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A salient characteristic of nuclear magnetic resonance (NMR) techniques is the possibility
to scan nuclear spin evolutions within a broad Larmor frequency range. Special instru-
mentation was developed to extend nuclear spin relaxation studies up to proton Larmor
frequencies in the sub-kilohertz regime, a technique known as field-cycling NMR relax-
ometry. This article refers to an experimental version where the sample under study is
selectively subjected to ultrasonic irradiation. The fact that ultrasound couples selectively
to the collective dynamics of liquid crystals, offers new insights for the study of the molec-
ular dynamics in these materials using NMR relaxation.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Une caractéristique des techniques de Résonance Magnétique Nucléaire (RMN) est la pos-
sibilité de suivre l’évolution des spins nucléaires dans une large gamme de fréquence de
Larmor. On a développé une instrumentation apte à étendre les études de la relaxation
des spins nucléaires jusqu’à des fréquences de Larmor inférieures à 1 kilohertz. Cette tech-
nique est la relaxométrie RMN à cycle de champ. Le présent article concerne une version
expérimentale dans laquelle l’échantillon étudié est simultanément irradié par des ultra-
sons. Comme les ultrasons se couplent sélectivement à la dynamique collective des cristaux
liquides, cette méthode ouvre des perspectives nouvelles pour l’étude de la dynamique mo-
léculaire par relaxation RMN dans ces matériaux.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Field-cycling nuclear magnetic resonance (NMR) relaxometry showed to be a useful experimental tool for the study of
nuclear spin-lattice relaxation. The time-dependent magnetic field NMR technique becomes particularly interesting within
the lowest Larmor frequency limit, where other conventional NMR experiments present severe signal-to-noise ratio degra-
dation. Sophisticated instrumentation has been developed during the last 30 years [1–4]. The technique was successfully
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applied for the study of the molecular dynamics in polymers and liquid crystals (LCs) [5], confined LCs [6], biological mem-
branes [7,8], in the development of contrast agents for magnetic resonance imaging [9,10] and the study of biomolecules
containing paramagnetic centers [11].

In this article we briefly discuss fast-field-cycling (FFC) features related to its application to the study of the molecular
dynamics in nematic and smectic A liquid crystals, while getting down to the particular case where the spin-lattice relax-
ation is measured under the simultaneous action of an acoustic ultrasonic field. At first, it would be convenient to address
two elemental questions: why FFC experiments in liquid crystals? and, why study NMR relaxation under sonication? In the
following, we try to answer these two questions.

Several important differences between a liquid crystalline material and the rest of possible states of the matter are related
to the presence of orientational order. This is a natural consequence associated to the fact that liquid crystal molecules show
a prominent geometric anisotropy. At both thermotropic and lyotropic mesophases, the orientational order fluctuates. Then
we refer to order director fluctuations (ODF), a dynamical process that quenches in the solid state and becomes averaged-out
in the liquid.

Relaxation features due to ODF were first theoretically worked out for the nematic phase by Pincus [12]. He predicted
a characteristic ν1/2 Larmor frequency dependence for the spin-lattice relaxation time T1. Several attempts were reported
early after his paper claiming the finding of this frequency dependence by using standard NMR instruments within the MHz
frequency range. It was not until 1975 when Wölfel et al. [13], using the FFC method, clearly showed for the first time
that Pincus prediction was correct. The ODF mechanism was predominantly manifested within the kHz frequency range,
absolutely inaccessible by conventional methods (including rotating frame relaxation, see Ref. [14]). Then FFC relaxometry
was later successfully applied to the study of many different bulk and confined liquid crystalline compounds. Today the
technique is considered a powerful NMR tool for the study of molecular dynamics in LCs, polymers and confined systems,
mainly because the noticeable T1 relaxation dispersion shown by these materials, the strong differences showed-up by the
corresponding dispersions in different mesophases, and the remarkable sensitivity to spatial confinement.

When ultrasound is applied to a thermotropic specimen, it has a clear effect on the director orientation (in complete
analogy to the orientational effects produced by magnetic and electric fields). Some time ago we raised the question of
which other effects may be induced by an acoustic field. We learnt that ultrasound mainly couples to the collective dy-
namics, that is, to ODF. This coupling originates in the influence that the thermal gradients generated by local pressure
have on the viscoelastic properties of the system. Then, would it be possible to modify the ODF spectrum? Would this have
macroscopic effects (for example, the induction of metastable states)? The study of this phenomena is not only rich and
fascinating from a basic point of view, it has also technological applications in the field of drug delivery and superlubricants,
among others.

2. Basic properties of liquid crystals

We briefly discuss some basic properties of the nematic and the smectic mesophases that are important for the inter-
pretation of the spin-lattice relaxation dispersion. For further reading specialized books about the matter are available, see
for example [15–17].

The nematic phase is characterized by a molecular orientational order while lacking molecular positional order. The
orientational order defines a director field n̂(�r, t), depending on space position and time, that indicates the molecular average
orientation within a certain space region [18]. The free energy of the nematic phase due to elastic distortions can be
expressed as:

F =
∫

d3r

2

[
K1(∇.n)2 + K2(n.∇ × n)2 + K3(n × ∇ × n)2] (1)

where K1, K2 and K3 are the elastic constants associated with the splay, bend and twist deformations, respectively. The
elastic constants strongly depend on temperature. As the elastic free energy is small compared with thermal energy, rela-
tively weak external forces can easily distort the molecular arrangement. In addition to the orientational order present in
nematics, smectic phases exhibit positional order, for instance layered structures in the smectic A phase.

The order parameter for the smectic A phase is defined as the amplitude of a one-dimensional density wave whose wave
vector points along the director [16,19]:

ρ(�r) = ρ0

[
1 + 1

2
|Ψ | cos(q0z + ϕ)

]
(2)

where |Ψ | is a measure of the strength of the smectic order, ρ0 is the average density, q0 = 2π/d is the wave vector of the
density wave (being d the interlayer distance), ϕ is an arbitrary phase, and z is the coordinate perpendicular to the planes.

For an ideal smectic A phase, twist and bend elastic distortions are forbidden [19]. For an undistorted smectic, only
the splay term of the nematic elastic free energy survives ( fn). Besides this term, the smectic free energy term f s and the
corresponding one to the smectic–nematic interaction should be included in the free energy density expression [16,20].
Then:

f = fn + f s + f I (3)
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where

f s = α(T )|ψ |2 + β(T )|ψ |4 + · · ·
f I = (∇ + iqs

−→
δn)ψ ∗ 1

2M
(∇ − iqs

−→
δn)ψ (4)

Here, α and β are coefficients in the f s expansion in powers of ψ . M is a mass tensor with two main components, along
(M//) and normal (M⊥) to the layers, and

−→
δn = n̂(�r) − n̂0, being n̂0 the unperturbed director.

3. Proton relaxation dispersion and effective relaxation mechanisms

We briefly discuss the dominant underlying molecular dynamics that usually drive the spin-lattice relaxation dispersion
in thermotropic specimens. A complete treatment of the involved dynamics is outside the scope of the present article. Here
we only mention those processes having a protagonic role in the relaxation dispersion of thermotropic liquid crystals while
stressing general features of relaxation dispersions.

3.1. Order director fluctuations

The existence of thermal fluctuations cause the director to fluctuate around n̂(�r) turning it dependent on t . NMR re-
laxation due to ODF originates in the modulation of the dipolar interaction between spin pairs due to the presence of
hydrodynamic modes [12,21–23].

Let us consider a nematic sample in the presence of a magnetic field along the z direction. Then n̂(�r, t) = n̂0 + −−→
�n(�r, t),

with
−−→
�n(�r, t) = nx(�r, t )̂i + ny(�r, t )̂ j. and n̂0 the average director parallel to the z direction.

Neglecting the magnetic interaction, from Eq. (1) we get the change in the free energy caused by elastic deformations:

F = 1

2

∫ {
K1

(
∂nx

∂x
+ ∂ny

∂ y

)2

+ K2

(
∂ny

∂x
− ∂nx

∂ y

)2

+ K3

[(
∂nx

∂z

)2

+
(

∂ny

∂z

)2]}
(5)

Expanding in Fourier series and rotating the coordinate system, it is possible to write last equation in terms of two
uncoupled modes (n1,n2):

F = 1

2

∑
�q

2∑
β=1

Kβ(�q)
∣∣nβ(�q)

∣∣2
(6)

where Kβ(�q) = Kβq2⊥ + K3q2\\ , 〈|nβ(�q)|2〉 = K B T V
Kβ (�q)

, K B is the Boltzmann constant, T is the temperature, V is the volume and

�q is the wave vector of the hydrodynamic modes.
From various relaxation theories [24–26] we know that the spin-lattice relaxation time due to dipolar coupling interac-

tion is given by:

1

T1
= 9

8
γ 4h̄2[ J1(ωL) + J2(2ωL)

]
(7)

where Jl(ω) = ∫ ∞
−∞ gl(τ )e−iωτ dτ , l = 1,2, being gl(τ ) the correlation function for a given dynamic process, ω the Larmor

frequency, γ the spin gyromagnetic ratio and h̄ the Planck constant over 2π .
At the low angle approximation (|−−→�n(�r, t)| 
 |n̂0|), it can be demonstrated that J2(2ωL) 
 J1(ωL), and:

J1(ω) = 3
K B T

16π3

2∑
α=1

∫
q

d3q

(Kα(�q))2 + η2
αω2

(8)

In this last equation ηα are viscosity constants. Then we integrate over a cylindrical or ellipsoidal volume while considering
that the minimum wavelength is associated with molecular dimensions:

∫
q

d3q →
2π∫
0

dφ

qzh∫
0

dqz

q⊥h

√
1− q2

z
q2

zh∫
0

q⊥ dq⊥ (9)

where qzh and q⊥h are the parallel and perpendicular associated cut-off wavelength, and φ is the azimuthal angle.
Integration of Eq. (8) conduces to a general expression [27] that, in the simplified nematic one constant approximation

(isotropic viscoelastic properties) and assuming (K/η)q2
h = ωh � ω (i.e. within a Larmor frequency window far below from

the high frequency cut-off), the result reduces to the Pincus’ law for nematic dispersion: T ODF(ω) ∝ √
ω.
1
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The smectic A phase can be approximated from the nematic case in the limit K3 
 K1 = K2. Under this assumption the
model reduces to a linear frequency dependence [27] T ODF

1 (ω) ∝ ω. The same frequency dependence may be obtained from
the assumption that only the splay term and the local fluctuation of the layers are present in the smectic A elastic free
energy [28]. A more refined model can be obtained by including additional terms in the smectic free energy (see Eq. (3)).
In this case [29]:

T ODF
1 (ω) ∝

(
η1

D1/2 K 3/2
1

Y1 + η2

D1/2 K 1/2
3 K2

Y2

)−1

(10)

with

Y1 = B

D

1∫
0

dx

x
( B

D (1 − x2) + K3
K1

x2
)3/2

√
1 +

√
1 + 1

x4

(
ω

ωs1

)2

Y2 = 1√
1 +

√
1 + (

ω
ωs2

)2

B = ψ2
0 q2

s

M//

, x = qz/qzh, D = ψ2
0 q2

s

M⊥
, ωs1 = D

η1
and ωs2 = D

η2

ψ0 being the equilibrium value of the smectic order parameter. In contrast with the simplified models conducing to a linear
dependence, in this case the resulting dispersion crosses over from ω0 to ω0.5.

3.2. Self-diffusion

The theory of translational diffusion for isotropic liquids [30] was directly used in the analysis of the relaxation dispersion
in LCs [31,32]. Later, modified versions of Torrey’s model were proposed for nematics [33] and smectic A structures [34].
Both models predict a flat dispersion in a frequency range where ωτ 
 1, being τ the correlation time associated with the
self diffusion process.

3.3. Molecular reorientations

Compared to isotropic liquids, the unique relevant difference remains in connection with the anisotropic nature of the
media, which usually demands one to consider more than one correlation time for a given process. Internal motions and
configurational molecular fluctuations are mainly due to molecular flexibility and rotations of internal groups. These pro-
cesses are, in general, fast and usually manifests in the relaxation dispersion at high frequencies. At the simplest case, these
contributions may be represented by a sum of BPP-type terms with their associated correlation times [35].

3.4. Proton FFC relaxometry in liquid crystals

The proton spin-lattice relaxation dispersion in liquid crystals can be interpreted in terms of collective fluctuations
and individual molecular motions like self-diffusion or molecular reorientations. Usually, time scale separation arguments
are feasible, and the collective dynamics can be assumed statistically independent of the individual molecular dynamics.
ODF and translational diffusion are coupled, but this fact can be considered by introducing a correction in the ODF spectral
density [12]. Individual contributions may be hardly discriminated in the relaxation dispersion unless the explored frequency
range is extended up to a Larmor frequency well above the inverse of the involved correlation times. Consequently, in the
most simple case, the effective relaxation rate can be approximated by the sum of two different contributions: (T1)

−1 =
(T ODF

1 )−1 + (T IM
1 )−1, where T IM

1 stands for the individual molecular dynamics.
The typical ω1/2 law for nematics (Pincus) was first observed in PAA (p-azoxyanisole) [13]. Studies were later extended

to very low frequencies as well as other compounds [31,36–38]. A revision of these experiments is currently in progress.
Scanning the spin-lattice relaxation at the ultra low frequency (ULF) limit demands of two new insights: an improved low-
frequency magnetic field compensation [39,40], and the study of local fields by other experimental set-up avoiding the cycle
of the magnetic field [41]. Summarizing, from experimental facts we may observe:

• For nematics, the typical square root law is found to be dominant in the T1 dispersion within the kHz frequency range;
• In the MHz range, individual molecular motions tend to be dominant;
• At the low frequency end of the dispersion, the behavior may depend on different parameters related to the hardware

setting and the nature of the local fields;
• The low frequency plateau is mainly due to the unavoidable presence of the local fields, usually masking physical

information associated to the low-frequency cut-off of the ODF contribution.
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In the smectic A case, the typical relaxation dispersion shows nearly frequency independent until a minimum critical
frequency around 20 kHz, where a noticeable steep down dispersion appears up to a very low frequency plateau. The steep
dispersion was currently attributed to ODF through an ω1 dispersion law, while the low frequency plateau, usually between
300 and 800 Hz, interpreted in terms of the cut-off of the ODF modes. Between 30 kHz and about 10 MHz, the T1 frequency
dependence is minor. This behavior was usually attributed to individual motions with a dominant role of the translational
diffusion. It has been recently shown that the strong dispersion observed in the low frequency regime in the smectic A
phase cannot be directly attributed to ODF. A conjunction of experimental limitations and the strong local fields present in
smectic phases seems to dominate the magnetization evolution, thus masking the relaxation effects [42].

4. Ultrasound effects

In the presence of ultrasound, density fluctuations drive a coupling between ODF and the acoustic field. This phenomenon
constitutes a tantalizing problem considered many times in the literature [43–46]. A fundamental task for the interpretation
of sonication effects in the spin-lattice relaxation was the understanding of the interaction mechanism between the acoustic
field and the mesophase director. It was already anticipated that the acoustic field has an orienting action on the nematic
director field [47,48]. However, the nature of the interaction was later elucidated for the nematic mesophase from T1
relaxometry experiments [49] and optical methods [50]. We will consider now how relaxation dispersions driven by ODF
become sensitive to sonication.

The experimental set-up consists of a glass sonotrode directly immersed in the sample (located within the magnet
of the field-cycling relaxometer, see Fig. 1) [51]. The sonotrode is connected to a piezoelectric bank device driven by an
electronic ultrasound generator. No galvanic contact between the electro-acoustic device and the field-cycling instrument
was possible. Due to the ultrasound-induced heat in the sample, temperature must be controlled by measuring it directly
within the sample volume. Sonication power ranged from 3 to 23 W/cm2. Ultrasound frequency was fixed to 30 kHz.

4.1. Nematic phase

No specific effect occurs when the proton resonance frequency crosses the sound frequency of 30 kHz. The interpretation
is that the sound energy is immediately dissipated among the whole spectrum of collective modes. It appears that there is
no way to enhance a certain mode by coupling it to a monochromatic sound wave. On the contrary, the coupling affects the
dispersion in the whole frequency range. A discussion of the theory behind can be found in Refs. [49,52]. Here we briefly
comment main aspects.

For a simple description, only ultrasonic waves with wave vector parallel and perpendicular to the director will be
considered. Signs between parenthesis correspond to perpendicular waves. The interaction energy between an acoustic
wave and the mesophase director �n is given by [49,50]:

fa = 1

2
a2(�k.�n) (11)

where �k is the acoustic wave vector, a2 = ξn Iρ
v3 , I being the ultrasound intensity, ρ is the average density, v is the sound

velocity and ξn is the coupling constant between the director field and the acoustically-induced density gradients, here
defined as the nematic acoustic susceptibility. The last equation results after averaging over fast oscillations of the ultrasonic
waves.

If an ultrasound wave propagates across the liquid crystalline media parallel (perpendicular) to the magnetic field, the
fluctuations of the local director decrease (increase) fa by:

� fa = −(+)
1

2
a2(n2

x + n2
y

)
(12)

Adding this free energy term to Eq. (5), a closed expression for the modified dispersion (T ODF+S
1 (ω)) can be obtained. In the

simplified nematic one-constant approximation, this result reduces to [49]:

T ODF+S
1 (ω) ∝

√√
1 + (ωτ0)2 − (+)1√

τ0
(13)

In the last equation, τ0 ≡ η
a2 , η being the effective viscosity.

It can be seen that in the limit of zero acoustic intensity (a → 0, τ0 → ∞), the result tends to the typical dispersion
for a non-sonicated specimen, that is, Pincus’ law. Parallel sound waves enhance the relaxation by ODF while the opposite
behavior is observed for normal incidence. Clearly, the experimental set-up shown in Fig. 1 corresponds to a case where the
acoustic wave vector and the magnetic field are nearly parallel. The model is based on the following assumptions: (a) the
existence of a preferential macroscopic orientational order induced by the magnetic field; (b) time averaging over fast
oscillations of the density; and (c) the sound power (specially in the case of parallel irradiation) is low enough to prevent
a violation of the low angle approximation and cavitation effects. The first assumption will only be fulfilled at very low
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Fig. 1. Experimental set-up used for FFC experiments with simultaneous ultrasonication. The glass sonotrode is directly immersed in the sample volume
for an efficient acoustic power deposition. The temperature sensor included in the schematic is part of the temperature control unit. During experiments,
temperature is measured directly in the middle of the sample volume.

acoustic power, that is, in consistency with the last. However, if the acoustic interaction becomes dominant, the mesophase
director orientation will be strongly influenced by the acoustic field.

The model resulted to be consistent with experimental data obtained in the nematic phase [49,51]. A typical result can
be observed in Fig. 2.

4.2. Smectic A phase

A simplified approach for the smectic A phase can be obtained from the nematic case in the limit (K3 
 K1 = K2).
However, in this limit, the predicted behavior of the relaxation dispersion turned to be inconsistent under sonication. The
expression for T1 becomes complex when the smectic essence of the problem is incorporated in the analysis, that is, when
the coupling between the smectic order and the acoustic field is considered. Theoretical details can be addressed at Ref. [52].
In the limit of zero acoustic intensity, the complete description including the coupling between the smectic order and the
acoustic field tends to Eq. (10). This refined model successfully explained the observed T1 dispersions in the smectic A
phase [53]. The frequency dependence of those contributions due to individual relaxation mechanisms and those associated
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Fig. 2. Typical response of the T1 relaxation dispersion under sonication for a nematic specimen. Under sonication the dispersion tends to flatten.

Fig. 3. Typical response of the T1 relaxation dispersion in the smectic A phase at different acoustic power intensities. For comparison, theoretical and
experimental curves are presented. For further details see Refs. [52,53].

to ODF cannot be directly discriminated in the dispersion. This limitation can be circumvented by the fact that only ODF
couple with the ultrasonic field thus enhancing its relative contribution to the relaxation dispersion. Fig. 3 shows the typical
result for a smectic A phase.
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Even when the smectic nature of the problem was included in the free energy through a Ginzburg–Landau expansion in
terms of the smectic order parameter, the acoustic interaction remained to be that of the nematics. Then we considered a
further refinement of the model by including the interaction energy between the acoustic field and the smectic layers [54].
The smectic A phase can be considered as a three-dimensional nematic with a one-dimensional density modulation. This
density modulation is usually interpreted as a molecular packing arranged within equidistant planes (called smectic lay-
ers). Within this picture, a new hydrodynamic variable is needed: the displacement of the layers u(�r, t). This new variable
describes the deformation of the smectic structure as a consequence of thermal fluctuations, or any other external perturba-
tion. When sound is applied to the smectic structure, the density modulation will be affected by compressional waves. Even
in the absence of sound-induced dislocation effects, new density gradients will affect the spatial and temporal dependence
of u(�r, t). If a sound component is applied along the normal of the smectic layers, a sound-induced compressional gradient
will appear.

Since u is a hydrodynamic variable linked to broken translational symmetry in the smectic phase, in analogy to the
nematic case, we can contract nin j with a tensor containing information about the u spatial dependence:

f s = ζsnin j(∂i∂ ju) + ξsnin j(∂iu)(∂ ju) (14)

where f s is now the interaction energy between the acoustic and director fields in the SmA phase, and ξs , ζs are the
corresponding smectic acoustic susceptibilities. After expanding the second term and averaging over rapid oscillations, we
recover the result for a nematic specimen, that is, Eq. (11) [54]. This result reveals that the obtained interaction is based on
the same mechanism proposed for the nematic case. It is reasonable if we consider that sound-induced u-gradients can also
be related to sound-induced density gradients. This result validates the use of the nematic-like sound–director interaction
energy in the smectic A phase, as was previously proposed in Refs. [52,53]. Like in the nematic case, the interaction depends
on the acoustic susceptibility ξs (now corresponding to a smectic phase). The smectic nature of the problem was introduced
through the undulation amplitude.

If the acoustic propagation is nearly parallel to the mesophase director, it can be shown that [54]:

a2 ≈ ξs p2
0

ρ2

1

(ω2
k − ω2)2

(15)

where p0 is the effective pressure amplitude, ω is the acoustic frequency and ωk is the frequency associated to a propagating
eigenmode of the smectic system. p2

0 ∝ I and p0 = p0(θ), θ being the angle between �n and �k. The last equation suggests
that if the frequency ω of the external acoustic source matches the frequency ωk of a propagative eigenmode, the acoustic–
director interaction can be enhanced even at moderate acoustic power. We call this condition hydrodynamic resonance. In
particular, a2 becomes divergent at resonance if �k and �n are parallel, that is, when the acoustic field enhances the order
director fluctuations. The calculation of a2 can be still refined by introducing a more complete description of the smectic
material. The divergence disappears if the damping of the excited modes is considered. However, the basic result will be the
same: the acoustic–director interaction can be enhanced if the external acoustic field matches an eigenmode of the smectic
system.

Fig. 4 shows the influence of the term containing a2 in the frequency dependence of T1 close to a low-frequency eigen-
mode for the same parameters as used in Ref. [52]. The result suggests that the low-frequency dispersion of T1 may be
sensitive to possible hydrodynamic resonances.

The hydrodynamic theory of liquid crystals predicts the existence of propagative acoustic modes in the bulk [16,55].
However, the theoretical analysis of eigenmodes has been more discussed within the frame of smectic films. Experimental
evidence was reported during the last years. A propagative shear mode (low-frequency second sound) of about 50 kHz was
detected in octyloxy cyanobiphenyl (8OCB) using light scattering under acoustic irradiation [56]. The existence of propa-
gating hydrodynamic modes were also observed in films of 100–200 nm thickness of 4-n-4′-octylcyanobiphenyl (8CB) [57].
Propagative underdamped and overdamped modes were found in cyanobiphenyl films of 90–240 nm using proton correla-
tion spectroscopy (PCS) [58]. Therefore, the existence of different propagating modes in SmA films is proven, although no
clear experimental evidence exist for the detection of hydrodynamic modes in the bulk. In this case, we are confident that
the experimental technique here presented could provide some insights in the near future.

5. Magnetoacoustic manipulation of ordered states in nematics

It is well known that the combined action of orienting fields can induce metastable ordered states in nematics. Studies
of this sort are usually performed in electrooptic cells and using optical experiments. Processes like those taking place in
Fréedericksz transitions of surface-oriented nematics under the action of a magnetic field may lead to the formation of
spatially periodic structures or “inversion walls” as a consequence of spontaneous symmetry breaking [59,60]. Wrinkled
nematic states of this sort may also be created by electric fields due to electric conduction [61], or combining the action
of electric and magnetic fields [62]. In general, these states have a metastable character (memory capacity) [59,63]. The
extension of these studies to the bulk prevents the use of standard optical methods. It was recently shown that FFC relax-
ometry may be sensitive to metastable states in the bulk as induced by combining a pulsed magnetic field and an amplitude
modulated acoustic field [64].
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Fig. 4. Simulation of the T1 relaxation dispersion in the smectic A phase with a2 defined by Eq. (15). Different curves correspond to the unsonicated case,
and for different frequencies of the acoustic frequency close to an eigenmode of the smectic arrangement.

The mean square amplitude of the hydrodynamic modes in the presence of sound, as derived from the equipartition
theorem can be expressed as:〈∣∣nα(�q)

∣∣2〉 = K B T V

f (�q) − β I
(16)

where nα(�q) are the uncoupled hydrodynamic modes appearing in Eq. (6). For convenience, we define β = 2ξρ0s2/v3 and
f (�q) = Kq2 + (�χ/μ0)B2 with the magnetic flux density B , the average elastic constant K , the anisotropy �χ in the
magnetic susceptibility and the vacuum magnetic permeability μ0. In contrast to Eq. (6), now the denominator contains a
destabilizing term associated to the acoustic interaction, and a stabilizing term due to the magnetic field. Without consider-
ing the wave vector dependence of the viscosities (ηα(�q)), the viscoelastic relaxation time for the hydrodynamic modes can
be expressed as:

τα(q) = ηα

f (q) − β I
(17)

The last two equations suggest that if the acoustic field intensity is modulated in amplitude, a range of q-modes can be
kept excited, thus adding an additional instability to the mesophase (equivalent to an increase in temperature). Detection
of such instabilities using FFC is a matter of interest, particularly if different transient or metastable ordered states and the
corresponding time evolution can be studied in the bulk.

When the orienting action of the acoustic field is dominant, the director tends to be aligned orthogonal to the acoustic
wave vector. This last result may depend on the acoustic susceptibility of the material, but it is the case for cyanobiphenyls
and other standard compounds. For an experimental set-up like in Fig. 1, when the acoustic interaction prevails, the nematic
director and the magnetic field may become orthogonal. In this case the T1 dispersion is expected to be shifted to lower
values [65] (see Fig. 5). In this limit, amplitude modulation of the acoustic field intensity has a negligible effect [64].

The transition to a different order state may be detected through a different T1 dispersion tendency. Fig. 6 shows a
typical experiment of this sort starting from an acoustically ordered state (that is, the mesophase director ordered by the
acoustic field) at a temperature of 303 K and an acoustic power of (3.0 ± 0.2) W/cm2. At first the dispersion was measured
without sonication. Under unmodulated sonication the T1 dispersion shifts to slightly lower values, indicating that part of
the molecules are restoring the acoustically ordered state. The system keeps memory to its previous acoustically ordered
state, in spite of the fact that a whole dispersion was measured in the middle time without sound (several magnetic pulses
in between). A pure magnetically ordered state can only be obtained after heating up to the isotropic state. In both cases
however, the measured dispersions follow the typical nematic behavior. When a new experiment was done (without erasing
memory of the molecular order) including amplitude modulation of the acoustic field, the dispersion changed abruptly to a
new νx

0-law with x = (0.16 ± 0.05).
This last result can be explained in terms of contributing acoustic and magnetic torques critically affecting the conditions

that minimize the system energy. Clusters surviving within the acoustic domain, i.e., spatial regions where the acoustic
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Fig. 5. Typical shift of the T1 dispersion to lower values due to the orienting action of the ultrasound. At a strongly acoustically ordered state, modulation
effects are negligible. In this experimental sequence, the order of the different steps is critic. In the present case, the first dispersion was measured without
sonication (filled squares). Then, the experiment was repeated by sonicating the sample at a power of 3 W/cm2 (open circles). Finally, the experiment is
reproduced two more times by modulating in amplitude (sine modulation at 4.5 kHz and saw-tooth at 25 Hz), without showing a substantial effect.

Fig. 6. Same experiment as described in Fig. 5, but at a higher temperature. As a consequence of the amplitude modulation the dispersion changes to a
new tendency following a ν0.16

0 -law (see text for details).

interaction is dominant (close to the sonotrode radiating surface), act as memory kernels that restore the acoustic order in
the presence of sound, even after a time the nematic was subjected to a pulsed magnetic field. On such clusters the acoustic
torque will be huge and with an extremely short reorientational time. On the contrary, in regions where the magnetic field
prevails (close to the sample container walls) the system preserves a magnetically ordered state, and in consequence the
average acoustic torque will be weak. At the temperature of the experiment, the magnetic reorientational time becomes
comparable to the length of the magnetic field pulses. This means that the director partially orders with the magnetic field
within the magnetic domain region. The region in between offers the conditions for a transition to a different ordered state.
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Since the existence of orthogonal torques is an essential feature of two-dimensional metastable states, the observed
changes in the T1 dispersion may be associated to a three-dimensional version of the same phenomenon. Topological
defects may also be induced under the conditions of the cited experiments [66]. However, experimental work in progress
using optical methods in glass cells of increasing thickness, shows that metastable ordered states can be obtained with
electric fields in the bulky limit of the cell thickness [67]. Such states in the bulk usually evolve from a random defect
network.

6. Outlook

The study of NMR relaxometry with simultaneous acoustic perturbation offers plenty of possibilities to explore hydrody-
namic and viscoelastic properties of mesomorphic systems. The extension of these studies to biological systems is of huge
interest. The previous understanding of the non-sonicated relaxation dispersion and the underlying molecular dynamics are
unavoidable prerequisites for the study of NMR relaxation under sonication in a given molecular system. The application of
the method to liposomes and bio-membranes is in progress [8].

Hardware development is also open for innovations. Special probes may be still designed to optimize power acoustic
transmission and sample temperature control. Special features concerning optimal magnetic and acoustic synchronisms
are still unclear. Finally, acoustic generators and transducers allowing amplitude and frequency modulation are not easily
available.

The acoustic manipulation of the nematic director offers an efficient and simple alternative to other used methods for
angular-dependent NMR experiments. At relative low power (less than 25 W/cm2), the acoustic torque (within the kHz
regime) is usually dominant over the magnetic torque (at about 0.5T ). Of course, possibilities depend on the relative signs
of acoustic and magnetic susceptibilities.
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