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This is an overview of the main physical ideas for application of field effect transistors
for generation and detection of Terahertz radiation. Resonant frequencies of the two-
dimensional plasma oscillations in FETs increase with the reduction of the channel
dimensions and reach the THz range for sub-micron gate lengths. When the mobility is
high enough, the dynamics of a short channel FET at THz frequencies is dominated by
plasma waves. This may result, on the one hand, in a spontaneous generation of plasma
waves by a dc current and on the other hand, in a resonant response to the incoming
radiation. In the opposite case, when plasma oscillations are overdamped, the FET can
operate as an efficient broadband THz detector.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons les bases physiques de l’émission et de la détection de rayonnement
térahertz par des transistors à effet de champ (FET). Les fréquences de résonance des
oscillations de type plasma à deux dimensions dans les transistors FET augmentent quand
les dimensions du canal du transistor sont diminuées, et ainsi elles atteignent le domaine
térahertz pour des longueurs de grille sub-microniques. Quand la mobilité des porteurs est
suffisamment grande, la dynamique d’un transistor FET à canal court est dominée par les
ondes de plasma. Cela peut conduire d’une part à l’émission spontanée d’onde de plasma
en alimentant le transistor par un courant continu, et d’autre part à une réponse résonante
à un rayonnement incident. Dans le cas opposé, quand les oscillations de plasma sont
sur-atténuées, le transistor peut fonctionner comme un détecteur efficace et large bande
d’ondes THz.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The channel of a field effect transistor (FET) can act as a resonator for plasma waves with a typical wave velocity of
108 cm/s. The plasma frequency of this resonator depends on its dimensions and for gate lengths of a micron and sub-
micron size can reach the Terahertz (THz) range. The interest in the THz applications of FETs was initiated at the beginning
of 1990s by the theoretical work of Dyakonov and Shur [1] who predicted that a steady current flow in an asymmetric FET
channel can lead to instability against spontaneous generation of plasma waves. This will, in turn, produce the emission of
electromagnetic radiation at the plasma wave frequency. Later, it was shown [2] that the nonlinear properties of the 2D
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plasma in the transistor channel can be used for detection and mixing of THz radiation. The resonant case of high electron
mobility, when plasma oscillation modes are excited in the channel, and the non-resonant case of low mobility, where
plasma oscillations are over-damped, were analysed.

Both THz emission [3–6] and detection, resonant [7–9] and non-resonant [10,11], were observed experimentally at cryo-
genic as well as at room temperatures, clearly demonstrating effects related to the excitation of plasma waves. At the
moment, the most promising application appears to be the broadband THz detection and imaging in the overdamped regime,
where plasma waves are non-existent. However, THz emission and resonant detection by excitation of plasma waves are also
quite interesting phenomena that deserve further exploration.

2. Plasma waves in low-dimensional structures

Plasma waves are oscillations of the electron density. Generally, they can be obtained from the continuity equation:

∂ρ

∂t
+ div j = 0 (1)

where ρ is the charge density and j is the current density, related to the local electric field E by Ohm’s law

j = σ E (2)

σ is the conductivity. These equations must be complemented by the relation between the electric field and the charge
density. In three dimensions, this relation obviously is div E = 4πρ

ε , where ε is the background dielectric constant (we use
Gaussian units everywhere). In two- and one-dimensional structures, while this equation obviously remains true, it does
not help because the field entering equation (2) is not the total electric field, but rather its component that can drive the
current, e.g. for a two-dimensional electrons it is the part of electric field that lies in the 2D plane. (The div j term in Eq. (1)
should be also understood as divergence in two dimensions.)

It should be taken into account that plasma waves exist in the high-frequency limit ωτ > 1, where ω is the frequency,
and τ is the momentum relaxation time, which is also the damping time for plasma waves. Accordingly, if damping is
completely ignored, we should use the high frequency limit for the complex conductivity: σ(ω) = i ne2

mω , where n is the
electron concentration, e and m are the electron charge and effective mass respectively. This formula can be derived by
writing the Drude equation for the mean electron velocity as ∂ v

∂t = e
m E and neglecting the “friction” term v

t . Equivalently,
one can use the following equation for the current density j = env:

∂ j

∂t
= ne2

m
E (3)

Combining Eqs. (1) and (3), we obtain:

∂2ρ

∂t2
+ ne2

m
div E = 0 (4)

The electric field E should be expressed through the charge density ρ , and this is where lies the difference between the 3D
case and various low-dimensional structures (gated or ungated 2D electrons, wires, etc.).

2.1. Bulk plasma waves

For this case, we have simply div E = 4πρ
ε , and Eq. (4) describes a harmonic oscillator with a proper frequency

ωp =
√

4πne2

mε
(5)

which is the famous formula for the plasma frequency in three-dimensions (Langmuir waves).

2.2. Two-dimensional electron gas

We must express the electric field in the plane through the 2D charge density. This relation is given by an integral
describing the Coulomb law. It is significantly simplified if one introduces the Fourier transforms for the charge density
and the electric field, ρk and Ek . Then it can be found that Ek = −2π i ρk

ε
k
k , (div E)k = 2πk ρk

ε , and the Fourier transformed
Eq. (5) becomes:

∂2ρk

∂t2
+ 2πne2k

mε
ρk = 0 (6)

Thus, for a given wavevector k, the plasma wave frequency is given by the square root law:

ω(k) =
√

2πne2k

mε
(7)
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where now n is the 2D electron concentration. Interestingly, a similar dispersion law ω ∼ k1/2 describes surface waves in
deep water (when the depth is much greater than the wavelength).

2.3. Gated 2D electron gas

This is the case of an FET, which is the main object of our interest here. The relation between the charge density and
the electric field in the channel is readily obtained from the plane capacitor formula:

ρ = en = C U (8)

where C is the gate-to-channel capacitance per unit area, and U is the so-called gate voltage swing (U = V g − V th , where
V g is the gate voltage, and V th is the threshold voltage at which the channel becomes completely depleted). From Eq. (8)
we obtain:

E = −∇U = − 1

C
∇ρ (9)

Note, that in contrast to the 3D case, where ∂ Ex/∂x ∼ ρ , for gated 2D electrons we have Ex ∼ ∂ρ/∂x! It is important
to understand that Eqs. (8), (9) hold not only when U is a constant, but also when the scale of the spatial variation of
U is large compared to the gate-to-channel separation (the graduate channel approximation). Eq. (4) now gives a linear
dispersion relation for plasma waves:

ω(k) = sk (10)

The plasma wave velocity s is given by:

s =
√

ne2

mC
=

√
eU0

m
(11)

where U0 the dc part of the gate voltage swing related to the electron concentration n by Eq. (8).
It was shown in Ref. [1] that the nonlinear hydrodynamic equations describing the electrons in the channel of a FET

are exactly the same as the shallow water equations in conventional hydrodynamics (the term “shallow water” refers to
a situation when the wavelength, or more generally, the spatial scale of variation of the water level is much greater than
the depth h). The only modification is that for the case of a FET one should replace gh (g is the free-fall acceleration) by
eU/m. Thus plasma waves in the FET channel are analogous to shallow water waves, whose velocity is (gh)1/2, compare to
Eq. (11).

It should be reminded that the considerations in this subsection are based on Eq. (8), which is valid when the wavelength
is much greater than the gate-to-channel separation d, i.e. kd � 1. In the opposite case of short wavelengths (kd � 1), the
existence of the gate is of no importance, and plasma waves are described by Eq. (7), similar to the “deep water” case.

Historically, plasma waves in two-dimensional structures were considered theoretically in Refs. [12–15], and the first
experimental observations were reported in Refs. [16] and [17].

2.4. Plasma waves in wires

The dispersion law for plasma waves is very similar to the previous case. The Fourier transforms of the electrostatic
potential φ and the linear charge density ρ are related by:

ϕk = ρk

ε
ln

(
1

kr

)
(12)

The wavelength is supposed to be large compared to the wire radius r (kr � 1). Using this relation, and calculating (div E)k
as above, one easily obtains from Eq. (4) a nearly linear dispersion law:

ω(k) = sk ln(1/kr), s =
√

ne2

mε
(13)

where for this case n is the 1D concentration and ε is the dielectric constant of the surrounding medium.

3. Instability of the steady state with a dc current in FET

This instability was predicted in Ref. [1]. The conditions for instability are:

a) The plasma wave damping is small, ωτ > 1, where ω is the plasma oscillation frequency of the order of s/L, L is the
channel length, and τ is the momentum relaxation time defining the electron mobility.
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Fig. 1. The dimensionless instability increment g = γ L/s as a function of v/s, Eq. (15).

b) The boundary conditions at the source and the drain are asymmetric. An extreme case of such asymmetry, considered
in Ref. [1], consists in the open circuit condition at the source and the short circuit condition at the drain.

c) The steady state electron drift velocity v must exceed a threshold value depending on the damping time τ . For ωτ � 1,
the threshold value of the drift velocity is much smaller than the plasma wave velocity s.

The physical origin of this instability is related to the difference in velocities of plasma waves propagating upstream
(s − v) and downstream (s + v). Because of this difference, the reflection coefficients at the boundaries may be greater
than 1. It can be shown that for the boundary conditions mentioned above the net amplification due to plasma wave
reflections during a round trip is equal to s+v

s−v . The time t0 needed to make a round trip is obviously

t0 = L

s − v
+ L

s + v
(14)

For t � t0, the number of round trips can be estimated as t/t0, and the total increase of the plasma wave amplitude during
time t can be written as ( s+v

s−v )t/to . We can now rewrite this expression as exp(γ t), where the instability increment γ is
given by the formula:

γ = s

2L

(
1 − v2

s2

)
ln

(
s + v

s − v

)
(15)

This is the result obtained in Ref. [1] by the standard method of studying what happens to small perturbations of the
steady state with a given drift velocity v . The dependence of the increment γ on the ratio v/s is presented in Fig. 1. For
low drift velocities, v � s, Eq. (15) reduces to γ = v/L. In the absence of damping, the steady state is unstable for arbitrary
small values of the drift velocity v , however if damping is taken into account, the instability occurs when γ > 1/τ and this
condition defines the threshold value of the drift velocity. If τ is small enough, the steady state is stable.

The instability of the current-carrying steady state results in generation of plasma waves at the resonator modes. Es-
sentially, the device operates like a laser, with an interesting difference: contrary to what happens in a laser, the gain is
due to amplification during reflections from the “mirrors”, while the losses occur during the propagation of the plasma wave
between the mirrors.

The instability results in strong stationary nonlinear plasma oscillations in the channel. This was demonstrated in
Ref. [18] by a numerical solution of the nonlinearized “shallow water” equations. It was also shown that a similar instability
may exist in an ungated two-dimensional electron gas [19].
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Fig. 2. Schematics of a FET as a THz detector (above) and the equivalent circuit (below).

The experimental results on THz emission from FETs in Refs. [3–6] and other work cannot be directly compared with
the theory [1] because the experimental geometry is very different from the one-dimensional model adopted in [1]. In the
standard experimental situation, the width W of the gate is much larger than the gate length L, typically W /L ∼ 100. Under
such conditions, the one-dimensional model, where the plasma density and velocity depend on the coordinate x only, is not
appropriate, since obviously oblique plasma waves with a non-zero component of the wave vector in the y-direction can
propagate. In such geometry, the gated region is not a resonator, but rather a waveguide with a continuous spectrum of
plasma waves.

In Ref. [20], the analysis of stability was extended to the more realistic case when W � L, and it was shown that,
somewhat unexpectedly, in such a geometry an additional new mode of instability dominates, which is localized near the
gate boundaries. Moreover, a similar instability should exist near a single boundary of current-carrying two-dimensional
plasma.

Certainly, the linear theory cannot predict the outcome of this instability. However, since the spectrum of plasma waves
is continuous, it seems likely that the instability will result in a turbulent motion of the electron fluid near the boundary of
the gated region. The spectrum of the plasma oscillations should be broad, as it is observed in experiments. This is similar
to what one can see in a river, when the water flows with sufficient velocity across an abrupt step in the waterbed: waves
with wave vectors perpendicular to the flow are excited, while the wave vectors in the direction of the flow are purely
imaginary, which accounts for the localization of the turbulent region near the step. It would be interesting to verify these
predictions in specially designed experiments.

4. Detection of THz radiation by FET

The idea of using a FET for detection of THz radiation was put forward in Ref. [2]. The possibility of the detection is due
to nonlinear properties of the transistor, which lead to the rectification of an ac current induced by the incoming radiation.
As a result, a photoresponse appears in the form of dc voltage between source and drain which is proportional to the
radiation power (photovoltaic effect).

Obviously, some asymmetry between the source and drain is needed to induce such a voltage. There may be various
reasons of such an asymmetry. One of them is the difference in the source and drain boundary conditions due to some
external (parasitic) capacitances. Another one is the asymmetry in feeding the incoming radiation, which can be achieved
either by using a special antenna, or by an asymmetric design of the source and drain contact pads. Thus the radiation may
predominantly create an ac voltage between the source and the gate (or between the drain and the gate) pair of contacts.
Finally, the asymmetry can naturally arise if a dc current is passed between source and drain, creating a depletion of the
electron density on the drain side of the channel.

In most of the experiments carried out so far, the THz radiation was applied to the transistor channel, together with
contact pads and bonding wires. In such a case, it is obviously difficult to define how exactly the radiation is coupled to
the transistor. Theoretically, we will consider the case of an extreme asymmetry, where the incoming radiation creates an
ac voltage with amplitude Ua only between the source and the gate, see Fig. 2. We will also assume that there is no dc
current between the source and drain.

Generally, the FET may be described by an equivalent circuit presented in Fig. 2. The obvious elements are the dis-
tributed gate-to-channel capacitance and the channel resistance, which depends on the gate voltage through the electron
concentration in the channel, according to Eq. (8).

As mentioned above, this equation is valid locally, so long as the scale of the spatial variation of U (x) is larger than the
gate-to-channel separation d (the gradual channel approximation). Under static conditions and in the absence of the drain
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Fig. 3. Dependence of the ac voltage U1/Ua at ωt = 2πn and of the dc photoinduced voltage U2/�U on the distance from the source x for a long gate.

current, U = Uo = V g − V th , where Uo is the static voltage swing. The inductances in Fig. 1 represent the so-called kinetic
inductances, which are due to the electron inertia and are proportional to m, the electron effective mass. Depending on the
frequency ω, one can distinguish two regimes of operation, and each of them can be further divided into two sub-regimes
depending on the gate length L.

1. High frequency regime occurs when ωτ > 1, where τ is the electron momentum relaxation time, determining the conduc-
tivity in the channel σ = ne2τ

m . In this case, the kinetic inductances in Fig. 2 are of primordial importance, and the plasma

waves analogous to the waves in an RLC transmission line, will be excited. The plasma waves have a velocity s =
√

eUo
m and

a damping time τ . Thus their propagation distance is sτ .

1a. Short gate, L < sτ . The plasma wave reaches the drain side of the channel, gets reflected, and forms a standing wave
with enhanced amplitude, so that the channel serves as a high-quality resonator for plasma oscillations. The fundamental
mode has the frequency ∼ s/L, with a numerical coefficient depending on the boundary conditions.

1b. Long gate, L � sτ . The plasma waves excited at the source will decay before reaching the drain, so that the ac current
will exist only in a small part of the channel adjacent to the source.

2. Low frequency regime, ωτ � 1. Now, the plasma waves cannot exist because of overdamping. At these low frequencies,
the inductance in Fig. 1 becomes simply short-circuits which leads to an RC line. Its properties further depend on the gate
length, the relevant parameter being ωτRC, where τRC is the RC time constant of the whole transistor. Since the total channel
resistance is Lρ/W , and the total capacitance is CWL (where W is the gate width and ρ = 1/σ is the channel resistivity),
one finds τRC = L2ρC .

2a. Short gate, L < (ρCω)1/2. This means that ωτRC < 1, so that the ac current goes through the gate-to-channel capacitance
practically uniformly on the whole length of the gate. This is the so-called “resistive mixer” regime. For the THz frequencies
this regime can apply only for transistors with extremely short gates smaller than 70 nm at 1 THz in silicon.

2b. Long gate, L � (ρCω)1/2. Now ωτRC � 1, and the induced ac current will leak to the gate at a small distance l from the
source, such that the resistance R(l) and the capacitance C(l) of this piece of the transistor channel satisfy the condition
ωτRC(l) = 1, where τRC(l) = R(l)C(l) = l2ρC . This condition gives the value of the “leakage length” l on the order of (ρCω)1/2

(which can also be rewritten as s(τ/ω)1/2). If l � L, then neither ac voltage, nor ac current will exist in the channel at
distances beyond l from the source, see Fig. 3.

Thus, the characteristic length where the ac current exists is sτ for ωτ > 1, and s(τ/ω)1/2 for ωτ < 1 [2]. Let us now
present some quantitative examples for the different cases presented above. For τ = 30 fs (μ = 300 cm2/V/s in Si MOSFET)
and s = 108 cm/s the regime 1 will be realized for the radiation frequencies f greater then 5 THz; the regime 1a for
L < 30 nm. For f = 0.5 THz (regime 2), one finds the characteristic gate length distinguishing regimes 2a and 2b to be
around 0.1 μm. If the conditions of the case 1a are satisfied, the photoresponse will be resonant, corresponding to the
excitation of discrete plasma oscillation modes in the channel. Otherwise, the FET will operate as a broad-band detector.

For a long gate, there is no qualitative difference between the low-frequency regime (ωτ � 1), when plasma waves
do not exist (the case 2b) and the high frequency regime (ωτ � 1), where plasma oscillations are excited (the case 1b).
There is however some quantitative differences, see Eq. (16) below. Anyway, in the high frequency regime plasma waves
are excited and their existence in the case 1b has been clearly confirmed by the recent detection experiments in magnetic
field [21]. Plasma waves cannot propagate below the cyclotron frequency. Therefore, in experiments with a fixed radiation
frequency the photoresponse is strongly reduced when the magnetic field goes through the cyclotron resonance [22]. This
is probably the most spectacular manifestation of the importance of plasma waves in THz detection by FETs.
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4.1. Mechanism of the nonlinearity

The most important mechanism is the modulation of the electron concentration in the channel, and hence of the channel
resistance, by the local ac gate-to-channel voltage, as described by Eq. (8). Because of this, in the expression for the electric
current j = env , both the concentration n, and the drift velocity v , will be modulated at the radiation frequency. As a
result, a dc current will appear: jdc = e〈n1(t)v1(t)〉, where n1(t) and v1(t) are the modulated components of n and v , and
the angular brackets denote averaging over the oscillation period 2π/ω. Under open circuit conditions a compensating dc
electric field will arise, resulting in the photoinduced source-drain voltage �U .

4.2. Simplified theory

So far, the most important case is that of a long gate (the regimes 1b and 2b) when, independently of the value of the
parameter ωτ , the ac current excited by the incoming radiation at the source cannot reach the drain side of the channel.
For this case within the hydrodynamic approach the following result for the photoinduced voltage was derived [2]:

�U = U 2
a

4U0

(
1 + 2ωτ√

1 + (ωτ)2

)
(16)

As seen from this formula, the photoresponse changes only by a factor of 3, as the parameter ωτ increases from low to
high values, even though the physics becomes different: at ωτ > 1 plasma waves are excited, while at ωτ < 1 they are not.
The basic equations may be written as [1,2]:

∂U

∂t
+ ∂

∂x
(U v) = 0 (17)

∂v

∂t
= − e

m

∂U

∂x
− v

τ
(18)

Here Eq. (17) is the continuity equation, in which the concentration n is replaced by U using Eq. (8), while Eq. (18) is the
Drude equation for the drift velocity v [23]. The boundary condition for gate-to-channel voltage at the source side of the
channel (x = 0) is: U (0, t) = U0 + Ua cos(ωt). For a long gate, the boundary condition at the drain is v(∞) = 0. The inertial
term ∂v/∂t is accounted for by the kinetic inductances in Fig. 2. Here, we will consider only the simple case ωτ < 1, when
the inertial term can be neglected. Then v = −μ∂U/∂x, and

∂U

∂t
= μ

∂

∂x

(
U

∂U

∂x

)
(19)

where μ = eτ/m is the electron mobility. We search the solution of the nonlinear equation (19) as an expansion in powers
of Ua: U = U0 +U1 +U2, U1 is the ac voltage, proportional to Ua , and U2 is the time-independent contribution proportional
to U 2

a (the photovoltage). In the first order in Ua we obtain the diffusion equation for U1 [24]:

∂U1

∂t
= s2τ

∂2U1

∂x2
(20)

with the boundary conditions U1(0, t) = Ua cos(ωt), U1(∞, t) = 0. The solution of this equation is

U1(x, t) = Ua exp(−x/l) cos(ωt − x/l) (21)

where the characteristic length l for the decay of the ac voltage (and current) away from the source is given by:

l = s(2τ/ω)1/2 (22)

This length defines the size of the part of the transistor adjacent to the source, whose resistance and the capacitance are
such that ωτRC(l) ∼ 1, as explained above.

In the second order in Ua , Eq. (5) yields:

U0
∂U2

∂x
+

〈
U1

∂U1

∂x

〉
= 0 (23)

which means simply the absence of the dc current. Integrating this equation, one obtains:

U2(x) = 1

2U0

[〈
U 2

1(0, t)
〉 − 〈

U 2
1(x, t)

〉]
(24)

where the time averaged quantity 〈U 2
1(x, t)〉 = (1/2)U 2

a exp(−2x/l) is found from Eq. (21). Thus, the photovoltage �U =
U2(∞) coincides with Eq. (16), provided that ωτ � 1. Fig. 3 shows the ac voltage U1 and the build-up of the dc voltage U2
as functions of the distance from the source.
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The maximal photovoltage is achieved at U0 ≈ 0, where the relative ac modulation of the electron concentration in
the channel is the strongest (note that Eq. (8) is not valid in the near vicinity of U0 = 0). A theoretical study of the
photoresponse in this region is presented in Ref. [25].

It is instructive to compare the FET detector with the well-known Schottky diode detector. In both devices the detection
process is based on a rectification of the incident THz field by a nonlinear element. However, there are some important
differences. The nonlinearity in the Schottky diode is due to the nonlinear I–V characteristic of the potential barrier between
the metal and the semiconductor. The physical origin of the nonlinearity in the case of the FET transistor is very different.
As discussed above, it is due to the fact that the incident THz radiation modulates both the carrier drift velocity and the
carrier density. The static I–V dependence has no direct relevance to the detection properties of the FET.
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