
(90)

is taken from the work of S. Chandrasekhar [22,26] on Brownian motion and is obtained by the Langevin equation

R2(τ ) = 2D

β ′
[
β ′τ − 1 + exp

(−β ′τ
)] + λ2

T /8π (91)

β ′ = 1

βDM
= u2

2D
(92)

where D is the self-diffusion constant of the gas. The spatial Fourier transform is:∫
d3ρ exp(i�k. �ρ) exp

[−iωbaρ
2/

(
2c2τ

)]
Fs( �ρ, τ)

= 1

(2π)3/2R3(τ )

∫
d3ρ exp(i�k. �ρ) exp

[
−

(
1

R2(τ )
+ iωba

c2τ

)
ρ2

2

]

= 1

(1 + iωbaR2/c2τ)3/2
exp

[
− |�k|2R2(τ )

2(1 + iωbaR2/c2τ)

]
(93)

Finally

Fab(ω) = exp(−Eaβ)

Zint
e�β(ω−ωba)/2

+∞∫
0

dτ
e−i(ω−ωba)τ−γba |τ |

(1 + iωbaR2/c2τ)3/2
exp

[
− k2R2(τ )

2(1 + iωbaR2/c2τ)

]
(94)

and

Aν = 4παn(0)d2
baLω ReFab(ω) (95)

If we ignore the second-order Doppler effect and reduce the recoil effect to a simple shift, we get Galatry’s profile:

Fab(ω) + c.c. = exp(−Eaβ)

Zint
2 Re

+∞∫
0

dτ e−i(ω−ωba)τ−γbaτ exp

{
−k2u2

2β ′2

[
β ′τ − 1 + exp

(−β ′τ
)]}

= exp(−Eaβ)

Zint

2

ku
Re

1

y(ξ)
1F1

[
1,1 + y/a; 1

2a2

]
(96)

where 1F1 is Kummer confluent hypergeometric function and

a = β ′
; y(ξ) = 1 + η − iξ (97)

ωD 2a
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This profile evolves from the Voigt profile in the low pressure range to a Lorentzian shape in the high pressure limit
with a substantial reduction of the Doppler width. It is expected to be a faithful description of the lineshape only in
the limit of soft collisions with a light perturber.

5. Introduction of collision kernels in the density matrix equations

To introduce relaxation by external perturbers in a quantum mechanical way it is necessary to take a trace over the
external reservoir and hence to give up the description of our two-level system by wave functions and to use instead a
reduced density matrix formalism.

Density matrix equations which include momentum-changing collisions can be derived rigorously from the knowl-
edge of individual collision events [18,19]. It is easier to deal with these collisions in the momentum representation.
Thus, using Eq. (4), let us first rewrite the expression for the absorbance in this representation:

Aν = 2παn(0)d2
baL

e−Eaβ

Zint
2ω Re

+∞∫
0

dτ e−(iω+γba)τ

∫
d3k d3k′ α∗(�k)α

(�k′)

×
∫

d3p0 d3p Ka( �p0 → �p, τ)K∗
b

( �p0 + ��k′ → �p + ��k, τ
)
FM( �p0) (98)

where FM( �p0) is the Maxwell–Boltzmann distribution of momenta corresponding to FM(�v). As stated above, the
propagator KaK

∗
b of the off-diagonal density matrix element needs to be averaged over collisions with perturbers P

and we replace it by a Green function G′
ab( �p0 → �p, �p0 + ��k′ → �p + ��k, τ ) such that:

G′
ab

( �p0 → �p, �p0 + ��k′ → �p + ��k, τ
) = 〈

Ka( �p0 → �p, τ)K∗
b

( �p0 + ��k′ → �p + ��k, τ
)〉

P
θ(τ ) (99)

(the Heaviside step function θ(τ ) transforms a propagator into a Green function)

G′
ab

( �p0 → �p, �p0 + ��k′ → �p + ��k, τ
) = Gab( �p0 → �p, �k, τ )δ

(�k′ − �k)
(100)

The distribution δ(�k′ − �k) has been introduced to reflect the fact that collisions do not create any additional spatial
modulation since they act uniformly and isotropically. The new Green function Gab satisfies the integro-differential
equation (the relaxation factor exp(−γabτ ) is now included in this function):

∂Gab( �p0 → �p, �k, τ )

∂τ
+ (

iωab

(
1 − p2/2M2c2) − i�k. �p/M − iδ + γab

)
Gab( �p0 → �p, �k, τ )

= δ( �p − �p0)δ(τ ) +
∫

d3p′ Wab

( �p′ → �p)
Gab

( �p0 → �p′, �k, τ
)

(101)

where Wab( �p′ → �p) is the collision kernel describing the probability for a momentum change from �p′ to �p. Finally

Aν = 2παn(0)d2
ba

L

S

e−Eaβ

Zint
ω

+∞∫
−∞

dτ e−iωτ

∫
d3k α∗(�k)α(�k)

∫
d3p0 d3p Gab( �p0 → �p, �k, τ )FM( �p0) + c.c.

= 2παn(0)d2
ba

L

S
2ω

∫
d3k α∗(�k)α(�k)ReFab(ω, �k) (102)

with

Fab(ω, �k) = e−Eaβ

Zint

∫
d3p0 d3p Gab( �p0 → �p, �k,ω)F ( �p0) = e−Eaβ

Zint

∫
d3p fab( �p, �k,ω) (103)

where we have introduced the Fourier transforms:

Gab( �p0 → �p, �k,ω) =
+∞∫

−∞
dτ e−iωτ Gab( �p0 → �p, �k, τ ) (104)

fab( �p, �k,ω) =
∫

d3p0 Gab( �p0 → �p, �k,ω)FM( �p0) (105)
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which satisfy respectively

(
iω − iωba

(
1 − p2/2M2c2) − i�k. �p/M − iδ + γab

)
Gab( �p0 → �p, �k,ω)

= δ( �p − �p0) +
∫

d3p′ Wab

( �p′ → �p)
Gab

( �p0 → �p′, �k,ω
)

(106)

and

(
iω − iωba

(
1 − p2/2M2c2) − i�k. �p/M − iδ + γab

)
fab( �p, �k,ω)

= FM( �p) +
∫

d3p′Wab

( �p′ → �p)
fab

( �p′, �k,ω
)

(107)

Generally this last equation will be solved numerically from a numerical calculation of the collision kernels [29,
30,23,25]. There is, however, a simple case where it can be solved analytically. This is the model of Nelkin and
Ghatak [20] in which each collision is assumed to be strong enough to redistribute the momenta according to the
Maxwell–Boltzmann distribution:

Wab

( �p′ → �p) = αFM( �p) (108)

where α is an adjustable collision frequency. Hence:

fab( �p, �k,ω) = FM( �p)(1 + α
∫

d3p′ fab( �p′, �k,ω))

(iω − iωba(1 − p2/2M2c2) − i�k. �p/M − iδ + γab)
(109)

and by integration over �p:∫
d3p fab( �p, �k,ω)

=
(

1 + α

∫
d3p fab( �p, �k,ω)

)∫
d3p

FM( �p)

(iω − iωba(1 − p2/2M2c2) − i�k. �p/M − iδ + γab)

=
√

π

ku

(
1 + α

∫
d3p fab( �p, �k,ω)

)
z(ζ,u/2c) (110)

we obtain the generalized Nelkin–Ghatak profile:

2 ReFab(ω, �k) = e−Eaβ

Zint
2 Re

∫
d3p fab( �p, �k,ω) = 2

√
π

ku

e−Eaβ

Zint
Re

z(ζ,u/2c)

1 − α(
√

π/ku)z(ζ,u/2c)
(111)

As we have seen before, in the case of an isotropic medium, Fab(ω, �k) does not depend on the direction of �k but
only on its modulus, so that the dispersion relation between this modulus and k = ω/c gives a function Fab(ω) of ω

only. As before S = ∫
d2k⊥ α∗⊥(�k⊥)α⊥(�k⊥) is the transverse beam surface and the absorbance

Aν = 4παn(0)d2
baLω ReFab(ω) (112)

is independent of the mode content of the light beam and hence has no additional transit time broadening.
Using this quantized approach, one can also retrieve Galatry’s profile. For this purpose, the Boltzmann equation is

approximated by a Fokker–Planck equation obtained by an expansion of the collision kernel [27]. This Fokker–Planck
equation is then solved [31] and yields Galatry’s profile derived above classically.

As it is well known both Nelkin–Ghatak and Galatry’s profiles are very similar and both lead to MLD narrowing.
They differ by the significance and knowledge of the parameters β ′ and α. More work has to be done to compare
these models to purely numerical calculations treating the collisions more rigorously and above all to experiments in
the critical regime where the collisional width and the Doppler width are comparable.
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6. Conclusion

We have demonstrated an important property concerning the absorption profile of a low-pressure gas: the absence
of any additional transit broadening independently of the optical quality of the laser beam wavefronts and effective
diameters if the medium is homogeneous and isotropic without nearby walls or potentials susceptible to interfere with
the absorption process. We have generalized the usual Voigt, Galatry and Nelkin–Ghatak profiles to include both the
recoil shift and the second-order Doppler shift. If this turns out to be necessary, we know how to calculate rigorously
the collision kernels from the intermolecular potentials and from there the absorption profile in the low-pressure
regime. This has been done with some success in saturation spectroscopy [24,29,30,23,25]. However, thanks to the
line shape independence from the geometry of the laser beams, the very low pressure limit appears favorable to the
determination of the Boltzmann constant and one should not need to calculate very accurately the corrections coming
from collision physics including the MLD narrowing.
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