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Micromechanical models for ductile failure have been developed in the 1970s and
1980s essentially to address cracking in structural applications and complement the
fracture mechanics approach. Later, this approach has become attractive for physical
metallurgists interested by the prediction of failure during forming operations and as a
guide for the design of more ductile and/or high-toughness microstructures. Nowadays,
a realistic treatment of damage evolution in complex metallic microstructures is becoming
feasible when sufficiently sophisticated constitutive laws are used within the context
of a multilevel modelling strategy. The current understanding and the state of the art
models for the nucleation, growth and coalescence of voids are reviewed with a focus on
the underlying physics. Considerations are made about the introduction of the different
length scales associated with the microstructure and damage process. Two applications
of the methodology are then described to illustrate the potential of the current models.
The first application concerns the competition between intergranular and transgranular
ductile fracture in aluminum alloys involving soft precipitate free zones along the grain
boundaries. The second application concerns the modeling of ductile failure in friction stir
welded joints, a problem which also involves soft and hard zones, albeit at a larger scale.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les modèles micromécaniques pour la rupture ductile ont été développés essentiellement
au cours des années 1970 et 1980 avec comme but de traiter des problèmes de rupture
dans des applications structurales et de compléter l’approche par la mécanique de la
rupture. Plus tard, cette approche micromécanique a attiré les spécialistes de la métallurgie
physique soucieux de prédire les problèmes de rupture pendant les opérations de mise en
forme ainsi que d’être guidés pour l’élaboration de microstructures plus ductiles et/ou
plus tenaces. Aujourd’hui, il est devenu possible d’aborder de façon réaliste l’évolution du
dommage dans des microstructures métalliques complexes à condition d’utiliser des lois
constitutives suffisamment sophistiquées dans le contexte d’une stratégie de modélisation
multi-échelle. La compréhension actuelle et l’état de l’art dans la modélisation des
phénomènes de germination, croissance et coalescence de cavités sont passés en revue
en portant une attention particulière à la physique sous-jacente. La prise en compte
des différentes longueurs caractéristiques associées à la microstructure et au processus
d’endommagement est discutée. Deux applications de la méthodologie sont décrites pour
illustrer le potentiel des modèles. La première application concerne la compétition entre
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rupture ductile intergranulaire et transgranulaire dans des alliages d’aluminium impliquant
des zones molles sans précipité le long des joints de grain. La seconde application concerne
la modélisation de la rupture ductile de joints soudés par friction malaxage, un problème
qui implique également des zones dures et molles, mais à une échelle plus grande.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Ductile failure of metals is a broad topic connected to several engineering issues from the assessment of failure in
primary structural components, the damage evolution during high and low temperature forming applications, to the op-
timization of complex metallic alloys for improved crashworthiness. Structural integrity assessment, especially within the
nuclear industry, has been the first motor for the development of a micromechanical approach of ductile failure, also called
“local approach of ductile fracture” in the French terminology, in the 1970s and 1980s, see reviews in [1–4], following
seminal studies by Tipper [5], Puttick [6], Rogers [7], Beachem [8], Gurland and Plateau [9], McClintock [10], and Rice and
Tracey [11]. The interest for micromechanical models was mainly driven by the fracture mechanics community to simulate
crack growth in ductile materials and solve the problem of transferability of results generated from laboratory specimens to
structural components when a safe use of the fracture mechanics concepts cannot be insured, see e.g. [12–16]. Applications
to other key structural problems followed, involving, for instance, cracking in pipelines, in airplane structures, or in high
pressure tanks. All these applications were essentially motivated by problems involving pre-existing cracks and by the need
to predict the risk of unstable crack propagation. At the tip of a crack, the stress triaxiality — defined as the ratio of the
hydrostatic stress over the effective stress — is high and voids grow relatively fast without significant shape change, e.g.
[14,17]. The constitutive models used in the 1980s were good enough to treat this class of problems.

In the 1990s and later, researchers were interested in applying these models to physical metallurgy problems, such as
those encountered in forming applications [18–21] or in the design of metallic alloys involving complex microstructures
and competition of failure modes [22–25]. Indeed, primary forming applications such as extrusion, rolling or wire drawing
are sometimes limited by damage accumulation. In that case, low stress triaxiality conditions prevail and issues related for
instance to void shape evolution became important [20,26]. New developments were thus needed to improve the models
in order to encompass both low and high stress triaxiality regimes, a problem which is also essential when addressing
thin sheet ductile tearing [27,28]. Regarding microstructure design, although the attention has been systematically focused
for decades in metallurgy towards enhancing the strength, the controlled generation of ductile, high fracture toughness
microstructures is still a field of open improvement. For instance, new alloys such as the multiphase TRIP steels [29] or
new bimodal Ti alloys [30] sometimes suffer from a lack of cracking resistance, limiting their application. In essence, ductile
failure in these materials is multiscale, starting at the size of the voids and involving interaction with various microstructural
features.

The goal of this article is to introduce recent progress in the field of multiscale modelling of ductile failure with a
viewpoint on its application in physical metallurgy in order to guide the development of new metallic alloys. The focus is
on ductile failure through the accumulation of damage, not through plastic localization which is another important issue in
some forming applications. The physical mechanisms of ductile failure are briefly reviewed in Section 2. Section 3 presents
a selected and partial survey of the multiscale modeling of ductile failure, representative of the state of the art in the
field. Two applications involving several different length scales are given in the last two sections for the sake of illustration.
Finally, Section 6 concludes this paper.

2. Survey of ductile failure mechanisms

The following description of the micromechanisms of ductile failure is based both on experimental observations and on
numerical experiments performed using finite element unit cell calculations.1 The generic phenomenology is described in
Fig. 1. A macroscopic specimen, here with a notch, is deformed in tension. Damage develops faster in the centre of the
minimum cross-section of the bar which involves the highest stress triaxiality as well as large plastic strains, the two main
parameters in ductile fracture [1,4,11].

The failure process starts by the nucleation of voids on second phase particles, either through the fracture of the particles
or by partial or full decohesion of the interface between the particle and the surrounding matrix [31]. Void nucleation tends
to occur first on large particles due to a larger probability of defects, as well as within particle clusters where large stress
levels are attained in the particles [32]. Metallic alloys sometimes involve several populations of particles, nucleating voids

1 Void cell simulations consist of modelling one or a limited number of voids, surrounded by a matrix material, using the FE method, by assuming a
simple distribution, often periodic. The cell is deformed up to large strains and the applied stress, as well as other quantities of interest, such as the void
volume fraction and shape, are extracted from the calculations. It is a good alternative to difficult experiments to investigate the response of an ideal,
voided material volume element. In addition, void cell simulations offer a basis for assessing the validity of constitutive models, before applying them to
more complex and more realistic problems.
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Fig. 1. Schematic description of the sequence of damage mechanisms leading to ductile failure in metallic alloys.

Fig. 1. Description schématique de la séquence des mécanismes d’endommagement conduisant à la rupture ductile d’alliages métalliques.

at different levels of loading. These populations can distribute in various ways, with, for instance, one population located
along the grain boundaries, and another population homogeneously dispersed inside the grains, or with two very different
sizes. The maximum volume fraction of voids nucleating in industrial metals is lower than 2–3% and often much smaller,
lower than 0.01% in clean alloys.

Once nucleated, the voids grow by plastic deformation, with the plastic flow distributed all around the voids. Initially
rounded voids dilate and elongate at low stress triaxiality and dilate much more at high stress triaxiality for the same
level of deformation with much less shape changes [26,33]. Initially flat voids, nucleated as a result of a particle fracture or
by partial interface failure, grow primarily by opening in the direction normal to the small void dimension [34,35]. Plastic
anisotropy also affects the void growth rate and shape evolution [36–39]. Increasing the strain hardening and/or the strain
rate sensitivity tends to moderately decrease the void growth rate [19,35]. As voids nucleate over a range of strain, the
nucleation and growth stages co-exist, leading to voids with different shape and sizes. Interactions between voids are weak
when the neighboring voids have similar sizes, i.e. a void is not growing significantly faster in the presence of a close
neighbor [40]. This justifies the assumption, for modelling ductile failure, of using only an average void volume fraction
and average void aspect ratio during the void growth stage, without accounting for void distribution effects. The picture
can become more complex in multiphase materials or systems involving for instance two different types of void nucleation
mechanisms leading to very different initial void shapes. Also, when a very small void is located in the close neighborhood of
a much larger void, the growth rate of the small void is significantly accelerated due to the strain concentration developing
around the large void [41].

Before the voids link up, a change in the plastic flow mechanism takes place with the plastic deformation suddenly local-
izing in the ligament between the most closely spaced voids [3,42]. This localization is called the onset of void coalescence
which interrupts the mechanism of relatively homogeneous void growth and constitutes the beginning of the final stage of
damage. In the most ductile metals, the void size doubles or even triples before coalescence sets in. In less ductile metals,
coalescence starts immediately after nucleation, involving almost no void growth. The mechanism is then said “nucleation
controlled” [43,44]. The coalescence of voids consists thus of a transition from a stable phase of diffuse plastic deformation
driving the stable growth of the voids to a localized mode of plastic deformation within the ligament separating two voids
or a row of voids, with material off the localization plane undergoing elastic unloading. The first mode of coalescence is the
internal necking mode of coalescence, where the ligament between the two voids shrinks with a shape typical of a necking
process. During the process of coalescence, the voids evolve towards a diamond shape. The second mode of void coalescence
consists in a shear localization between the voids observed when the initial voids are distributed along lines at 45◦ from the
main loading direction. This mode of coalescence is frequently observed in high strength material with low or moderate
strain hardening capacity. The third mode of void coalescence, called “necklace coalescence” [38] is less common. It consists
of a localization process in a direction parallel to the main loading axis and has been observed to take place in rows of
closely spaced voids gathering within aligned clusters of particles.

One must distinguish the onset of void coalescence and the coalescence phase. The end of the coalescence process usually
consists, for the most ductile metals, in the radial void growth up to final impingement. In less ductile metals, coalescence
is interrupted due to a premature failure of the remaining ligament by microcleavage, crystallographic shearing, or with the
help of a second population of smaller voids [45–48]. Void distribution effects, especially the relative void spacing between
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the closest neighbors, play a dominant role in controlling the onset of void coalescence [42,49,50], while, as explained
above, it has a negligible effect during the void growth stage. Cracking initiation can be defined as when a couple of
voids have coalesced locally in the most loaded region of a specimen or of a structural component. The local deformation
corresponding to cracking initiation is the physical measure of the material ductility. Under low stress triaxiality, the extra
overall deformation required to bring a material element from the onset of coalescence to final coalescence is negligible
compared to the total strain. The ductility or fracture strain can then be approximated as the strain corresponding to the
onset of void coalescence. However, under high stress triaxiality conditions, an important part of the total energy associated
to the damage process is spent during coalescence and an accurate prediction of the end of the fracture process is important
[51]. The void growth rate being proportional to the exponential of the stress triaxiality [11], the fracture strain decreases
with increasing stress triaxiality [19,21,34,52,53].

Cracking initiation does not signify the complete failure of a sample or of a structural component; the failure process ends
by the propagation of the crack requiring additional deformation whose magnitude depends on the geometry and loading
configuration. In a classical tensile test where failure occurs within the necking region, this additional strain corresponding
to the ductile tearing process is relatively small, e.g. [54]. Furthermore, the strain being relatively homogeneous in the neck,
the strain estimated from the measurement of the minimum cross-section of the broken specimen is a good approximation
of the local strain at cracking initiation, which is the true measure of the ductility. The same approximation can sometimes
be made for cylindrically notched specimens with shallow notches.

Crack propagation occurs by repeated coalescence of voids at the crack tip within the so-called fracture process zone. At
sufficiently high porosity, the void near the crack tip is influenced by its nearest neighbor, which experiences almost the
same rate of growth [55]. The interaction among the voids, including voids even farther from the tip, results in significantly
higher rate of void growth for all of the voids. Coalescence among several voids and with the crack starts early, almost
simultaneously. This is the multiple void interaction mechanism. For sufficiently small void volume fraction, a single void
process prevails. The void nearest the tip grows with little influence from its nearest neighbor further from the tip. This is
the so-called void by void growth mechanism [55]. Depending on the geometry, loading configuration and material strength,
the crack can run straight or following a zig–zag path, or it can kink along a maximum shear direction such as for the cup
and cone fracture in tensile testing [56,57]. Whether the crack results from a void coalescence process or pre-exists such as
in a fracture mechanics specimen, a length scale enters the ductile failure process during crack propagation. Indeed, damage
localizes within a band of thickness scaling with the void spacing X0.

Based on this general picture of the ductile failure process and the regularities observed in the mechanisms of nucleation,
growth and coalescence, the problem can be significantly simplified by treating the behavior of a representative volume
element containing one void extracted from a periodic distribution. Simple damage evolution laws or, better, full constitutive
models have been developed to capture these elementary mechanisms, as described in the next section. The damage in one
elementary cell can be characterized by the following parameters, see the insert in Fig. 1:

• f , the void volume fraction, with initial value f0 directly connected to the particle volume fraction f p ;
• W = Rz/Rx , the void aspect ratio, assuming spheroidal void shape with main radius Rz and Rx , and W0, the initial value

being very small in the case of particle fracture or equal to the particle aspect ratio for complete interface decohesion;
• χ = 2Rx/X , the relative void spacing in the x direction (which is perpendicular to the main loading direction) assumed

to be aligned with ligament in which coalescence sets in, with χ0 the initial value;
• λ = Z/X , the void distribution parameter with X and Z being the mean spacing in the x and z direction respectively,

and λ0 the initial value.

These parameters are related through the following expression:

χ =
(

f

ζ

λ

W

) 1
3

(1)

where ζ is a geometric factor which depends on the void distribution: ζ = π/6 = 0.523 for a periodic simple cubic array,
ζ = √

3π/9 = 0.605 for a periodic hexagonal distribution and ζ = 2/3 = 0.666 for a void surrounded by a cylindrical matrix.
In the case of this simplified representation of the microstructure, the ductility/fracture strain of metallic alloys can be

written in general terms:

ε f = F

(
T ,

σn

σ0
,n, f0, W0, λ0, other microstructural features

)
(2)

where T is the stress triaxiality, σn is an average critical stress for particle fracture or decohesion, σ0 is the initial yield
stress, and n is a strain hardening index. Regarding the fracture toughness, dimensional analysis shows that, see [55,58] for
more details:

J Ic

σ0 X0
= F

(
σ0

E
,n, f0, W0, λ0,

σn

σ0
, other microstructural features

)
(3)

where E is the Young’s modulus. The length X0 directly enters the fracture toughness defined as the value of the energy
release rate or of the J -integral at cracking initiation starting from a pre-existing sharp crack, J Ic , in mode I. As discussed
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later in Section 3.3 and in the examples of Sections 4 and 5, other lengths than X0 play a role in ductile failure and affect
the total energy dissipated during the deformation and damage process.

The idea that a generic sequence of elementary damage mechanisms occurs in most ductile metallic systems simplifies
the multilevel modelling of failure by allowing a generic treatment of the lowest scale response. This motivates to present
first the state of the art modelling of the elementary damage mechanisms in the next section.

3. Multiscale modeling of ductile failure in metals

3.1. Void nucleation and void growth models

In recent years, the modeling of void growth in metals has attained a high level of sophistication. In contrast, progress
regarding the development of closed form void nucleation models — that can be incorporated into the existing damage
evolution schemes — has been much more limited.

In either case of particle fracture or particle–matrix interface decohesion, an accurate description of void nucleation
necessitates an accurate estimate of the stress/strain values at and round the particles. Recently, Tekoğlu and Pardoen [44]
proposed to make a step further in the description of void nucleation by integrating a damage model with a Mori–Tanaka
type mean-field homogenization scheme, which explicitly accounts for the per-phase behavior. The benefit of this integrated
Mori–Tanaka damage (IMTD) model is two-fold: (i) it provides a physically sound prediction of the void nucleation rate and
its dependence on the stress state, through an accurate prediction of the load transfer between the particle and the matrix;
(ii) it accounts for the increase of the overall strength and strain hardening of the material due to the presence of the
particles, as well as for the softening associated with the decrease in the load carrying capacity of the particles due to void
nucleation. The IMTD model provides an advanced framework to discuss ductile failure in multiphase alloys; its presentation
allows having a close look at state of the art ductile fracture models while also recalling earlier fundamental works.

As discussed in Section 2, ductile fracture is composed of consecutive and overlapping phenomena of nucleation, growth,
and coalescence of voids. Both the growth and nucleation of voids contribute to the total rate of increase of porosity, which
can be written as

ḟ = ḟ growth + ḟ nuc (4)

Considering the plastic incompressibility of the surrounding matrix, the rate of increase of porosity due to void growth
reads

ḟ growth = (1 − f )ε̇p
ii (5)

where ε̇
p
ii is the trace of the plastic strain rate tensor.

The Gurson model [59] has been the first widely used micromechanical model for ductile rupture which introduces a
strong coupling between deformation and damage. It is based on a simplified representation of a voided material which
consists in a hollow sphere. The only non-dimensional microstructural feature in the model is the void volume fraction or
porosity, f . The matrix obeys a standard von Mises yield criterion and associated flow rule. The main result of the upper
bound analysis of Gurson is an estimate of the yield function for the porous metal which, applying the normality rule, can
be used to derive the plastic flow direction. Gologanu et al. [26,60,61] reworked the Gurson model in order to account for
spheroidal void shapes (for an overview of the recent improvements of the Gologanu–Leblond–Devaux (GLD) void growth
model, see e.g. [4,62]). For simplicity, here we will deal only with axisymmetric loading conditions where the main void
axis, say ez , does not rotate and remains parallel to the maximum principal stress. In this case, the GLD model gives the
evolution of the void aspect ratio as

Ẇ

W
= (1 + hShT h f )

(
ε̇

p
zz − ε̇

p
xx

) + hS f ε̇
p
ii (6)

where the h parameters are functions of the void aspect ratio W , porosity f , stress triaxiality T , and a power law strain
hardening exponent n, see also Pardoen and Hutchinson [63]. The plastic strain rate ε̇

p
i j is normal to the flow potential φ:

ε̇
p
i j = γ̇

∂φ

∂σi j
(7)

with

φ = C

σ 2
y
(σzz − σxx − ησh)

2 + 2q(g + 1)(g + f ) cosh

(
κ

σh

σy

)
− (g + 1)2 − q2(g + f )2 = 0 (8)

where σi j are the components of the Cauchy stress tensor and σh is the hydrostatic stress. In Eq. (8), the parameters C ,
η, g and κ are functions of W and f , and q is an adjusting parameter (see also [20,63]). The energy balance proposed by
Gurson [59]

σy ˙̄εp
(1 − f ) = σi j ε̇

p (9)
i j
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where σy is the current average yield stress of the material, is used to calculate the effective plastic strain rate ˙̄εp
. Up to this

point, the formulation of the IMTD model is the same as previous ductile damage models based on the GLD constitutive
behavior. In earlier models, σy refers to the average yield stress of the surrounding single-phase matrix material, and is
given by a simple hardening law. In the IMTD model, however, σy represents the average yield stress of the surrounding
multi-phase matrix material (i.e. a metal alloy or a composite material), and is calculated through a non-linear Mori–
Tanaka homogenization scheme which explicitly accounts for the presence of second phase particles. The non-linear, rate
independent Mori–Tanaka (MT) scheme gives the macroscopic response of the composite as

〈σ̇ 〉 = C : 〈ε̇〉 (10)

C = [
υ iCi : Ai + (

1 − υ i)CM] : [υ iAi + (
1 − υ i)I

]−1
(11)

Ai = [
I + ξ : ({CM}−1 : Ci − I

)]−1
(12)

where single and double underbars represent second and fourth order tensors, and the superscripts “M” and “i” stand for
matrix and particle, respectively, I is the fourth order identity tensor, υ i is the volume fraction of the particles, C is the

macroscopic tangent operator of the composite, ξ is the Eshelby tensor, and Ai is the strain concentration tensor which

relates the average strain rate in the particle 〈ε̇i〉 to that in the matrix 〈ε̇M〉 through〈
ε̇i 〉 = Ai : 〈ε̇M 〉

(13)

The Eshelby tensor ξ depends on the particle geometry and the tangent operator of the matrix, CM . Numerical simu-
lations show that using CM , which is an anisotropic tensor even for an isotropic matrix, to calculate the Eshelby tensor
leads to very stiff predictions, while using only an isotropic part of the tangent operator of the matrix, CMiso , provides much
better predictions in terms of the overall response of the composite (e.g. see the work by Doghri and coworkers [64–66]).
CMiso can be defined as

CMiso = (
Ivol :: CM)

Ivol + 1

5

(
Idev :: CM)

Idev (14)

where Ivol and Idev are respectively the spherical and deviatoric parts of the identity tensor (Bornert et al. [67]). In the IMTD

model, a two-step recursive homogenization scheme is used which employs both CM and CMiso . The idea is to divide the

composite into two subsystems, s1 and s2, with volume fractions υs1 and υs2 (= 1 − υs1), and calculate the Eshelby tensor
ξ using CM for s1 and CMiso for s2, see Tekoğlu and Pardoen [44] for details about the estimation of υs1.

Previous models in the literature involved simple void nucleation laws that are based on either overall stress and/or
strain values (e.g. Chu and Needleman [68]), or an approximate analytical estimate of the stress in the particle (Beremin
[69]); as a result, these models do not have any coupling either with the hardening of the material due to the presence of
the second phase particles, or with the softening due to void nucleation (i.e. particle fracture or particle–matrix interface
decohesion). In the IMTD model, void nucleation is directly related to the stress in the particle or along the particle–
matrix interface, calculated by the MT homogenization scheme described above. The schematic diagram in Fig. 2 shows
the flow chart for the IMTD model. At each strain increment, the MT scheme calculates the overall as well as the per-
phase response of the composite, and transfers the elastic and plastic moduli of the composite to the GLD model, and the
maximum principal stress in the particle to the void nucleation box. By this way, the GLD porous plasticity interacts with
the composite surrounding the voids as if it was a homogeneous matrix. Assuming that there are no pre-existing voids, the
response of the composite is entirely predicted by the MT scheme before void nucleation. When the maximum principal
stress in a particle, σ

p_max
princ , reaches a critical value, σ min

c , void nucleation starts. The value of σ min
c is different for particle

fracture than for particle–matrix interface decohesion. The increase in porosity due to void nucleation can be given as

� fnuc = W0

W p
�υ p (15)

where W0 is the initial void aspect ratio (i.e. immediately after nucleation), W p the particle aspect ratio, and �υ p the
volume fraction of the particles that nucleated voids. After giving birth to voids, particles lose part of their load carrying
capacity. The decrease in the load carrying capacity of particles is taken into account in the IMTD model by decreasing a
corresponding amount of particle volume fraction in the MT homogenization scheme, which is expressed as �υ

p
nuc = δ�υ p ,

with δ being a heuristic parameter, see Tekoğlu and Pardoen [44] for details. In order to take the stochastic nature of the
void nucleation phenomenon into account, the IMTD model assumes that void nucleation, which starts at σ

p_max
princ = σ min

c ,
continues through a range of particle stress, �σc , within which each value corresponds to a different particle size and
shape. After the onset of void nucleation, the void nucleation box transfers the associated increase in porosity, � fnuc , to the
GLD model, where void growth and void shape changes are calculated. With further plastic deformation voids get closer to
each other and coalescence starts, based on a criterion such as the one discussed in Section 3.2.
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Fig. 2. Schematic diagram showing the flow chart for the integrated Mori–Tanaka damage (IMTD) model.

Fig. 2. Diagramme schématique de l’algorithme du modèle intégré d’endommagement et d’homogénéisation par l’approche de Mori–Tanaka (IMTD)l.

Even though relatively sophisticated in terms of mathematical developments, the IMTD model is conceptually rather
simple, and it recognizes the intimate coupling between the strain hardening of the composite and the presence of the
second phase particles, as well as the softening of the composite and the nucleation and growth of voids. The parameters
that need to be identified to use in the IMTD model, and which are typical of many other versions of the Gurson model,
are λ, which measures the anisotropy in particle (therefore void) distribution, σ min

c , the critical particle stress value at which
void nucleation starts, �σc , the range of particle stress through which void nucleation continues, and υs1, the volume
fraction of subsystem-1 in the MT scheme, see above. Except for υs1, all these parameters have a clear physical meaning;
although they cannot be directly measured experimentally, they can be decided by inverse identification.

The current state of the art modeling of void growth relies on extensions of the Gurson model, such as the standard
Gologanu and the IMTD models. Many other contributions have flourished over recent years involving extensions to strain
hardening, e.g. [39,63,70], to strain rate sensitive materials [19,71] to plastic anisotropy [37–39,62,72–74], to kinematic
hardening [75–77], and to shear loadings [78].

3.2. Void coalescence models

Significant progress has been made over the last 5–10 years in the modeling of void coalescence, moving from very sim-
ple empirical critical porosity or critical strain based coalescence models to more advanced micromechanics based models.
This is indeed an important building block of any predictive microstructure-informed ductile damage model. The starting
point for most of the recent progresses is the void coalescence condition proposed by Thomason based on a slip line solution
[42,79,80] which writes (in its most elaborate form)

σn(δ)

σ loc
y (1 − f2)

= (
1 − ηχ2(δ)

)[
α

(
1 − χ(δ)

χ(δ)W (δ)

)2

+ β

√
1

χ(δ)

]
, for δ ∈ [0;π/2] (16)

where σn is the overall stress component normal to the localization band oriented in the direction δ, σ loc
y is a representative

yield stress equal to σ0 in the original version (the model was initially developed for perfectly plastic materials), f2 is the
volume fraction of secondary voids ( f2 = 0 in the original model), α and β are constants, equal to 0.1 and 1.24, respectively,
and η is a geometric factor which depends on the void arrangement (η is defined such that the term 1/(1−ηχ2) represents
the ratio of the total ligament area including the void divided by the non-porous area; in a cylindrical void cell η = 1).
Thomason’s criterion (16) is a condition for the onset of coalescence in the ligament between neighboring voids by internal
necking. It states that coalescence occurs when the stress normal to the localization plane σn/σy reaches a critical value.
This critical value decreases as the voids open (W increases) and get closer to each other (χ increases). The dominant
parameter controlling the transition to the coalescence mode is the relative void spacing χ . When combined to a void
nucleation/void growth model such as the one presented in Section 3.1 to estimate σn,χ , calculated using Eq. (1), and W ,
the transition into coalescence is predicted to occur when Eq. (16) is fulfilled, meaning that the solution for a localized
plastic flow starts prevailing over the solution for a more diffuse mode of plasticity around the voids. The use of the
Thomason criterion (16) thus heavily relies on an accurate prediction of the evolution of the flow and damage variables
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before coalescence. Three recently proposed extensions of Thomason’s coalescence criterion developed to generalize and
enhance its predictive potential are briefly described hereafter.

3.2.1. The first generalization
The first generalization consists of properly accounting for the orientation of the void localization plane. Indeed, the void

axes are not necessarily aligned with the principal loading directions and the ligament where coalescence takes place is not
necessarily transverse to the maximum principal stress. The details of the extension are given in [81]. The main ideas are
the following. The centers of the voids are assumed to be initially statistically homogeneously distributed in the deformation
plane following an ellipsoidal symmetry [82]. Material compatibility requires that the void center distribution follows the
material deformation and evolves such as to remain elliptical. An effective void aspect ratio W (δ) and an effective relative
void spacing χ(δ) are heuristically defined as a function of the orientation of the localization plane δ. The criterion is
checked for every angle δ while σn is taken as the stress normal to the ligament. After condition (16) has been met for one
orientation δ = δc , plastic localization takes place in the ligament separating the two neighboring cavities. This extension
is essential when dealing with elongated voids not necessarily aligned with the main loading direction or in the case of
shear deformations. To a good approximation and except for a few relatively exotic cases, the localization plane is exactly
or almost normal to the maximum principal stress direction, which could simplify the implementation of the model.

3.2.2. The second generalization
The second generalization concerns strain hardening. In order to account for the effect of the strain hardening in con-

dition (16), a dependence of the parameter α on the strain hardening exponent n has been proposed by Pardoen and
Hutchinson [63] based on a large number of axisymmetric FE cell calculation results: α = 0.1 + 0.217n + 4.83n2 (with n
defined within a power law hardening fit and varying between 0 and 0.3). In addition, σ0 is replaced by the current mean
yield stress σy of the matrix material estimated using the energy balance (9). Another more elegant way to introduce strain
hardening in the Thomason’s criterion is based on the idea that the localization process is triggered by the weakest point
along the ligament line which anticipated to be the most deformed spot. The localization should thus be controlled by the
local value of the current yield stress σ loc

y instead of the current average yield stress σy resulting from Eq. (9). The local
yield stress is related to the local accumulated plastic strain ε

ploc
y through the hardening law. FE cell calculations have shown

that the largest accumulated plastic strain is always found near the surface of the void in the intervoid ligament. The local
strain rate components in the region next to the surface of a void, ε̇

ploc
i j can be related to the applied strain rates and to the

rate of change of the void dimensions based on simple geometrical arguments, described in [48,81,83]. This new version of
the Thomason model has been successfully validated based on a large set of 3D FE void cell simulations performed for dif-
ferent material parameters, loading conditions, and strain hardening laws, for both J2 elastoplasticity [81] and single crystal
plasticity description of the matrix [83].

3.2.3. The third extension of the void coalescence criterion (16)
The third extension of the void coalescence criterion (16) aims at introducing the effect of a second population of

voids. As mentioned in Section 2, the damage process controlled by the growth and coalescence of primary voids nucleated
on particles with a size varying typically between 1 and 100 μm is sometimes affected by the growth of much smaller
secondary voids nucleated on inclusions with a size varying typically between 0.1 and 3 μm, see Fig. 1. The nucleation
and growth of secondary voids do essentially not affect the growth of the primary voids but mainly accelerate the void
coalescence process by softening the material in the ligament between the voids where the strains are very large. The
softening induced by the growth of secondary voids is introduced by multiplying the yield stress of the matrix material by
(1 − f2), with f2 being the maximum value of the secondary voids volume fraction over the ligament. This maximum is
always attained next to the surface of the primary voids where the plastic strains are the largest. This extension and its
validation has been guided by FE void cell calculations in which the second population is introduced by using the Gurson
model to represent the behavior of the matrix surrounding the primary void [48], following earlier works by Brocks et al.
[84] and Gao and Kim [85]. This model assumes that the secondary voids are much smaller than the primary voids. The
drop of the ductility caused by the presence of secondary voids increases if the nucleation strain decreases and/or if their
volume fraction increases, and these effects are properly captured by the new extension of the Thomason criterion.

3.2.4. Model for the coalescence stage
Finally, a model for the coalescence stage must be provided in order to represent the final drop of the load carrying

capacity. After condition (16) has been met for one orientation δ = δc , plastic localization takes place in the ligament
separating the two cavities with the strain rate parallel to the ligament becoming very small, leading to a state of uniaxial
straining (see e.g. Koplik and Needleman [86]). The only non-zero plastic strain component develops along the normal to
the ligament. A simple geometric model has been worked out for deriving the unloading slope, required to bring a material
element from the onset of void coalescence up to final fracture. This slope controls the amount of energy dissipated during
coalescence. The details of the derivation are provided in Scheyvaerts et al. [51], resembling the analysis by Benzerga [87].
The normal stress to the ligament σn is assumed to decrease linearly with the normal strain εn . This linear evolution has
been verified by Tvergaard [88] up to very large strains using a remeshing procedure. The strain increment �εn needed to
bring a material element from the onset of coalescence to full failure is estimated by making several geometric assumptions:
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Fig. 3. Schematic description of the lengths entering a generic ductile damage process.

Fig. 3. Description schématique des échelles caractéristiques qui peuvent être impliquées dans un processus d’endommagement ductile.

(i) uniaxial straining is enforced during coalescence; (ii) the localization zone shape is approximated by a straight band;
(iii) the voids evolve towards a diamond shape; (iv) fracture occurs by void impingement, neglecting possible accelerating
factors such as the presence of a second population of voids or microcleavages taking place within the ligament; elastic
strains are neglected; (v) a scaling between the height of the localization band and the ligament length following the
mechanics of necking. The model has been assessed by comparison to a large set of FE cell calculations. In most instances,
the error on �εn is lower than 20%.

Other recent extensions/improvements in the modeling of void coalescence involve accounting for the effect of shear
[89] or of the rate sensitivity [71].

3.3. Scale transition and size issues

Several physical lengths play a role in ductile fracture as schematically represented in Fig. 3. The primary parameter
controlling the onset of void coalescence, hence the ductility, is the relative spacing between voids. The relative void spacing
is set by the microstructure and is directly related to the ratio of the particle size to the particle spacing. It depends thus
on the distribution of particles as well as on the statistical distribution of void nucleation events. Now, χ is only a relative
dimension and the ductility seems thus, in the context of the models described above, not being affected by any absolute
length scale. There are many instances, however where this conclusion is not correct and true size effects enter the problem.

The particle size can have both a direct and an indirect effect on the ductility. It has been shown theoretically that voids
with a diameter X3, see Fig. 3, typically smaller than 1 μm grow more slowly than larger voids due to strain gradient plas-
ticity effects [90]: the accumulation of a high density of geometrically necessary dislocations around such small voids tends
to decrease the void growth rate. The effect of the initial void size has been accounted for by reworking the Gurson model
in the case of the Taylor dislocation based strain gradient plasticity model, e.g. [91]. However, direct experimental evidence
of slower void growth rates is still lacking. An indirect effect of changing the particle size is related to the modification of
the void nucleation condition. Decreasing the particle size down to the micrometer range or smaller induces strain gradient
plasticity effects, affecting the load transfer to the particle [92]. Furthermore, smaller particles statistically contain fewer
defects than large particles and, on average, have a larger resistance to void nucleation. These size effects generally apply to
second populations of voids, if any, which most often involve submicron sizes [47,48], size X5 in Fig. 3.

Another length that can play a major role in the failure process is the size of the plastic localization band X1 which
might appear as a result of damage induced softening. The localization band size directly scales with the void spacing
X1 ≈ X0, see Fig. 3. Mathematically, a plastic localization of this kind is a bifurcation resulting from the loss of ellipticity
of the governing equations. The general formalism to address plastic localization has been discussed by Rice [93]. The
specific problem of damage driven localization has been studied by many authors [78,94–96]. The generation of plastic
localization bands depends not only on the void volume fraction but also on the loading conditions and on the geometry
of the structure. This localization mechanism must not be confused with the void coalescence mechanism which depends
on the void geometry and local stress state within the ligament between the voids. This confusion is easily made because
the localization band thickness X1 is not much different than the thickness of the localization zone X2 associated with void
coalescence which scales with the void radius [51,63]. Indeed, at coalescence, the ligament size is always on the order of
the void radius [97]. Depending on the problem, plastic localization will or not develop before void coalescence. Ultimately,
void coalescence will almost always take place. The ductility will be affected by the occurrence of plastic localization before
coalescence. The general problem of ductility set by plastic localization (connected or not to the presence of damage) is
outside the scope of this paper, though essential in some forming operations like deep drawing and in the analysis of the
forming limit diagrams.

Now, the existence of these two lengths X1 ≈ X0 and X2 brings serious difficulties when modelling ductile failure.
Indeed, before any localization, the problem is length independent, but as soon as localization sets in, the problem becomes
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Fig. 4. Description of (a) the microstructure and failure mechanisms, and of (b) the idealized microstructure.

Fig. 4. Description (a) de la microstructure et des mécanismes de rupture, et (b) de la microstructure idéalisée.

inherently size dependent. The constitutive model described in Section 3.1 does not involve any length scale. Different
solutions have been formulated in the literature to solve this problem. To our knowledge, no solution for embedding the
two lengths X1 ≈ X0 and X2 has already been worked out. Let us briefly mention the solutions for introducing one length.
The simplest solution in the context of FE simulations is to fix the element size as equal to the internal length X1 or X2,
e.g. [14]. This pragmatic solution has the drawback to mix the numerical solution procedure to the constitutive material
description. Advanced solutions involve the development of non-local formulations, an area of continuous interest in ductile
failure for almost 20 years [18,98–102]. Recently, Huespe et al. [103] have proposed a hybrid model. The material response
is initially described by a Gurson model. When the loss of ellipticity is met, a weak discontinuity is embedded with a
specific thickness and described by a traction separation law. The traction separation law depends on the stress triaxiality
in order to keep the connection to the physics of the void growth mechanism.

As explained in Section 2, the importance of accounting for the lengths X1 and/or X2 is even more crucial when ad-
dressing the ductile tearing resistance, as the fracture toughness is directly proportional to the internal length. The problem
of selecting the correct length X1 and/or X2 to set the fracture process zone height is still a matter of open debate. The
methods mentioned in the previous paragraph permit the introduction of the length scale for modelling crack growth. Note
that there is one class of problem where the lengths X1 and/or X2 do not have to be explicitly accounted for, i.e. when
looking at crack growth within an infinite medium. This class of problem belongs to the so-called small scale yielding (SSY)
formulation. In that case, the predicted energy release rate is directly applied and can be normalized by the internal length.
It is an interesting approach for analyzing, from an academic viewpoint, the effect of microstructure on ductile tearing,
while avoiding issues related to finite specimen sizes; see, for instance, one example in Section 4 or in [58,104].

In real metallic materials, especially the most complex ones involving several phases, and/or microstructure gradients,
additional lengths and size effects can play a role and affect ductile failure. The presence for instance of softer or harder
zones [21,105], of elongated bands of particles, of clustering effects [40,43], of weak zones in welds (see Section 5), or
of precipitate free zones (see next section) can lead to significant change of ductility and or fracture toughness, and to
anisotropy or rate effects. These additional microstructure based lengths must be taken into account in the model when
building the multilevel scheme, most often through building FE models with realistic microstructure representations. The
possibilities are infinite, and we will limit ourselves to two applications which illustrate how the methodology can be
applied and the level of sophistication that can be attained nowadays with such kind of approaches.

4. Competition between inter- and transgranular failure in Al alloys

4.1. Description of the material and damage mechanisms

A typical example of multilevel ductile failure problem is the following. Many Al, Ti, Ni or Fe-based metallic alloys involve
micron or submicron thick layers surrounding Grain Boundaries (GB) with a microstructure different from the bulk of the
grain, e.g. [106–108]. In several circumstances, the GB layers are softer than the grain interior, due to a lack of nanoscale
hardening precipitates. The presence of these soft zones favors a low toughness intergranular fracture mode. A classical
example is given by the Al alloys of the 7xxx series with important implications in aeronautical applications. Ductile damage
occurs both inside the grains and within the GB layers through the nucleation of voids by cracking or decohesion of large
second phases, void growth and coalescence, see Fig. 4. The goal of the study [81] was to investigate the influence of the
parameters describing the microstructure and of the flow properties on the cracking resistance and preferential crack path
by treating the problem with different levels of details in the description of the microstructure. It is important to improve
the understanding of the competition between intergranular and transgranular failure in order to support the optimization
of the microstructure.
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Fig. 5. Five models to simulate the damage evolution and cracking resistance of polycrystalline alloys involving soft grain boundary layers and hard grain
interiors, see description in the text.

Fig. 5. Cinq modèles destinés à simuler l’évolution de l’endommagement et la résistance à la fissuration d’alliages polycristallins impliquant des zones
molles le long des joints de grain et des intérieurs de grain durs, voir description détaillée dans le texte.

Whatever the description chosen for the microstructure, at least three phenomenological length scales are involved.
At the lowest scale, a constitutive model relying on the Gologanu model for the void growth part, see Eqs. (4)–(9), the
Thomason model for the void coalescence condition, see Eq. (16), and the coalescence model explained at the end of
Section 3.2 [51] has been used to represent the response of an elastoplastic porous material region located either in the
PFZ or in the grain interior. The voids are considered to be present from the beginning of the loading. Furthermore, the Al
alloys under interest have a volume fraction of second phases smaller than a few percents and the loss of strengthening
resulting from the particle fracture or decohesion can be safely neglected. Hence, the integrated homogenization-damage
model described in Section 3.1 was not needed. No second population was taken into account. Nevertheless, in order to
allow a realistic treatment of void growth and coalescence under various loading conditions, involving significant shear
strains along the inclined grain boundaries, a specific effort was devoted to formulate void rotation laws based on the work
of Kaisalam and Ponte-Castañeda’s [82] and to use the generalized version of the coalescence condition for a localization at
any possible orientation with respect to the main loading direction explained in Section 3.2, see also [81]. The second scale
is the scale of a sub-material region involving a bilayer made of soft and hard regions. The third scale is the scale of the
aggregate of grains, sometimes embedded in a homogenized medium making the transition to a fourth larger scale typical
of a macroscopic structure or components. These three levels of description are treated using the FE method, as described
next.

4.2. Description of the models and numerical procedures

The fracture mechanisms are investigated at different scales and with various levels of sophistication, using different
representations of the microstructure and employing the FE method. The different models are shown in Fig. 5:

Model 1 — Bilayer model — Fig. 5(a). This model describes the response at the grain level by a soft zone sandwiched
between two hard grains, essentially assuming that the competition in the damage and fracture evolution is controlled
by the GB layers perpendicular to the main loading direction. This simple representation of the microstructure has been
addressed in details in a former study [25].

Model 2 — Single grain model — Fig. 5(b). This model improves Model 1 by a more realistic description of the grain
involving a hexagonal shape (which can be equiaxed or not) and GB layers inclined with respect to the main loading
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Table 1
Values of the material parameters of the constitutive model, typical for Al alloys: σo/E is the ratio of yield stress to Young’s modulus, ν is the Poisson ratio,
n is the strain hardening exponent, f0 is the initial void volume fraction, W0 is the initial void shape, and λ0 is the initial void distribution parameter.

Grain interior σog/E g νg ng f0g W0g λ0g

10−3 0.35 0.05 5 × 10−3 1 1

GB layer σop/E p νp np f0p W0p λ0p

2 to 10 0.35 0.3 5 × 10−2 to 6 × 10−3 1/3 1

direction. Periodic boundary conditions are enforced. Owing to the symmetries, the unit cell consists of only a portion of
the grain.

Model 3 — Multigrain model under homogeneous loading conditions — Fig. 5(c). Compared to Model 2, the multi-grain rep-
resentation provides statistical results, by dealing with more realistic grain shape and size distributions, and allows the
coexistence of both failure modes and the simulation of complex crack paths.

Model 4 — Multigrain tensile test sample — Fig. 5(d). The multi-grain window is embedded into a tensile test sample,
in order to simulate a test involving necking, therefore generating realistic information about ductility, fracture surface
orientation, and crack path that can be compared to experimental results.

Model 5 — Small scale yielding (SSY) multigrain model — Fig. 5(e). The multigrain window is embedded into a large domain
subjected to a K-field with a pre-existing macro-crack. The domain is large enough to enforce small scale yielding conditions
and to generate geometry-independent J R curves.

For each of these models, the GB layers (shown in Figs. 5 (a) and (b), but not in (c), (d) and (e)) are meshed with one
or two elements over the thickness. The grain interiors are finely meshed, especially in Models 1 and 2. The multigrain
box is constructed based on a Voronoi tessellation procedure. The models are all 2D plane strain. The response of the grain
interior and GB layer is described by the same constitutive model, briefly outlined in Section 4.1. The hardening law for the
material in the grain interior and in the GB layer is given by a power law description:

σ

σ0
= Eε

σ0
when σ < σ0 (17)

σ

σ0
=

(
1 + Eεp

σ0

)n

when σ � σ0 (18)

where E is the Young’s modulus, σ0 is the yield stress, and n is the strain-hardening exponent. The material parameters
used in all calculations reported in the present paper are typical for 7xxx Al alloys [106], see Table 1 with definitions.
A subscript “g” (resp. “p”) is used when referring to the grain interior (resp. for the GB layer). The relative thickness of
the GB layer with respect to the grain size, R0, is equal to 0.0525, the grain shape Wgrain = 1, and the grain orientation
θgrain = 0◦ . The model has been implemented in an in-house FE code within a finite strain setting, as explained in details
in [81].

4.3. Selected results and discussion

4.3.1. Single grain model (Model 2)
Fig. 6 shows stress-strain curves predicted with Model 2 for different yield stress ratios, using the parameters of Table 1.

The transition from an intergranular fracture mode when the grain is much harder than the GB layer to transgranular frac-
ture when the hardness mismatch gets smaller is clearly captured. Note that the predictions of the bilayer model (Model 1)
[25] agree qualitatively well with the single grain model (Model 2). Quantitatively, the presence of inclined GBs tends to
relax the constraint in the soft layers, favoring slightly more the transgranular failure mode.

4.3.2. Multigrain model under homogeneous loading conditions (Model 3)
Fig. 7 shows the variation for three different grain distributions of the fracture strain as a function of yield stress mis-

match for different applied stress ratios Σ11/Σ22. Two distributions correspond to two different Voronoi tessellations (see
Fig. 8 where the multigrain is embedded in a tensile sample) and one distribution is a perfect arrangement of identical
hexagonal grains (equivalent to the single grain model). The results found with the two statistical distributions are almost
identical (i.e. the number of grains is sufficient so that statistical differences are averaged out), and the ductility is signifi-
cantly smaller than for the perfect hexagonal arrangement, especially in the intergranular regime. The Voronoi tessellation
leads to weak crack paths, which are absent in the hexagonal distribution.

4.3.3. Uniaxial tension with necking
At the left hand side of Fig. 8, a zoom is shown to the necking region of samples loaded up to fracture, for the three

different grain distributions depicted in Figs. 8 (a)–(c). Results are provided for both low yield stress mismatch (left column
of snap-shots) leading to significant amount of necking before transgranular failure and large yield stress mismatch (right
column of snap-shots) leading to small amounts of necking before intergranular failure. Again, a regular arrangement of
grains provides an artificially high ductility. Transgranular failure shows evidence of cup and cone fracture combining flat
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Fig. 6. Stress strain curves predicted with the single grain model (Model 2) for different ratios of yield stress between the grain interior and GB layer, under
plane strain tension (Σ11 = 0). (The ratio (L/D)op = 1.85 is similar to imposing f0p = 5 × 10−2.)

Fig. 6. Courbes contrainte déformation prédites par le modèle à un grain (modèle 2) pour différents rapports de limite d’élasticité entre l’intérieur du grain
et les zones proches des joints de grain, en traction simple sous déformation plane (Σ11 = 0). (Le rapport (L/D)op = 1,85 est similaire à imposer que
f0p = 5 × 10−2.)

Fig. 7. Variation of the fracture strain as a function of the yield stress mismatch for different applied stress ratio and the three different grain arrangements
shown in Fig. 8. (The ratio (L/D)op = 3 is similar to imposing f0p = 6 × 10−3.)

Fig. 7. Variation de la déformation à rupture en fonction du rapport des limites d’élasticité pour différentes contraintes appliquées et trois différentes
distributions de grains. (Le rapport (L/D)op = 3 est similaire à imposer que f0p = 6 × 10−3.)

and shear type cracking (especially with regular grain distribution), while intergranular fracture leads to relatively flat
fracture surfaces.

4.3.4. SSY multigrain model
Fig. 9 presents the J R curves predicted with the SSY model for different yield stress mismatches. The effect of moving

from intergranular to transgranular fracture is enormous in terms of tearing modulus. The crack profiles obtained for one
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Fig. 8. Initial and final (fractured) configuration of tensile test samples for three different grain arrangements (a) to (c) shown on the right. The simulations
are performed for a low (left column) and high (right column) yield stress mismatch leading to a transgranular large ductility failure and intergranular low
ductility failure, respectively.

Fig. 8. Configuration initiale et finale des échantillons de traction pour les trois différentes distributions de grains de (a) à (c) montrées à la droite de la
figure. Les simulations sont menées pour un faible (colonne de gauche) et un fort (colonne de droite) rapport des limites d’élasticité conduisant respective-
ment à une rupture intergranulaire très ductile et une rupture intergranulaire peu ductile.

Fig. 9. Predictions obtained with SSY model in terms of J R curves for different yield stress ratio and the crack profile for a low and high yield stress
mismatch corresponding to transgranular and intergranular fracture modes, respectively.

Fig. 9. Prédictions obtenues avec le modèle de plasticité confine (SSY) en terme de courbe de déchirure J R pour différents rapports de limite d’élasticité,
ainsi que les profils des fissures pour un faible et un fort rapport de limites d’élasticité correspondant respectivement aux modes de rupture transgranulaire
et intergranulaire.
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low and one high yield stress mismatch demonstrate that intergranular fracture involves, as expected, small amount of crack
tip blunting and relatively straight crack path along the weak grain boundary layers.

The approach developed here having in mind the problem of the influence of PFZ on failure modes and ductility could
be transposed to other problems involving competition between the failure in a soft or a hard zone, both involving a void
growth damage mechanism. Of special interest are the cases of intrinsically heterogeneous materials [21,22,109] such as
cast alloys with structural hardening (the core of the dendrite being equivalent to the grain interior, the eutectic particles
equivalent to the grain boundary precipitates, and the intereutectic solid solution equivalent to the soft PFZ). In some
situations, the soft zone may develop during the test such as the case of microstructure evolution in the vicinity of grain
boundaries in diffusion controlled creep: in such situations, the present approach may be of some use to predict accelerated
final void coalescence and creep failure. Another class of problems presenting heterogeneities at a larger scale is to be found
in the joining technologies: brazed joint failure, heat affected zones in welding, and friction stirred joints as discussed in
the next section.

5. Ductile failure in friction stir welded joints

Friction stir welding (FSW) is a novel welding process by which the parts to be welded do not reach the melting
temperature (see reviews by Mishra and Ma [110], Nandan et al. [111] and Threadgrill et al. [112]). Due to the intense
stirring and non-isothermal treatment of the material during welding, different evolutions of the microstructure and of the
subsequent material properties are observed across the weldline. A FS-weld is typically divided into four regions: (1) the
unaffected base material (BM); (2) the heat affected zone (HAZ); (3) the thermo-mechanically affected zone (TMAZ) exposed
to high temperature with large heating and cooling rates as well as mechanical deformation; and (4) the nugget (NG) in the
stir zone where recrystallization takes place.

A micromechanical damage model similar to the one presented in Section 3 (Eqs. (4)–(9)) and Eq. (16) has been applied
to address ductile failure in friction stir welds made of aluminum alloy 6005A in the hardest T6 temper [113–117]. In the
present paper, the focus will be on the behavior of a specific weld produced with an advancing speed of 1000 mm/min and a
tool rotational speed of 1000 rpm. After welding, tensile specimens have been extracted from the weld in two perpendicular
directions [115]: macro specimens (section 12.5 mm × 6 mm) involving the entire weld region with the loading direction
perpendicular to the welding direction and mini tensile specimens (section 4 mm × 0.8 mm) probing the tensile properties
in the various regions of the weld (i.e. in the BM, HAZ, TMAZ and NG) with the loading direction parallel to the welding
direction. Fig. 10 presents the evolution of the tensile properties with respect to the distance from the weldline measured
for the mini tensile specimens. The material is assumed to follow the extended Voce hardening law accounting for stage IV
hardening [54,117]:

σy = θ0 − θIV

β

(
1 − exp(−βεp)

) + σ0 + θIVεp (19)

with β = β0[1 − 2β0θIVεp_ch
θ0

]−1 and εp_ch is the plastic strain for which σy = (θ0/2β0) + σ0.
Here, σy is the flow stress, εp is the plastic strain, σ0 is the initial yield stress, θ0 is the dislocation storage rate, β0 is

the dynamic recovery rate, and θIV is the stage IV hardening. Fig. 10 shows that the HAZ and NG are the weakest regions of
the weld with a drop of yield strength of about half the initial yield strength of the base material. The HAZ is the weakest
of all regions combining a low yield strength and a low strain hardening capacity (large β0).

The FE model of the macro tensile test is shown in Fig. 11 involving the different zones of interest. The geometry of the
zones has been determined by hardness maps on transverse sections and by macroscopic observations of the weld [115].
Each region of the model is described by the tensile properties extracted from the mini specimens. The material behavior is
described either by the J2 flow theory or by a fully coupled micromechanics damage model based on the Gologanu model,
see Section 3.1. In the case of the J2 flow theory, the calculations are run in two steps. The FE simulations provide the
evolution of the overall strain components and stress triaxiality in the elements with the highest equivalent plastic strain.
The history of the stress triaxiality as a function of the effective equivalent plastic strain is then applied to the damage
model for the prediction of the onset of coalescence. This un-coupled two-steps approach for the multiscale problem brings
the calculation time down to a few days on a personal computer compared to about one month on a powerful computer
for the fully coupled damage model while not significantly affecting the predictions (see Table 2).

The parameters introduced in the damage model have been directly extracted from the characterization of the mi-
crostructures. Voids nucleate by the fracture of iron rich particles [54,19]. These particles have been analyzed by scanning
electron microscopy giving a volume fraction f p equal to 0.012 and an aspect ratio W p equal to 0.6. Nucleation by particle
fracture implies that the initial aspect ratio of the voids W0 is very low (a value of 0.01 has been selected). The initial vol-
ume fraction of nucleated voids is calculated as f0 = ( f p W0)/W p [19,34,54]. The nucleation of flat voids due to the fracture
of these iron-rich particles is stress-controlled [32]. A simple Beremin type void nucleation condition [69] is identified [54]
based on a large variety of heat treatments on the 6005A aluminium alloy, avoiding the use of more complicated homog-
enization model like the one presented in Section 3.1. The void nucleation stress σ min

c is identified as equal to 400 MPa
and the normal distribution of void nucleation is assumed to extend over �σc = 200 MPa. This high value of the nucleation
stress causes late void nucleation in low yield stress regions and early void nucleation on high yield stress regions, capturing
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Fig. 10. Material properties on a transverse section of a FSW in AA6005A based on mini tensile specimens showing the initial yield stress σy , the dislocation
storage rate θ0; the dynamic recovery rate β0; and the stage IV hardening θIV (estimated, see Ref. [117]). The top figure represents the distribution of the
material properties on the FE mesh of the macro-specimens (from [117]).

Fig. 10. Propriétés matériaux dans une section du joint FSW en aluminium AA 6005A obtenues à partir de mini éprouvettes montrant la limite d’élasti-
cité σy , le taux de stockage des dislocations θ0, le taux de restauration dynamique β0, et le taux d’écrouissage du stade IV θIV (pour l’estimation, voir
Ref. [117]). La figure supérieure représente la façon dont les distributions des propriétés matériaux sont attribuées dans un maillage éléments finis des
macro éprouvettes, voir [117].

Fig. 11. Mesh used for the coupled 3D damage model of a macro-specimen containing the welded joints (from [117]).

Fig. 11. Maillage éléments finis utilisé pour les simulations 3D couplées avec endommagement des macro éprouvettes contenant un joint soudé, voir [117].

for instance the fracture strain evolution with heat treatment time of the 6005A alloy [54]. Note that industrial aluminum
alloys generally contain dispersoïds in addition to the typically μm size iron rich particles. These dispersoïds are typically
50–100 nm in size and can intervene in the damage process as a second population of particles [48,118]. It has been shown
by Simar et al. [54] that heat treated 6005A tensile specimens can show two populations of cavities if the material is in
a hard state (typically in the T6 state). Now, the weld breaks in the HAZ which is a rather soft zone. No obvious second
population has been observed on the fracture surfaces of the welds but it could still have a limited effect and hence slightly
reduce the fracture strain compared to the ideal material assumed in the model.

Table 2 presents the results of the FE simulation of the macro-tensile test. The pseudo yield strength R p , pseudo ulti-
mate tensile strength Ru and pseudo engineering strain at necking eu of the specimen involving the entire weld are well
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Table 2
Measured and predicted transverse tensile properties of the weld (obtained by a macro tensile test). R p is the pseudo yield strength, Ru is the pseudo
ultimate tensile strength, eu is the pseudo engineering strain at maximum load and ε f is the fracture strain.

R p

(MPa)
Ru

(MPa)
eu

(%)
ε f

Experiment 121 213 6.3 0.58

Coupled model [117] 123 216 7.9 0.68

J2 — damage un-coupled model 125 212 7.6 0.68

J2 — damage un-coupled model
with 50% increased size of HAZ

124 208 7.5 0.703

J2 — damage un-coupled model with
a HAZ yield strength reduced by 20%

111 201 6.9 0.616

predicted. It has also been shown in Nielsen et al. [117] that the local strain distribution measured by digital image cor-
relation during loading is well predicted. The damage model is able to accurately predict the fracture strain ε f defined as
ε f = ln(A0/A f ), where A0 and A f are the initial and final cross-section areas. The predictions of the fracture strain agree
very well with the experimental values whether the damage model is coupled to the finite elements or not.

Table 2 shows also the effect of increasing the size of the weakest zone (the HAZ and the TMAZ) and the effect of
decreasing the initial yield stress of the HAZ, which could arise as a result of post welding heat treatments or changing the
welding conditions. If the width of the weak zone increases, the local stress triaxiality decreases since the size of the zone
where plastic deformation localizes gets larger. The consequence is an increase of the fracture strain. Oppositely if the weak
zone is even weaker, deformation localizes very early and the NG and TMAZ do not deform. This drastically increases the
stress triaxiality causing earlier fracture, though slightly balanced by the low initial yield stress favoring later nucleation.

6. Conclusions

The applications discussed in the last two sections of the paper demonstrate the current level of maturity of the mi-
cromechanics based approach of ductile failure. Nevertheless, there is still much progress needed to incorporate in the
models the different length scales listed in Section 3.3 using mathematically and physically sound formalism. The two main
length scales are the void spacing and the void size which have well distinct effects, the first on the localization either by
macroscopic bands or by the coalescence mechanism, the second on the void growth rate. Among others, the two length
scales related to these two localization mechanisms are usually not distinguished in existing computational models. In addi-
tion to the length scales, the problem of properly treating the effect of the distribution of the position, size and shape of the
voids is still an open issue. In the framework presented in this paper, it was tacitly assumed that the voids have the same
size, shape and are arranged in a more or less periodic way (see e.g. [43] for an attempt at modelling realistic distribution
effects). Finally, the interest of material scientists is not limited to linking microstructure to material properties but also to
incorporate all the processing aspects in the picture. The friction stir welding problem addressed in the last section offers
one possible example where the idea is to guide the development of better welds by playing with the process parameters
and metallurgy. The objective is to couple the multiscale model for ductile failure to a chain of models involving a thermal
evolution simulation during welding, precipitation kinetics, hardening and strain hardening [116] in order to control the
entire history in a “materials by design” approach. This is indeed where the present type of approach will find the highest
interest for physical metallurgy applications.
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