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Incompressible MHD turbulence is investigated under the presence of a uniform magnetic
field B0 . Such a situation is described in the correlation space by a divergence relation
which expresses the statistical conservation of the Elsässer energy flux through the inertial
range. The ansatz is made that the development of anisotropy, observed when B0 is strong
enough, implies a foliation of space correlation. A direct consequence is the possibility
to derive a vectorial law for third-order Elsässer moments which is parametrized by
the intensity of anisotropy. We use the so-called critical balance assumption to fix this
parameter and find a unique expression.
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r é s u m é

La turbulence MHD incompressible est étudiée en présence d’un champ magnétique
uniforme B0. Une telle situation est décrite dans l’espace des corrélations par une relation
de divergence qui exprime la conservation statistique du flux d’énergie d’Elsässer à
travers la zone inertielle. Nous faisons l’ansatz que l’anisotropie, observée quand B0 est
suffisamment fort, implique un feuilletage de l’espace des corrélations. Une conséquence
directe est la possibilité d’obtenir une nouvelle loi vectorielle pour les moments d’Elsässer
d’ordre trois qui est paramétrisée par l’intensité de l’anisotropie. Nous utilisons l’hypothèse
d’équilibre critique pour fixer ce paramètre et trouver une expression unique.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Despite its large number of applications such as climate, atmospherical flows or space plasmas, turbulence is still today
one of the least understood phenomena in classical physics; for that reason any exact results appear extremely important
[1]. The Kolmogorov’s four-fifths (K41) law [2] is often considered as the most important result in three-dimensional (3D)
homogeneous isotropic turbulence: it is an exact and nontrivial relation derived from Navier–Stokes equations which implies
the third-order longitudinal structure function. When isotropy is not assumed the primitive form of the K41 law is the
divergence equation [3]

−1

4
∇r · FHD(r) = ε (1)
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where ε is the mean energy dissipation rate per unit mass, r is the separation vector, FHD(r) = 〈δvδv2〉 is associated to the
energy flux vector and δv = v(x + r) − v(x). Then, the K41 law may be seen as a nontrivial consequence of Eq. (1) when
isotropy is assumed; it is written as [2]

−4

5
εr = 〈

δv3
L

〉
(2)

where L means the longitudinal direction along r. Few extensions of such a result to other fluids have been made; it
concerns e.g. scalar passively advected such as the temperature or a pollutant in the atmosphere [4] or space magnetized
plasmas described in the framework of magnetohydrodynamics (MHD) [5], electron [6] and Hall [7] MHD.

In this article we investigate 3D homogeneous incompressible MHD turbulence for which the following divergence rela-
tion holds [5]

−1

4
∇r · F±(r) = ε± (3)

where F±(r) = 〈δz∓(δz±)2〉, z± = v ± b are the Elsässer fields and ε± are the mean Elsässer energy dissipation rates per
unit mass. When isotropy is assumed we obtain the exact law for 3D MHD [5]

−4

3
ε±r = 〈

δz∓
L

(
δz±)2〉

(4)

which may reduce to expression (2) when the magnetic field is taken equal to zero. It is straightforward to demonstrate the
compatibility between relations (3) and (4) by performing an integration of the former over a full sphere (ball). The same
remark holds for the compatibility between expression (1) and the K41 law.

To date the universal isotropic scaling relations discussed above have never been generalized to 3D homogeneous –
nonisotropic – turbulence (see however [8,9] for the latest progress). It is basically the goal of this paper to show that an
exact relation may be derived in terms of Elsässer fields for axisymmetric MHD turbulence. This derivation is based on the
ansatz that the space correlation is foliated when the field fluctuations are dominated by a uniform magnetic field. Note
that a first analysis was made for such a problem in [8]. The main goal was the development of a tensorial analysis only for
vectors v and b since the Elsässer fields, a mixture of a vector and a pseudo-vector, renders the study much more difficult.
Then, the idea of foliation of space correlation was eventually introduced to derive a law for third-order correlations in v
and b. In the present paper we show that the extension of the latter idea to Elsässer variables is possible – independently
of their tensorial nature since we do not perform a tensorial analysis – and we derive the corresponding exact law.

2. Impact of a mean magnetic field

The influence of a large-scale magnetic field B0 on the nonlinear MHD dynamics has been widely discussed during
the last fifteen years. The first heuristic picture of MHD turbulence proposed by Iroshnikov–Kraichnan [10,11] has been
criticized and, nowadays, we know that under the presence of B0 we find turbulent fluctuations with larger fluctuating
components in the direction transverse to B0 than along it, as well as different type of correlations along B0 and transverse
to it [12–18]. In other words, the nonlinear transfer occurs differently according to the direction considered with a weaker
nonlinear transfer along B0 than transverse to it, with possibly different power law energy spectra. An important concept
introduced in the last years is the possible existence of a critical balance between the nonlinear eddy-turnover time and
the Alfvén time [19]. The former time may be associated to the distortion of wave packets whereas the latter may be seen
as the duration of interaction between two counter-propagating Alfvén wave packets. A direct consequence of the critical
balance is the existence of a relationship (in the inertial range) between length-scales along (‖) and transverse (⊥) to the
mean magnetic field direction (see also [20]). This relation, generally written in Fourier space, is

k‖ ∼ k2/3
⊥ (5)

In practice, numerical evidences of relation (5) may be found by looking at the parallel and perpendicular (to the mean
magnetic field direction) intercepts of the surfaces of constant energy, either in physical space with second-order correlation
functions [13,21] or in Fourier space with spectra [18]. Note that one generally takes a local definition for k‖ by using the
local mean magnetic field but it has been shown that a global definition (with the parallel direction along B0) works quite
well if B0 is strong enough [18]. Despite the limitation of direct numerical simulations a scaling relation between parallel
and perpendicular length scales seems to emerge whose power law relation is compatible with the critical balance relation
(5). Therefore, the idea of a general relationship between length scales during the nonlinear transfer (of energy) from large
to small scales may be seen as a natural constrain for theoretical models. Basically, we translate this constrain as an ansatz
for axisymmetric MHD turbulence which allows us to derive from Eq. (3) the equivalent of the four-fifths law.

At this level of discussion, it is interesting to remark that the assumption of isotropy made to derive the exact law (4)
is questionable in the sense that we never observe exactly isotropy. For example in [22,23] it was shown numerically that
despite the absence of a uniform magnetic field (B0 = 0) deviations from isotropy are observed locally with the possibility
to get a scaling relation between length-scales along and transverse to the local magnetic field. This local anisotropy is
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expected to be stronger at larger (magnetic) Reynolds numbers for which the exact law (4) is derived. Therefore, this exact
law (4) should be seen as a first order description of MHD turbulence when B0 = 0. More precisely in the derivation of this
law one should consider the decomposition

F±(r) = F±
iso(r) + δF±

ani(r) (6)

where the first term in the RHS is the isotropic contribution to the vector third-order moment whereas the second term
measures the deviation from isotropy. When the second term is of second order in importance then δF±

ani 
 F±
iso and the

integration of relation (3) over a full sphere – with the application of the divergence theorem – gives the universal law (4).
The derivation of a universal law from Eq. (3) in the general case of nonisotropic turbulence is far from obvious. For

example, one needs to find a volume V such that at its surface S the normal component Fn of F is conserved. Then,
one can perform an integration of Eq. (3) over this volume, apply the divergence theorem and obtain a simple expression
independent of any parameter. In practice, that means one starts with

−1

4

∫ ∫ ∫
V

∇r · F±(r)dV = ε±
∫ ∫ ∫

V

dV (7)

which gives by the divergence theorem and after integration over the volume

−1

4

∫ ∫
S

F±(r) · dS = ε±V (8)

and after projection on the surface vector dS

−1

4

∫ ∫
S

F ±
n (r)dS = ε±V (9)

If one assumes that F ±
n (r) is constant on S then one obtains

−1

4
F ±

n (r)
∫ ∫

S

dS = −1

4
F ±

n (r)S = ε±V (10)

which leads to the exact law

F ±
n (r) = −4ε± V

S
(11)

The form (and even the existence) of such a volume V is still an open question. However, it is important to note that
there exists an infinity of mathematical solutions of Eq. (3) but they depend on parameters which render the solutions
nonuniversal. For example we may have [24]

F±(r) = −4ε
(

A±ρeρ + (
1 − 2A±)

zez
)

(12)

where ρ and z are the cylindrical coordinates, and eρ and ez are the corresponding unit vectors (with ez ≡ B0/B0). Note
that the choice A± = 1/2 gives the universal law for two-dimensional isotropic MHD turbulence, whereas A± = 1/3 leads to
a radial vector and corresponds to the three-dimensional isotropic law [5]. Then, we may expect that relation (12) describes
correctly anisotropic MHD turbulence when A± ∈ [1/3;1/2] with stronger anisotropy when A± is closer to 1/2. However,
relation (12) does not satisfy the critical balance relation (5) for any values of A±: indeed, for isotropic turbulence the
energy flux vector is radial which may express the fact that energy cascades radially, whereas when a mean magnetic
field is present it is not the case anymore and iso-contours of spectral energy are elongated in the perpendicular direction
according to the power law (5) with an elongation more pronounced at small length scales (which means, in the correlation
space, an elongation along the mean magnetic field direction). According to relation (12), we see that for a given distance r
the energy flux ratio between a point along ez and another point along eρ is equal to the following constant

F ±(rez)

F ±(reρ)
= 1 − 2A±

A± (13)

This constant can be very small (when A± is close to 1/2) but its precise value does not change the nature of the relation
between these two fluxes which is linear. Therefore, it can only lead to a linear law dependence between the parallel
and perpendicular intercepts of the surfaces of constant energy (the form of these surfaces being directly related to the
intensity and direction of the energy flux). Note that if one considers a slightly different situation with points close to the
eρ and ez directions with energy fluxes F ±(reρ + εez) and F ±(εeρ + rez) respectively (where ε is a small parameter), the
conclusion does not change drastically as long as r  ε; when r becomes of the order of ε then both energy flux vectors
deviate significantly from the eρ and ez directions which does not help for increasing anisotropy at small length scales
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Fig. 1. Left: We perform an integration of relation (3) over the manifold Sn defined in the half upper space by the function fn(ρ) = ρ0(ρ/ρ0)n with n > 1;
note the use of the polar coordinates with r = (ρ, z). Sn is a surface of revolution about the (Mz) axis: on this figure it appears as a “bowl” of axis
of symmetry (Mz). The vector eT at point M ′ is tangent to the surface Sn and perpendicular to the circle Ln of radius ρ which has also (Mz) for axis
of symmetry. The curved vectors represent schematically the orientation of the energy flux F±(r) which flows towards the point M . For comparison the
three-dimensional isotropic case is also represented (right) for which the energy flux flows radially.

which needs to have energy flux vectors preferentially along eρ . Expression (12) is the simplest solution among an infinity
of axisymmetric solutions obtained by [24]. The expression that we shall derive here for the energy flux vector is another
particular solution of this family which satisfies this time the critical balance assumption.

In order to recover an anisotropic law of the type of (5) – which is a power law – it is necessary to reinforce the energy
flux in the eρ direction at small length scales. Then, the following statement is made that the energy flux vector has an
orientation closer to the eρ direction when the length scale decreases. This variation must have a power law dependence
(with power law index n) in the length scale in order to be compatible with relation (5) which is also a power law. The
value of n compatible with the index 2/3 in relation (5) may be determined with critical balance arguments (see Section 4).
We will see that if we incorporate such a requirement in the analysis then we may derive a universal law in the sense
that it does not depend on any (nonphysical) parameter. In practice, the energy flux vectors will belong to an axisymmetric
surface Sn in the three-dimensional space correlation (which means that F±(r) is tangent to Sn for any points M ′ ∈ Sn; see
Section 3 and Fig. 1). The manifold Sn is defined in such a way that the energy flux vectors tend to be perpendicular to ez
when the distance separation goes to zero which means that turbulence tends to be bi-dimensional at small scales. As we
will see in Section 6, the expected constant −2 for two-dimensional MHD turbulence is indeed recovered from the exact
law when the small scale limit is taken.

3. Foliation of space correlation

From several theoretical and numerical analyses we know that MHD turbulence under the influence of B0 develops
anisotropy that increases as the length scale decreases. Additionally, the rms fluctuations at a given separation distance r are
more intense when r is perpendicular to B0 than when r is parallel to it. This property can be understood as a consequence
of the critical balance relation (5) which provides a relationship between the length scales of the fluctuations parallel
and perpendicular to the mean magnetic field. Following these considerations and those exposed at the end of Section 2,
we make the ansatz that the energy flux vectors belong to two-dimensional surfaces Sn in the three-dimensional space
correlation (which means that F±(r) is tangent to Sn for any points M ′ ∈ Sn; see Fig. 1). Since the problem is axisymmetric,
the manifolds Sn must be of revolution about the (Mz) axis (with ez ≡ B0/B0; see Fig. 1). It is defined in such a way that
the direction of F±(r) tends to become perpendicular to ez when the distance separation r goes to zero. This variation of
direction for F±(r) should have a power law dependence in the length scale. Then, the axisymmetric manifold Sn is defined
by the following function

z = fn(ρ) = ρ0

(
ρ

ρ0

)n

(14)

It is the simplest algebraic function satisfying the conditions fn(ρ) → 0 when ρ → 0 with a simple power law dependence
between ρ and z. Without loss of generality we may already note that n must be greater than one to satisfy the anisotropic
property (the energy flux vector getting perpendicular to B0 at small separation distance r). Finally, note that ρ0 is the value
of ρ for which the angle between r and ez is π/4; therefore ρ/ρ0 may be seen as a way to delimit the correlation space
into two domains where the direction of the separation vector r is closer to the transverse plane (xM y) or to the parallel
direction ez (see Fig. 1). It is important to emphasize that the critical balance measured in MHD turbulence (with B0 > 0) is
a situation towards which the nonlinear dynamics converges: it is the main state of the dynamics. In other words, deviations
from this state may be found but are of second order in magnitude. In the same way, the assumption of a foliation of the
space correlation (with relation (14)) means that one should write
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F±(r) = F±
fol(r) + δF±

nonfol(r) (15)

where the first term in the RHS is the vector third-order moment which belongs to the foliated space correlation (see the
schematic vectors in Fig. 1) whereas the second term corresponds to other vector contributions which are assumed (ansatz)
of second order in importance, namely δF±

nonfol 
 F±
fol .

Eq. (3) is integrated over the manifold Sn of axis of symmetry (Mz). An illustration is given in Fig. 1 where Sn appears
as a “bowl”. It gives

−4ε±
∫ ∫

Sn

dSn =
∫ ∫

Sn

∇r · F±(r) dSn (16)

By the Green’s flux theorem (see Appendix A) and after integration over the surface, we obtain

−4ε± Sn =
∮

circle

F±(r) · dLn (17)

where the line integral is performed along a circle Ln of radius ρ and of axis of symmetry (Mz). On the example given in
Fig. 1, it corresponds to the upper boundary of the “bowl”. Note that dLn is an elementary vector which is normal to the
circle Ln and tangent to the surface Sn (see Appendix A). Then, one gets after projection

−4ε± Sn =
∮

circle

F ±
T (r)dLn (18)

where T means the tangent direction at point M ′ (see Fig. 1). The problem being axisymmetric, F T (r) is unchanged along
the circle Ln of axis of symmetry (Mz); then we have

−4ε± Sn = F ±
T (r)

∮
circle

dLn = F ±
T (r)2πρ (19)

and thus

−4ε± Sn

2πρ
= F ±

T (r) (20)

If we introduce the unit vector eT along the T -direction we obtain the vectorial relation

−2ε± Sn

πρ
eT = F±

T (r) (21)

with

eT = eρ + f ′
n(ρ)ez√

1 + f ′
n(ρ)

2
= eρ + n(ρ/ρ0)

n−1ez√
1 + n2(ρ/ρ0)2(n−1)

= eρ + n tan θez√
1 + n2 tan2 θ

(22)

where θ is the angle between r and the (xM y) plane (see Fig. 1). Note that for the foliated space correlation defined with
relation (14) the general form of the divergence operator is

∇ · F ≡ 1

ρ

∂(ρ F T )

∂T
+ 1

ρ

∂ Fφ

∂φ
(23)

where φ is the angle defined in cylindrical coordinates (note that by symmetry Fφ = 0) and dT is the unit length along the
tangent direction (see Fig. 1). The surface Sn for a given ρ is defined as

Sn =
∫

2πρ dT =
ρ∫

0

2πρ

√
1 + f ′

n(ρ)
2 dρ =

ρ∫
0

2πρ

√
1 + n2

(
ρ

ρ0

)2(n−1)

dρ

= πρ2
0

n2/(n−1)

X∫
0

√
1 + Xn−1 dX (24)

with

X = n2/(n−1)

(
ρ

)2

=
(

nz
)2/(n−1)

= (n tan θ)2/(n−1) (25)

ρ0 ρ
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The combination of the different expressions gives eventually the following vectorial law for Elsässer fields

−2
I(X)

X
ε±ρeT = F±

T (r) (26)

where

I(X) =
X∫

0

√
1 + Xn−1 dX (27)

4. Critical balance condition

The vectorial relation (26) implies a parameter n that has to be determined. We shall fix n by a dimensional analysis
based on the critical balance condition [19]. To investigate this idea we will restrict our analysis to the inviscid, stationary
MHD equations since basically we want an interpretation of relation (26) valid in the inertial range; we thus obtain

z∓ · ∇z± = −∇P∗ ± B0∂‖z± (28)

where P∗ is the total pressure. By first noting that the divergence operator applied to (28) allows us to link the total
pressure to the left hand side term, and second that z+ ∼ z− for small cross-correlation; we then arrive to the nontrivial
critical balance

z±
r ∇r ∼ B0∂‖ (29)

which may also be written as

z±
r

B0
∼ ∂‖

∇r
∼ k‖

kr
= sin θ (30)

where θ is also the angle between the separation vector r and the (xM y) plane (see Fig. 1). As we see, relation (30) offers a
direct evaluation of the r-direction: therefore, although the external magnetic field does not enter explicitly in the vectorial
relation (26), it constrains – as expected – the direction along which the scaling law applies. If we now come back to
relation (26), we may write (at first order for small length scales) the dimensional relation which is independent of n

z±
r ∼ (

ε±ρ
)1/3

(31)

and obtain

sin θ ∼ (ε±ρ)1/3

B0
(32)

In other words, this result means that the scaling relation depends on the strength of the external magnetic field with an
orientation close to the (xM y) plane for strong B0, but also on the scales itself with a direction getting closer to the (xM y)
plane at small scales (small r). This dimensional analysis will be used below to derive the unique expression of the vectorial
law for anisotropic MHD turbulence since relation (32) gives the following dimensional small-scale constraint

sin θ ∼ (ε±ρ)1/3

B0
∼

(
ρ

ρ0

)n−1

(33)

which leads to n = 4/3. Note that for other types of fluids the value of n may be different [9].

5. Exact vectorial law

Following the critical balance idea we shall rewrite expression (26) for n = 4/3 which gives

−g(θ)ε±reT = F±
T (r) (34)

with g(θ) ≡ 2 cos θ I(X)/X ,

X =
(

4

3
tan θ

)6

, eT = eρ + (4/3) tan θez√
1 + (4/3)2 tan2 θ

(35)

and
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I(X) =
X∫

0

√
1 + X1/3 dX

= −16

35
+ 6

7

(
1 + X1/3)3/2

X2/3 − 24

35

(
1 + X1/3)3/2

X1/3 + 16

35

(
1 + X1/3)3/2

(36)

It is the final form of the exact law. We see that the vectorial law has a form close to the isotropic case (4) with a scaling
linear in r. However, we observe a θ -angle dependence which reduces the degree of universality of the law. From an ob-
servational point of view this prediction turns out to be interesting since in the solar wind the measurements are naturally
made at a given angle. Numerical estimate of the function g(θ) gives a slight variation from 2 to 16/7 for respectively
θ = 0 to π/2. It is important to remark that this law is valid for any r and θ which means that we may describe the entire
correlation space. Note that the law derived here implies only the mean Elsässer energy dissipation rates per unit mass ε±
which makes a difference with other types of universal results like in wave turbulence where the spectra may be expressed
in terms of directional energy fluxes (like P±

⊥ or P±
‖ ) [25,26].

6. The two-dimensional limit

It is interesting to analyze the small θ limit for which the energy flux vector is mainly transverse. For this limit, we
obtain after a Taylor expansion

I(X) � X + 3

8
X4/3 (37)

and then after substitution

−2

(
1 + 2

3
tan2 θ

)
ε±ρeT � F±

T (r) (38)

This relation tends asymptotically to the scaling prediction for 2D MHD turbulence which may be obtained directly after
integration (and application of the Green’s flux theorem) of expression (3) over a disk with only transverse fluctuations.
This result shows in particular how close we are from a two-dimensional turbulence.

7. Discussion and conclusion

The interplanetary medium is probably the best example of application of the new exact law in terms of Elsässer fields.
Indeed, it is a medium permeated by the solar wind, a highly turbulent and anisotropic flow which carries the solar mag-
netic field [27,28]. Several recent works have been devoted to the analysis of low frequencies solar wind turbulence in terms
of structure functions by using the exact isotropic law [29]. A direct evidence for the presence of an inertial energy cascade
in the solar wind is claimed but the comparison between data and theory is moderately convincing because of the narrow-
ness of the inertial range measured. Some recent improvements have been obtained by using a model of the isotropic law
where compressible effects are included [30]. Even if the result seems to be better the hypothesis of isotropy is a serious
default. Other applications of the MHD laws (exact or modeled) are also found in order for example to evaluate the local
solar wind heating [31] along or transverse to the mean magnetic field.

Direct numerical simulations are very important to check for example the applicability of the universal laws discussed
in the present paper since there are exact as long as the hypotheses are satisfied. For example, in the isotropic case it is
interesting to note that the constant has never been checked – only the power law. Therefore, we are not yet at the same
degree of achievement reached for the four-fifths law for which the constant has been recovered experimentally [32]. Then,
for the exact vectorial law derived in this paper it is fundamental to check not only the power law dependence (actually, a
first analysis at moderate numerical resolution of 2563 shows a relatively good agreement with the scaling prediction) but
also – and more importantly – the coefficient g(θ) which is around 2. Only massive numerical simulations like in [33] will
allow to take up this challenge.

The interplanetary medium is an excellent laboratory to test new ideas in turbulence. In that respect, it would be
interesting to extend the present work to other invariants like the cross-correlation. Recent works have been devoted to this
problem where the idea of a dynamic alignment between the velocity and the magnetic field fluctuations has emerged [14]
but the confrontation with solar wind data is still not totally convincing [34]. Since most of astrophysical space plasmas
evolve in a medium where a magnetic field is present on the largest scale of the system the present law has potentially a
lot of other applications.
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Fig. A.1. Left: Oriented plane curve C across which the flux of F is computed. The normal direction is oriented 90 degrees clockwise from the tangent
direction. Right: Oriented plane curve C that encloses a region S .

Appendix A. Green’s flux theorem

The appendix is devoted to the Green’s flux theorem which may be seen as the two-dimensional version of the well-
known divergence theorem. It is also called the Normal form of Green’s theorem. Let us consider an oriented plane curve C
and a plane vector field F defined along C . Then the flux of F across C is the line integral∫

C

F · n d
 (A.1)

where n is the unit vector normal to the curve C pointing 90 degrees clockwise from the tangent direction of C (see Fig. A.1;
left) and d
 is an elementary length of curve C .

If now C is a curve that encloses a region S counterclockwise (see Fig. A.1; right) and if F is defined in the plane (on C
and also in S), then we have the relation∮

C

F · n d
 =
∫ ∫

S

∇ · F dS (A.2)

which means that the flux of F across a closed integral line is equal to the sum of the divergence of F on the surface S . It
is the Green’s flux theorem.

A short proof of the Green’s flux theorem comes as follows. Let us consider the particular case of a rectangular closed
curve ABCDA whose orientation defines the x and y directions. On the one hand, one has

∮
C

F · n d
 =
∮
C

{
Fx

F y

}
·
{

dy
−dx

}
= −

B∫
A

F y(x, y1)dx +
C∫

B

Fx(x2, y)dy −
D∫

C

F y(x, y2)dx +
A∫

D

Fx(x1, y)dy

= −
x2∫

x1

(
F y(x, y1) − F y(x, y2)

)
dx +

y2∫
y1

(
Fx(x2, y) − Fx(x1, y)

)
dy. (A.3)

On the other hand, one has

∫ ∫
S

∇ · F dS =
x2∫

x1

y2∫
y1

(∂x Fx + ∂y F y)dx dy (A.4)

=
y2∫

y1

(
Fx(x2, y) − Fx(x1, y)

)
dy +

x2∫
x1

(
F y(x, y2) − F y(x, y1)

)
dx (A.5)

which is equal to the flux.
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