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We present a review of the most precise determinations of the fine structure constant α
which are obtained in different domains of physics. We describe the measurement of the
ratio h/mRb between the Planck constant and the mass of Rubidium atom which leads to
a precise value of α which is very few dependent of the QED. Finally, we present a review
of the different determinations of the von Kitzling constant RK.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons une revue des déterminations les plus précises de la constante de
structure fine α qui sont obtenues dans différents domaines de la physique. Nous
décrivons la mesure du rapport h/mRb entre la constante de Planck et la masse de
l’atome de rubidium qui conduit à une valeur de α très précise et très peu dépendante
de l’électrodynamique quantique. Finalement nous présentons une revue des différentes
déterminations de la constante de von Kitzling RK.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The fine structure constant α characterizes the strength of the electromagnetic interaction. It is defined as:

α = e2

4πε0h̄c
(1)

where ε0 is the permittivity of vacuum, c the speed of light, e the electron charge and h̄ the reduced Planck constant (h̄ =
h/2π ). It was introduced by Arnold Sommerfeld in 1916 to explain the fine structure of the levels of hydrogen atom. The
fine structure constant is a dimensionless quantity, i.e. it is independent of the system of units used. The determinations of α
are obtained in different domains of physics, from the quantum Hall effect and Josephson effect in solid state physics, from
the combination between the precise measurements of atomic physics and quantum electrodynamics (QED) calculations,
and from the measurements of the ratio h/m between the Planck constant and the mass m of a particle. In 2006, the
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Fig. 1. Determinations of the fine structure constant in different domains of physics. The CODATA value is shifted with respect to the most precise recent
results because of an error in the QED calculations of the electron anomaly ae .

Fig. 1. Déterminations de la constante de structure fine dans différents domaines de la physique. La valeur du CODATA est déplacée par rapport au résultat
récent le plus précis à cause d’une erreur dans les calculs QED de l’anomalie de l’électron.

recommended value in the last report of the CODATA (Committee on Data for Science and Technology) [1] was:

α−1 = 137.035 999 679(94) (2)

This value was mainly deduced from the combination of the measurement of the electron anomaly ae made in 2006 by
Gabrielse at Harvard University [2] and strenuous QED calculations of ae by Kinoshita [3]. Since 2006, several progress have
been made in the determination of the fine structure constant: an error in the QED calculation of ae has been detected,
Gabrielse has improved his measurement of ae, and, in our group, we have made a new measurement of the ratio h/mRb
and obtained a new value of α. Moreover, the calculation of the fine structure in helium has been improved by Pachucki
and, now, the value of α deduced from this fine structure is in agreement with the other determinations.

The aim of this paper is to relate these different progress. In Section 2 we make a review of the different methods
used to determine α. Section 3 presents in detail our measurement of the ratio h/mRb and, in Section 4 we analyze the α
measurements for the determination of the von Kitzling constant RK.

2. Determination of the fine structure constant

Fig. 1 shows the most precise determinations up to date of the fine structure constant with a relative uncertainty smaller
than 10−7. The first determination uses the precise measurement of the ground-state hyperfine splitting of the muonium
(an atom formed by a positive muon and an electron). This splitting varies mainly as α2 R∞ , and it can be calculated very
accurately. Indeed the muonium is a purely leptonic system, therefore there is not the difficulty due to the structure of
the proton as in the calculation of the hydrogen hyperfine structure. The CODATA report [1] presents the analysis of the
measurements carried out in 1982 and 1999 at LAMPF (Los Alamos Meson Physics Facility) [4]. The obtained value is:

α−1 = 137.036 0017(80) (3)

with a relative uncertainty of 5.8 × 10−8 which is mainly due to the muon-to-electron mass ratio.
The atomic fine structures vary also as α2 R∞ . Unfortunately, in hydrogen, the measurement of the 2P1/2–2P3/2 splitting

(about 11 GHz) is limited by the natural width of the 2P level (100 MHz). Then the uncertainty of the best 2P1/2–2P3/2
measurement [5,6] is only 15 kHz, corresponding to a relative uncertainty of about 1.4 × 10−6, and providing an α value at
the level of 7 × 10−7. On the other hand, the fine structure of the 23P J states in helium is a more promising case with a
30 GHz splitting and a 1.6 MHz natural width. The corresponding intervals have been accurately measured by radiofrequency
spectroscopy by the group of Hessels [7], and by laser spectroscopy of the 23S1–23P J line by the groups of Shiner, Inguscio
and Gabrielse [8–10]. The best result has a relative uncertainty of 2.4 × 10−8. On the theoretical side, the QED calculations
of the two electrons system is difficult and, up to recently, there was a disagreement (12 standard deviations) between the
theory and the measurements [11]. Recently, Pachucki and Yerokhin have overcome this problem by calculating all the QED
terms up to the order α5 R∞ [12]. They obtain the value:

α−1 = 137.036 0011(39)(16) (4)
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where the first uncertainty is due to the theory and the second to the experiment. With a relative uncertainty of 3.1×10−8,
this value is in perfect agreement with the other α determinations (see Fig. 1).

The most precise determinations of α are deduced from the measurement of the electron anomaly ae. During twenty
years, the best ae value was the one obtained at the University of Washington with a relative uncertainty of 3.7 × 10−9

[13]. In 2006, this result was superseded by the one of Gabrielse at Harvard University with an uncertainty reduced by
a factor of about 6 [2]. Finally, in 2008, Gabrielse has improved again the ae measurement up to a relative uncertainty
of 2.4 × 10−10 [14]. During this period, the QED calculation of the electron anomaly has been continuously improved by
Kinoshita who has calculated all the α4 contributions [3]. In 2006, the combination of these experimental and theoretical
results provided the value of the fine structure constant α−1 = 137.035 999 710(96) with a relative uncertainty of 7×10−10.
This result determined the value given by the last report of the CODATA (see Eq. (1) [1]). Nevertheless, in 2007, Kinoshita
and collaborators found an error in the calculation of the term in α4. With this correction, the value of α is shifted to
α−1 = 137.035 999 070(98) [15]. This value is labeled “Harvard 2007” on Fig. 1. Finally, the value of the fine structure
constant deduced from the last measurement of ae is:

α−1 = 137.035 999 084(51) (5)

With a relative uncertainty of 3.7 × 10−10, this result, labeled “Harvard 2008” on Fig. 1, is the present most accurate
determination of α.

Another way to obtain the fine structure constant is the measurement of the ratio h/mX between the Planck constant
and the mass of a particle X. Indeed, from the ionization energy of the hydrogen atom (hcR∞ = α2mec2/2), one can deduce
an expression of α:

α2 = 2R∞
c

h

me
(6)

where me is the electron mass. In this equation, c is exactly known and the relative uncertainty of R∞ is smaller than
10−11. On the contrary there is no precise determination of the ratio h/me. To circumvent this limit, one introduces the
mass ratio mX/me to write the equation:

α2 = 2R∞
c

mX

me

h

mX
(7)

where the limiting factor is the ratio h/mX. This method provides values of α which are only slightly dependent on the
QED calculations. Actually, it is possible to extract the Rydberg constant from the combination of the radio frequency
measurement of the 2S Lamb shift [5] and from the optical frequency measurement of the 2S1/2–8D5/2 made in our group
[16,17]. One obtains the frequency interval 2P1/2–8D5/2 (about 771 THz) where the first QED contribution is the Lamb shift
of the 2P1/2 level (about 13 MHz [18]), i.e. 1.7 × 10−8 of the total frequency interval. By contrast, the value of α deduced
from the measurements of ae depends wholly on the QED calculations. Consequently, the values of α obtained from the
h/m ratio can be used to test the QED calculations of the electron anomaly.

This method has been implemented for the first time on a neutron beam to determine the ratio h/mn between the Planck
constant and the neutron mass [19]. The principle is to measure together the velocity υ of the neutron beam with a time
of flight technique and the de Broglie’s wavelength λDB by reflection on a silicon crystal (h/mn = υλDB). Consequently this
α determination depends also of the measurement of the lattice spacing of silicon. The value obtained on this experiment
is [1]:

α−1 = 137.036 0077(28) (8)

This result, labeled “h/m (neutron)” on Fig. 1, has a relative uncertainty of 2.1 × 10−8.
The possibility to deduce the ratio h/mA (mA is the mass of the atom A) from the measurement of the recoil velocity

was pointed out in 1976 by Hall and coworkers [20]. Indeed an atom at rest which absorbs a photon acquires the velocity
υr = h̄k/mA, where k is the wave vector of the photon. Nevertheless a precise measurement of the ratio h/mA requires cold
atom techniques and atom interferometry [21]. In a pioneering atom interferometry experiment in the nineties at Stanford
University, Chu and colleagues succeeded in doing the first accurate measurement of the recoil velocity of 133Cs atom [22].
As the mCs/me was precisely measured at MIT [23], the deduced value of α is [1]:

α−1 = 137.036 0000(11) (9)

with a relative uncertainty of 7.7 × 10−9 (labeled “h/m(Cs)” on Fig. 1).
In Paris we have followed the same ideas to measure the ratio h/mRb between the Planck constant and the mass of 87Rb

atom. This experiment is described in the next section. Its originality is the use of Bloch oscillations to transfer to the atom
a very large number of photon momenta. In 2006 we obtained a first result without using atom interferometry [24,25]:

α−1 = 137.035 998 84(91) (10)
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Fig. 2. Scheme of the interferometer used for the measurement of h/mRb. The first pair of π/2 pulses produces a fringe pattern in the atomic velocity
distribution which is measured by the second pair of π/2 pulses. Between these two pairs of pulses, the atoms are accelerated upwards or downwards.
The solid line corresponds to the atom in the F = 2 state, and the dashed line to the F = 1 state.

Fig. 2. Schéma de l’interféromètre utilisé pour la mesure de h/mRb. La première paire d’impulsions π/2 produit une structure de franges dans la distribution
de vitesse des atomes qui est mesurée par la seconde paire d’impulsions π/2. Entre ces deux paires d’impulsions, les atomes sont accélérés vers le haut
où vers le bas. La ligne en trait plein correspond aux atomes dans l’état F = 2, et celle en pointillé à ceux dans l’état F = 1.

with a relative uncertainty of 6.7 × 10−9. In 2008, this result was slightly improved by combining Bloch oscillations with
atom interferometry and we obtain the value of α [26]:

α−1 = 137.035 999 45(62) (11)

With a relative uncertainty of 4.5×10−9, this is the most accurate result after the values deduced from the electron anomaly
measurements.

Finally solid state physics allows two precise determinations of α. In the quantum Hall effect, the von Kitzling constant
RK = h/e2 is directly linked to the fine structure constant by the relation RK = μ0c/2α where μ0 and c are exactly known
in the Système International of units. The measurement of RK has been made in several NMIs (National Metrology Institute)
by using the calculable capacitor of Thomson and Lampard. The CODATA report gives a complete review of these results.
From the average of these measurements, one obtains the value:

α−1 = 137.036 0030(25) (12)

with a relative uncertainty of 1.8 × 10−8 [1]. The details of these measurements will be described in Section 4.
The last point of Fig. 1 is a combination of the low field gyromagnetic ratio measurements and the Josephson and

quantum Hall effects. It corresponds to the mean value of the two results deduced from the measurements of the gyro-
magnetic ratio of the proton and helion (3He nucleus). The principle is to replace in Eq. (6) the ratio h/me by the product
(h/e) × (e/me) where the first factor is given by the Josephson constant K J = 2e/h. The detail of this derivation will be
described in Section 4. Following the CODATA report [1], the value of the fine structure constant, labeled “Γ ′

p,h-90” on Fig. 1,
is:

α−1 = 137.035 9875(43) (13)

with a relative uncertainty of 3.1×10−8. This value is in slight disagreement (2.7 standard deviations) with the one deduced
from the measurement of the electron anomaly.

3. Measurement of the ratio h/mRb

We present in this section the Paris experiment in which the ratio h/mRb is measured. The details are given in Refs.
[24–26]. The principle of the experiment is to coherently transfer as many recoils as possible to the atoms at rest (i.e. to
accelerate them) and to measure the final velocity distribution. In our experiment, the atoms are efficiently accelerated
by means of N Bloch oscillations (BO). In our latest measurement, Bloch oscillations are combined with a Ramsey–Bordé
interferometer to precisely measure the induced atomic velocity variation (see Fig. 2).

The experiment develops in three steps. (i) Firstly, a pair of π/2 pulses of a Raman transition transfers the 87Rb atoms
from the F = 2 hyperfine sublevel to the F = 1 one and produces a fringe pattern in the velocity distribution of these
atoms. The width of the envelope of this velocity distribution varies inversely with the π/2 pulse duration τ , while the
fringe width varies as 1/TR, where TR is the delay between the two π/2 pulses. (ii) Secondly, we transfer to the selected
atoms as many recoils as possible by means of Bloch oscillations. Bloch oscillations have been first observed in atomic
physics by the groups of Salomon in Paris and Raizen in Austin [27–29]. Bloch oscillations can be interpreted as Raman
transitions in which the atom begins and ends in the same energy level, so that its internal state (F = 1) is unchanged
while its velocity has increased by 2υr per Bloch oscillation (see Fig. 3). Bloch oscillations are produced in a one dimension
vertical optical lattice which is accelerated by linearly sweeping the relative frequencies of the two counter propagating laser
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Fig. 3. Acceleration of cold atoms in a frequency chirped standing wave. The variation of the kinetic energy versus the atomic momentum is given by a
parabola. This momentum increases by the quantity 2h̄k at each cycle. The Ramsey fringe patterns represent the momentum distribution of the atoms in
the F = 1 hyperfine level.

Fig. 3. Accélération des atomes dans une onde stationnaire accélérée. La variation de l’énergie cinétique en fonction de l’impulsion de l’atome est représentée
par une parabole. Cette impulsion augmente de 2h̄k à chaque cycle. Les franges de Ramsey représentent la distribution des impulsions des atomes dans
l’état hyperfin F = 1.

Fig. 4. Velocity spectra obtained when the atoms are accelerated downwards and upwards. The spectrum on the left corresponds to the downwards
acceleration (800 Bloch oscillations) and on the right to the upwards acceleration (800 Bloch oscillations). The frequency difference between these spectra
corresponds to 3200 recoil velocities.

Fig. 4. Franges d’interférence obtenues quand les atomes sont accélérés vers le bas et vers le haut. Le spectre de gauche correspond à une accélération vers
le bas (800 oscillations de Bloch) et celui de gauche à une accélération vers le haut (800 oscillations de Bloch). La différence de fréquence entre ces deux
spectres correspond à 3200 vitesses de recul.

beams (frequencies ν1 and ν2). This leads to a succession of rapid adiabatic passages between momentum states differing
by 2h̄k. (iii) Finally, we measure the final velocity of the atoms by a second pair of π/2 pulses which transfers the atoms
from the F = 1 to the F = 2 hyperfine level. The frequency difference between the two pairs of π/2 pulses is scanned to
obtain a fringe pattern from which we can deduce the velocity variation between the two pairs of π/2 pulses.

In the vertical direction, an accurate determination of the recoil velocity would require an accurate measurement of
the gravitational acceleration g . In order to circumvent this difficulty, we make a differential measurement by accelerating
the atoms in opposite directions (upward and downward trajectories) keeping the same delay between the two pairs of
π/2-pulses. Thus the photon-recoil measurement is a determination of the frequency difference between the central fringes
of two opposite interferometers (upward and downward). Fig. 4 shows two records obtained with 800 Bloch oscillations
between the pairs of π/2 pulses. The frequency difference between the two spectra corresponds to 3200 recoil velocities.
Moreover, the contribution of some systematic effects (energy level shifts) changes sign when the direction of the Raman
beams is exchanged: for each up or down trajectory, the Raman beams directions are reversed and we record two velocity
spectra. Finally, each determination of h/mRb and α is obtained from 4 velocity spectra.

Our determinations of h/mRb and α have been derived from 221 experimental data points. Each point corresponds to
a 20 minute measurement. The total number of Bloch oscillations Nup + Ndown has been varied from 200 to 1600. The
dispersion of these n = 221 measurements is χ2/(n − 1) = 1.85 and the resulting relative statistical uncertainty on α is
3 × 10−9. The systematic effects have been analyzed in detail in Ref. [25]. They are listed in Table 1 with the corresponding
contributions and uncertainties. The two main effects are due to the geometry of the laser beams and to the second order
Zeeman effect. To evaluate these effects, we have measured the wave front curvatures with a Shack–Hartmann wave front
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Table 1
Error budget on the determination of 1/α.

Source Correction Relative uncertainty (parts in 109)

Laser frequencies 0.4
Beams alignment −2 2
Wavefront curvature and Gouy phase −11.9 2.5
2nd order Zeeman effect 4.9 1
Quadratic magnetic force −0.59 0.2
Gravity gradient −0.07 0.02
Light shift (one photon transition) 0.1
Light shift (two photon transition) 0.01
Light shift (Bloch oscillation) 0.48 0.2
Index of refraction atomic cloud 0.3
Index of refraction background vapor −0.36 0.3
Rydberg constant and mass ratio [1] 0.23

Global systematic effects −9.54 3.4

Fig. 5. The five most accurate determinations of the fine structure constant.

Fig. 5. Les cinq déterminations les plus précises de la constante de structure fine.

analyzer and mapped the frequency shift due to the magnetic field following the procedure described in Ref. [30]. Finally
the relative uncertainty due to the systematic effects is 3.4 × 10−9 and we obtain for α the value given by Eq. (11).

The most precise determinations of the fine structure constant are reported on Fig. 5. There is a very good agreement
between our measurements (labeled “h/m(Rb)”) and the value deduced from the electron anomaly measurement. Even if
the uncertainty on this value is 10 times smaller than our result, the comparison of these two results provides the most
stringent test of the QED calculations or, assuming these calculations exact, it gives a limit to test a possible internal
structure of the electron, or the existence of low-mass dark-matter particles [31].

4. Determination of von Kitzling constant

The two determinations of the fine structure constant derived by solid state physics assume the exactness of the relations
RK = h/e2 and K J = 2e/h. To test this validity we introduce two small deviations characterized by εK and εJ [32]:

RK = h

e2
(1 + εK), K J = 2e

h
(1 + εJ) (14)

In this section we present the different determinations of RK which correspond to the values of the fine structure constant
presented in Section 2. This analysis is illustrated in Fig. 6. The first group of RK values corresponds to the direct measure-
ments of the von Kitzling constant with the Lampard capacitor. The values obtained in the different NMIs are detailed on
this figure [33–37]. These determinations of RK are in good agreement. The weighted mean value of these results is:

RK = 25 812.808 18(47) � (15)

The value of α given in Eq. (12) is directly obtained from this value of RK by the relation α = μ0c/2RK.
A second method to obtain the von Kitzling constant RK is to use the relation:

RK = (1 + εK)μ0c

2α
(16)

with the values of α deduced from the h/mX ratio or from the electron anomaly. Assuming that εK = 0, we have reported
in Fig. 6 the values of RK obtained from our measurements of h/mRb and the last measurement of the electron anomaly.
These results are in good agreement with the direct measurements of RK.

Finally, it is also possible to deduce RK from the gyromagnetic ratio measurements. From the proton gyromagnetic ratio,
we deduce the fine structure constant:
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Fig. 6. Determination of the von Kitzling constant RK.

Fig. 6. Détermination de la constante de von Kitzling RK. LNE : Laboratoire National d’Essais, France ; NIM : National Institute of Metrologie, People’s Republic
of China ; NPL : National Physical Laboratory, United-Kingdom ; NMI : National Metrology Institute, Australia ; NIST : National Institute of Standards and
Technology, USA.

α−2 = c

4R∞
× μ′

p

μB
× 2e/h

γ ′
p

(17)

where μ′
p and γ ′

p are the magnetic moment and the gyromagnetic ratio of the shielded proton. Taking into account Eq. (14),
one deduces:

α−2 = c

4R∞
× μ′

p

μe
× ge

2
× K J/(1 + εJ)

γ ′
p

(18)

where the electron g-factor and the ratio μ′
p/μe are precisely well known [14,38]. The gyromagnetic ratio of the shielded

proton has been measured in low field in terms of the conventional electrical units V90 and �90 with a relative uncertainty
of 1.1 × 10−7 [39]. The values of the gyromagnetic ratio of the shielded proton in terms of SI units (γ ′

p) and in terms of the
conventional units (Γ ′

p-90(lo)) are linked by the relation [1]:

γ ′
p = Γ ′

p-90(lo) × K J RK

K J-90 RK-90
(19)

where K J-90 and RK-90 are the conventional values of the Josephson and von Kitzling constants expressed in Hz/V90 and
�90. Then one obtains:

α−2 = c

4R∞
× μ′

p

μe
× ge

2
× K J-90 RK-90

RKΓ ′
p-90(lo)

× 1

1 + εJ
(20)

and deduces RK:

RK = c

4R∞
× μ′

p

μe
× ge

2
× K J-90 RK-90

Γ ′
p-90(lo)

× α2 × 1

1 + εJ
(21)

where the limiting factor is the measurement of Γ ′
p-90(lo). We can obtain a similar expression from the measurement of the

gyromagnetic ratio of the shielded helion Γ ′
h-90(lo):

RK = c

4R∞
× μ′

h

μ′
p

× μ′
p

μe
× ge

2
× K J-90 RK-90

Γ ′
h-90(lo)

× α2 × 1

1 + εJ
(22)

where μ′
h is the magnetic moment of the shielded helion.

The two values of RK(1+εJ) deduced from Eqs. (21) and (22) are reported in Fig. 6. If we suppose εJ = 0, these values are
in slight disagreement with the other determinations of RK. This result suggests a non null value of εJ as already mentioned
in Ref. [32].
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5. Conclusion

We have presented a review of the most accurate determinations of the fine structure constant and described in detail
the measurements of the h/mRb ratio. This last experiment leads to a value of α which is the most precise after the
determinations of α deduced from the electron anomaly. The agreement between these two results is the more stringent
test of the QED. We have built an improved experimental setup and we expect to reduce the uncertainty of α to 1 ppb.
A review of several determinations of the von Kitzling constant RK is also presented. There is a slight disagreement for the
values deduced from the gyromagnetic ratios of the proton and the helion (relative difference of 2.5 × 10−7 and 3 × 10−7

respectively). This suggests a non exactness of the relation between the Josephson constant K J and 2e/h. It would be
advisable to understand the origin of this discrepancy before the change of the definition of the units of the Système
International.

Acknowledgements

This experiment is supported in part by IFRAF (Institut Francilien de Recherches sur les Atomes Froids), and by the
Agence Nationale pour la Recherche, FISCOM Project-(ANR-06-BLAN-0192).

References

[1] P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 80 (2008) 633–730.
[2] B. Odom, D. Hanneke, B. D’Urso, G. Gabrielse, Phys. Rev. Lett. 97 (2006) 030801.
[3] G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B. Odom, Phys. Rev. Lett. 97 (2006) 030802.
[4] W. Liu, M.G. Boshier, S. Dhawan, O. van Dyck, P. Egan, X. Fei, M. Grosse Perdekamp, V.W. Hughes, M. Janousch, K. Jungmann, D. Kawall, F.G. Mariam,

C. Pillai, R. Prigl, G. zu Putlitz, I. Reinhard, W. Schwarz, P.A. Thompson, K.A. Woodle, Phys. Rev. Lett. 82 (1999) 711.
[5] S.R. Lundeen, F.M. Pipkin, Phys. Rev. Lett. 46 (1981) 232.
[6] E.W. Hagley, F.M. Pipkin, Phys. Rev. Lett. 72 (1994) 1172.
[7] J.S. Borbely, M.C. George, L.D. Lombardi, M. Weel, D.W. Fitzakerley, E.A. Hessels, Phys. Rev. A 79 (2009) 060503(R).
[8] J. Castillega, D. Livingston, A. Sanders, D. Shiner, Phys. Rev. Lett. 84 (2000) 4321.
[9] G. Giusfredi, P.C. Pastor, P.D. Natale, D. Mazzotti, C. de Mauro, L. Fallani, G. Hagel, V. Krachmalnicoff, M. Inguscio, Can. J. Phys. 83 (2005) 301.

[10] T. Zelevinsky, D. Farkas, G. Gabrielse, Phys. Rev. Lett. 95 (2005) 203001.
[11] K. Pachucki, Phys. Rev. Lett. 97 (2006) 013002.
[12] K. Pachucki, V.A. Yerokhin, Phys. Rev. Lett. 104 (2010) 070403.
[13] R.S. Van Dick, P.B. Schwinberg, H.G. Dehmelt, Phys. Rev. Lett. 59 (1987) 26.
[14] D. Hanneke, S. Fogwell, G. Gabrielse, Phys. Rev. Lett. 100 (2008) 120801.
[15] G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B. Odom, Phys. Rev. Lett. 99 (2007) 039902.
[16] B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, J.J. Zondy, Phys. Rev. Lett. 78 (1997) 440.
[17] B. de Beauvoir, C. Schwob, O. Acef, J.-J. Zondy, L. Jozefowski, L. Hilico, F. Nez, L. Julien, A. Clairon, F. Biraben, Eur. Phys. J. D 12 (2000) 61.
[18] U. Jentschura, K. Pachucki, Phys. Rev. A 54 (1996) 1853.
[19] E. Krüger, W. Nistler, W. Weirauch, Metrologia 36 (1999) 147.
[20] J.L. Hall, Ch.J. Bordé, K. Uehara, Phys. Rev. Lett. 37 (1976) 1339.
[21] C.J. Bordé, Phys. Lett. A 140 (1989) 10.
[22] A. Wicht, J.M. Hensley, E. Sarajilic, S. Chu, Physica Scripta T 102 (2002) 82.
[23] M.P. Bradley, J.V. Porto, S. Rainville, J.K. Thompson, D.E. Pritchard, Phys. Rev. Lett. 83 (1999) 4510.
[24] P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, F. Biraben, Phys. Rev. Lett. 96 (2006) 033001.
[25] P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, F. Biraben, Phys. Rev. A 102 (2006) 052109.
[26] M. Cadoret, E. de Mirandes, P. Cladé, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, F. Biraben, Phys. Rev. Lett. 101 (2008) 230801.
[27] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, C. Salomon, Phys. Rev. Lett. 76 (1996) 4508.
[28] E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, C. Salomon, Phys. Rev. A 55 (1997) 2989.
[29] S.R. Wilkinson, C.F. Bharucha, K.W. Madison, Qian Niu, M.G. Raizen, Phys. Rev. Lett. 76 (1996) 4512.
[30] M. Cadoret, E. de Mirandes, P. Cladé, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, F. Biraben, Eur. Phys. J. Special Topics 163 (2008) 101.
[31] C. Boehm, J. Silk, Phys. Lett. B 661 (2008) 287.
[32] P. Mohr, B.N. Taylor, Rev. Mod. Phys. 77 (2005) 1.
[33] G. Trapon, O. Thévenot, J.-C. Lacueille, W. Poirier, H. Fhima, G. Genevès, IEEE Trans. Instrum. Meas. 50 (2001) 572.
[34] Z. Zhang, X. Wang, D. Wang, X. Li, Q. He, Y. Ruan, Acta Metrologia Sinica 16 (1995) 1.
[35] A. Hartland, Metrologia 29 (1992) 175.
[36] G.W. Small, B.W. Ricketts, P.C. Coogan, B.J. Pritchard, M.M.R. Sovierzoski, Metrologia 34 (1997) 241.
[37] M.E. Cage, R.F. Dziuba, R.E. Elmquist, B.F. Field, G.R. Jones Jr., P.T. Olsen, W.D. Phillips, J.Q. Shields, R.L. Steiner, B.N. Taylor, E.R. Williams, IEEE Trans.

Instrum. Meas. 38 (1989) 284.
[38] W.D. Phillips, W.E. Cooke, D. Kleppner, Metrologia 13 (1977) 179.
[39] P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 72 (2000) 351–495.


	Measurement of the ratio h/mRb and determination of the ﬁne structure constant
	Introduction
	Determination of the ﬁne structure constant
	Measurement of the ratio h/mRb
	Determination of von Kitzling constant
	Conclusion
	Acknowledgements
	References


