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Photothermal effects allow very efficient optomechanical coupling between mechanical
degrees of freedom and photons. In the context of cavity cooling of a mechanical oscillator,
the question of if the quantum ground-state of the oscillator can be reached using
photothermal back-action has been debated and remains an open question. Here we
address this problem by complementary classical and quantum calculations. Both lead us
to conclude that: first, the ground-state can indeed be reached using photothermal cavity
cooling, second, it can be reached in a regime where the cavity detuning is small allowing
a large amount of incident photons to enter the cavity.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Les effets photothermiques permettent un couplage optomécanique très efficace entre
degrés de liberté mécaniques et photons. Dans le contexte du refroidissement en cavité
d’un oscillateur mécanique, une question reste ouverte : savoir si l’on peut atteindre l’état
quantique fondamental de l’oscillateur à l’aide d’un refroidissement photothermique ? Ici
nous répondons à cette question par deux traitements théoriques complémentaires : l’un
classique, l’autre quantique. Les deux approches nous portent à conclure que : d’abord
l’état fondamental peut en effet être atteint par refroidissement photothermique, ensuite il
peut être atteint dans un régime de faible désaccord de cavité, ce qui permet à une grande
partie des photons incidents d’entrer dans la cavité.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Optomechanical systems have recently made impressive progress with applications ranging from sensing to fundamental
tests of quantum mechanics [1–3]. After first quantum control experiments performed on a 6 GHz thin plate oscillator [4],
one of the challenges in the field of optomechanics is now to allow other mechanical oscillators of smaller frequency and
larger mass to also enter the quantum regime. This can in principle be achieved by means of cavity self-cooling and recent
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work combining cavity cooling and conventional cryogenics has indeed shown progress in this direction [5–9]. The op-
tomechanical coupling generally relies on radiation pressure in these experiments and the “good-cavity” condition, where
the cavity photon lifetime exceeds the mechanical oscillator period, must be fulfilled to hope obtaining phonon occupation
number of the oscillator below one [10–13]. However in this regime, the pump field is far-detuned from the cavity reso-
nance, restricting the amount of photons injected in the cavity and hence the magnitude of the optical cooling mechanism.

Actually the first proof-of-principle experiment of cavity self-cooling of a mechanical oscillator was performed using
photothermal–optomechanical coupling rather than a mere radiation-pressure coupling [14]. In photothermal effects (also
sometimes named bolometric effects), photons are absorbed by the mechanical oscillator and give birth to a thermo-elastic
distortion, which displaces the oscillator. One advantage of photothermal pressure is that it can be orders of magnitude
larger than radiation pressure. Indeed in the process of radiation pressure a photon is reflected on a moving mirror of
velocity v and its energy E is shifted by an amount of orders (v/c)E by the Doppler effect [15]. The mechanical energy
given by the photon to the mirror during this process is extremely small, resulting in a small force. In contrast, in the
case of photothermal pressure, the photon is absorbed and its whole energy E is transferred to the mirror’s free energy.
Provided that the mirror’s thermo-elastic properties are optimised, this can result in a large effective optical force acting
on the mirror. As detailed in [16], in experimental situations the photothermal force can easily overcome radiation-pressure
force by several orders of magnitude. Actually it can even have its direction opposed to that of radiation pressure. These
properties have led to original situations of simultaneous cavity cooling of several mechanical modes [16,17] or to the study
of rich non-linear cavity dynamics driven by bolometric forces [18].

Still, for what concerns cavity self-cooling of the mechanical oscillator to its quantum ground-state, photothermal cou-
pling has been comparatively very little investigated [14,19–21]. To our knowledge, a complete discussion of quantum limits
of photothermal cavity cooling is still lacking. This results from the fact that being non-conservative in nature, the photother-
mal interaction is difficult to describe with a quantum Hamiltonian, in contrast to the cavity radiation-pressure case where
a solid Hamiltonian is available for quantum optics calculations [22]. The discussion of these limits is however important
given the cooling efficiency observed in photothermal cavity self-cooling experiments [14]. Two main features distinguish
photothermal pressure from radiation pressure in this context: first, its very large relative amplitude, which can produce
similar effects for smaller optical intensity, second, its distinct dynamical behaviour and typical time-scale, which result in
a qualitatively different noise spectrum. In this article, we aim at treating the problem of photothermal cavity cooling of
a mechanical oscillator, trying to understand how we can benefit from these two distinct features. For simplicity, we will
assume the photothermal pressure to act on the oscillator in the same direction as radiation pressure.

Section 2 deals with a classical approach to the problem, where we draw the conclusion that photothermal cavity cooling
of the oscillator to its quantum ground-state is feasible even in the “bad-cavity” limit and for a moderate detuning of the
pump field to the cavity, allowing many incident photons to enter the cavity. In Section 3, this conclusion is confirmed by a
more general quantum approach where the full quantum noise spectrum of the force is derived.

2. Classical approach

There is a lot to learn first from a classical treatment of the problem, before assessing quantum limits more rigorously.
Indeed when a quantum harmonic oscillator of angular frequency ω0 is coupled linearly to a bath of oscillators, its variance
fluctuations can be computed in a classical manner, provided that the bath temperature is large with respect to �ω0 and
provided that zero-point fluctuations of the oscillator are added “by hands” at the end of the calculation. This interesting
property relies on the harmonicity and linearity of the coupling to the bath. The property appears for example in the stan-
dard quantum Langevin description of a damped harmonic oscillator [23]. If we restrict ourselves to a linearised approach,
we can hence draw conclusions about quantum limits of photothermal cooling from a purely classical calculation.

The mechanical oscillator is considered to be harmonic here and its dynamical equation in absence of light is simply
given by the Newton equation:

mẍ + mΓ ẋ + K x = FLangevin

K and m are the spring constant and mass of the oscillator. The mechanical damping parameter Γ relates to the classi-
cal Langevin force FLangevin by usual fluctuation–dissipation relation. Γ contains contributions from different loss sources
amongst which thermo-elastic damping is of special interest for our discussion. Indeed, like the photothermal force, the
Langevin force associated to thermo-elastic damping relies on the thermal expansion of the material. Under illumination of
the oscillator, it can hence be seen as a fluctuating component of the photothermal force, finding its origin in the steady-
state temperature fluctuations of the oscillator body. In our description, this contribution will be included in Γ and FLangevin
and not further detailed. We will on the contrary focus on the fluctuations of the photothermal force originating from fluc-
tuations in the number of photons absorbed by the oscillator. This second contribution was already discussed in the context
of gravitational waves interferometers in Refs. [24,25] and dubbed “photothermal shot-noise”. We aim here at understanding
how photothermal shot-noise interplays with photothermal cavity self-cooling of a mechanical oscillator.

The oscillator is from now on the movable back-mirror of a Fabry–Perot cavity whose lossless front mirror has transmis-
sion T . The oscillator dynamical equation is given by:

mẍ(t) + mΓ ẋ(t) + K x(t) = FLangevin(t) + Fphotothermal(t)
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Fphotothermal(t) = β
2R

c

+∞∫
−∞

h(t − u)Pabs(u)du (1)

where Pabs(t) = A Pcirc(t) with Pcirc(t) the circulating power in the cavity and Pabs(t) is the power absorbed by the oscil-
lating mirror. A is the absorption coefficient of the movable mirror, R is its reflectivity and its transmission is taken to be
zero. The function h accounts for a general linear response of the photothermal force upon absorption of photons by the
oscillator. The function h must respect the causality principle and reflect a thermal relaxation process with time-scale τth
hence we set h(t) = (1/τth)Θ(t)exp(−t/τth) with a Heaviside function Θ . The Fourier transform of h is h(ω) = 1/(1+ iωτth)

with the following definition:

f (ω) =
+∞∫

−∞
f (t)e−iωt dt (2)

The expression of the photothermal force chosen in Eq. (1) is equivalent to that used in Ref. [21] and is transformed to
that of Ref. [16] by a simple integration by parts. In Eq. (1), the photothermal force is expressed in units of the radiation-
pressure force acting on the mirror Frad = (2R/c)Pcirc in the sense that for a constant illumination and for a rigid cavity
Fphotothermal = β A Frad. This relation must be considered in the following as the definition of β , which is a phenomenological
parameter introduced to quantify the difference of amplitudes between photothermal and radiation-pressure forces (Ref. [16]
reports measured absolute values of β A between 102 and 104). The discussion is focused here on cases where photothermal
pressure overcomes radiation pressure by far hence we will consider β A � 1 and neglect the radiation-pressure force in
the classical dynamics of the oscillating mirror. As we will see in the next section, the inclusion of radiation pressure in the
calculation does not alter the main conclusions reached in this section.

When the movable mirror now oscillates, the cavity length is modulated around its average value L0 and the mirror mo-
tion x(t) couples to the light power circulating in the cavity through Eq. (1). Conversely the steady-state average circulating
power Pcirc couples to the mirror coordinate x through the Fabry–Perot response function.

Pcirc(x) = T /τ 2
0

κ2 + (−� + 2ωLx/L0)2
P inc (3)

where � = ωc −ωL is the detuning of the laser to the cavity resonance of length L0, τ0 = 2L0/c is the corresponding cavity
round-trip time, κ = (T + A)/2τ0 is the cavity field decay rate and P inc is the incident power on the cavity. The mutual
coupling expressed by differential equations (1) and (3) leads to a rich non-linear photothermal dynamics of the cavity-
mirror system that was already explored theoretically and experimentally, for example in [18]. Here we are focusing on the
position variance of the oscillator under self-cooling hence we will restrict ourselves to linearising these two equations for
small oscillator displacements |x(t)| � L0. The average absorbed power becomes:

Pabs(x) = Pabs(0) + x.(dPabs/dx)x=0

=
(

1 + 4x
�ωL

L0(κ2 + �2)

)
T A/τ 2

0

κ2 + �2
P inc (4)

For example, if the laser line sits on a flank on the cavity resonance (� = κ) and if A = T , the gradient of absorbed power
upon mirror motion is dPabs/dx = (8F/λ)Pabs, where F = 2π/(T + A) is the cavity finesse and λ is the laser wavelength.
We will assume here that the cavity response time is small compared to τth, a condition which is usually fulfilled in
experiments. This condition amounts to saying that Pabs(u) in Eq. (1) can be replaced by the sum of the average power
Pabs(x(u)) and a fluctuating term δPabs(u). The static term Pabs(0) produces a constant photothermal force which shifts the
equilibrium position of the oscillator. We will omit this shift in what follows by considering fluctuations x around the new
equilibrium position. Transforming Eq. (1) into Fourier space we obtain:

−mω2x(ω) + imΓ ωx(ω) + K x(ω) = FLangevin(ω) + β
2R

c
h(ω)δPabs(ω) + β

2R

c
(dPabs/dx)h(ω)x(ω) (5)

which can be recast in the more compact form:

[
ω2

eff − ω2 + iΓeffω
]
x(ω) = 1

m

[
FLangevin(ω) + β

2R

c
h(ω)δPabs(ω)

]
(6)

where we have introduced the effective eigenfrequency ωeff and damping Γeff of the oscillator under photothermal back-
action induced by the cavity:

ω2
eff = ω2

0

(
1 − β

1

1 + ω2
0τ

2
th

2R

c
(dPabs/dx)

1

K

)

Γeff = Γ

(
1 + Q mβ

ω0τth

1 + ω2τ 2

2R

c
(dPabs/dx)

1

K

)
(7)
0 th



J. Restrepo et al. / C. R. Physique 12 (2011) 860–870 863
with the bare mechanical oscillator angular frequency ω2
0 = K/m and Q m = ω0/Γ . These approximate expressions were

already derived in [14,18]. The important difference now is that we have included fluctuations of the photothermal force
in Eq. (6), that is the photothermal shot-noise represented by δPabs. These fluctuations play an important role since they
generally counteract the cavity cooling mechanism. In case of cavity self-cooling by radiation pressure for example, it is
necessary to operate in the good-cavity limit (ω0 > κ ) to avoid that these fluctuations preclude reaching the oscillator
quantum ground-state, as discussed by several authors [10–13].

In a Fabry–Perot cavity, the circulating power statistics is well known. For a coherent state at the cavity input, an
extension of calculations of Ref. [25] leads to the following (two-sided) noise power spectral density:

S Pcirc(ω) = F

π
h̄ωL Pcirc

(
1

1 + (ω−�
κ )2

+ 1

1 + (ω+�
κ )2

)
(8)

with the relation δ(ω + ω′)S Pcirc = (1/2π)〈Pcirc(ω)Pcirc(ω
′)〉 and the average circulating power Pcirc. One might think at

first that these fluctuations with a coloured spectrum would transfer directly to the statistics of the power absorbed by
the movable back-mirror, but this is not the case. Indeed, from the photons’ point of view the absorption process can be
viewed as the introduction of a beam splitter of transmission A at the cavity output port. The situation is hence analogous
to two lossless mirrors with finite transmission forming a Fabry–Perot cavity. In this case the transmitted photons recover
the coherent state input statistics with a white noise spectrum. This statistical effect results from the coupling of cavity
photons to vacuum fluctuations during the absorption process [25].

SδPabs(ω) = Ah̄ωL Pcirc = h̄ωL Pabs (9)

where Pabs = A Pcirc is the average absorbed power. This white noise approximation is excellent for the situation of interest
here where the mechanical frequency is several orders of magnitude smaller than the laser frequency. We obtain from
Eq. (6):

∣∣x(ω)
∣∣2 = 1

m2

1

(ω2
eff − ω2)2 + (Γeffω)2

[∣∣FLangevin(ω)
∣∣2 + 2πβ2

(
2R

c

)2 1

1 + ω2τ 2
th

h̄ωL Pabs(x = 0)

]
(10)

where the (two-sided) spectral density of the equilibrium Langevin force is (1/2π)|FLangevin(ω)|2 = 2kBT mΓ [16] with the
temperature T of the oscillator environment (kBT � �ω0). If we assume the oscillator relaxation time to be large compared
to the correlation time of the driving force, the fluctuation 〈x2〉cl = (1/2π)2

∫ 〈x(ω)x(−ω)〉dω is determined by the noise
force spectrum at ±ωeff. We obtain the classical part of the oscillator fluctuations:

mω2
eff

〈
x2〉

cl = 1

Γeff

[
Γ kBT + 1

2m
β2

(
2R

c

)2 1

1 + ω2
effτ

2
th

Ah̄ωL Pcirc(x = 0)

]
(11)

At this stage of the derivation, the zero-point fluctuations of the mechanical oscillator are absent. As mentioned above, they
can now be included by hands to obtain the correct quantum result mω2

eff〈x2〉 = mω2
eff〈x2〉cl + �ωeff/2. We can define an

effective fluctuation temperature by kBTeff = mω2
eff〈x2〉. With these notations, the quantum ground-state of the oscillator is

reached when kBTeff becomes of the order of �ωeff/2.
Amongst the different regimes expected from Eq. (11), we are especially interested in the advantageous case of strong

cooling, where Γeff � Γ and ωeff ∼ ω0. In this regime, the thermal fluctuations are damped to a negligible amount. As
discussed in several works [10,16], we remind that reaching this regime requires having a sufficiently large mechanical
quality factor to start with in the experiments. In practice Q m must be larger than the initial average population of the
oscillator. In this strong cooling regime the oscillator fluctuations are determined by the photothermal shot-noise:

Keff
〈
x2〉

cl = βRh̄
1

τth

τ0(κ
2 + �2)

8�
(12)

Let us consider a first simple situation where the laser line is red-detuned by half of the cavity resonance width � = κ with
R ∼ 1 and A � T . In this case the cavity losses are dominated by absorption and we obtain:

Keff
〈
x2〉

cl ∼ 1

8
β A

h̄

τth
(13)

which can be made much smaller than �ω0/2 provided that ω0τth � (1/4)β A. This means that photothermal cavity cooling
to the ground-state is feasible provided that the thermal time lag is large enough compared to β A/ω0. This regime is
reminiscent of the good-cavity limit of radiation-pressure cavity cooling, with the role of the cavity photons lifetime now
played by the thermal relaxation time. Indeed in this regime the cavity photothermal back-action efficiently damps Brownian
fluctuations of the oscillator, but with a limited amount of added force fluctuations thanks to a low-pass “thermal low-pass
frequency filter” present in the force noise.

Fig. 1a shows the noise spectral density of the photothermal force normalised to the maximal noise spectral density of
radiation-pressure force, which is obtained when ω = � (see Eq. (8)). In Fig. 1a we have β A = 100. At low frequency, the
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Fig. 1. Classical calculation without radiation pressure. (a) Normalised noise spectrum of the photothermal force for A = 0.01, β = 104 and T = 0.001.
(b) Normalised fluctuation temperature 2mω2

0〈x2〉/(�ω0) of the mechanical oscillator as a function of the normalised detuning �/κ and of ω0τth .

fluctuations of the photothermal force are very important, reflecting the fact that photothermal pressure is itself amplified
by a factor β A with respect to radiation pressure. In this range, the photothermal shot-noise precludes reaching the ground-
state because of added fluctuations. These fluctuations vanish when raising the frequency ω0.

For ω0τth ∼ β A, the photothermal force shot-noise driving the oscillator becomes inferior to the radiation-pressure shot-
noise level. At the same time, the photothermal back-action damping of the oscillator is typically still a factor β A more
efficient than radiation-pressure damping. In this regime and for values of ω0τth larger than β A, the ground-state can be
approached even in the bad-cavity limit where ω0/κ is inferior to one. Fig. 1b shows a two-dimensional plot of the total
normalised fluctuation temperature mω2

0〈x2〉/(�ω0/2) in the strong cooling regime as a function of ω0τth and �/κ for
the same numerical parameters as in Fig. 1a and for τth = 1 ms. This plot is obtained from Eq. (12). As discussed above,
if the condition ω0τth � β A is fulfilled, we observe that the amount of classical fluctuations can be made smaller than
quantum fluctuations for detuning typically superior or equal to 1. This leads to a total normalised fluctuation temperature
approaching 1. At smaller detuning on the contrary, the cavity cooling mechanism is too un-efficient to approach the ground-
state.

Interestingly, in contrast to the radiation-pressure case where the laser needs to be far-detuned to the cavity resonance,
this original “photothermal ground-state cooling regime” can here be obtained close to cavity resonance (� ∼ κ), ensuring
that a large amount of the incident photons enter the cavity, which could prove extremely useful in the experiments. In
radiation-pressure cavity cooling experiments, the need to operate in the good-cavity limit and far-detuned regime limits
the fraction of photons injected in the cavity, and the cooling is consequently reduced.

In the next section, we will confirm these conclusions by a more general quantum calculation where both radiation
pressure and photothermal pressure are included. If quantitative aspects are modified in some regimes, the competition
between cavity self-cooling and added fluctuations is qualitatively un-altered provided that β A is large compared to 1.

Note that here, and in the rest of the article, we do not account explicitly for the direct heating of the bath due to
laser absorption. Indeed as long as the photothermal back-action cooling is efficient enough to overcome the effect of this
direct heating, our qualitative conclusions concerning the minimal effective temperature reachable by cavity cooling are not
altered. Actually, the very fact that photothermal cavity cooling has been observed in different systems (Refs. [14,16,17,19,
20]) already proves that direct heating of the bath induced by absorption is not the dominating factor for the mechanical
oscillator fluctuations in these systems.
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Before closing this section, we note that the classical calculation shown here could be extended to the case of radiation
pressure. In the case where A = 0, photothermal effects vanish and our classical calculation leads to the standard result that
ground-state cooling is only attainable in the good-cavity limit. As discussed above, no quantum theory is needed to reach
this conclusion: the calculation just needs to include classically the effect of shot-noise and zero-point fluctuation of the
oscillator to obtain the correct quantum result (at least in the harmonic and linearised case).

3. Quantum approach

We will now treat the problem more rigorously within the quantum formalism. A first remark is that, due to the dissi-
pative nature of the photothermal interaction, it is difficult if not impossible to derive an energy-conserving Hamiltonian of
the corresponding optomechanical coupling. In the photothermal effect photons are indeed absorbed. The absorbed energy
is then distributed over an infinite number of degrees of freedom, giving rise to a temperature increase, which produces a
displacement of the oscillator. In the case of radiation pressure in contrast, the conservative nature of the force allows the
derivation of the Hamiltonian, and the radiation-pressure Hamiltonian for an absorption-free cavity has been indeed known
for a long time [22]. This Hamiltonian has served as a base ingredient for many theoretical works relating to radiation-
pressure effects in cavities.

Nevertheless, even if the system consisting of the cavity field and the mechanical oscillator does not conserve its energy
when coupled through photothermal pressure, it is still possible to write down a quantum formulation of the mechanical
oscillator dynamical evolution alone. We describe the coupling to the bath by introducing a fluctuating force and a dissipa-
tive term in the dynamical equations of the system. By doing so the Heisenberg equations now take the form of quantum
Langevin equations, where fluctuation and dissipation are related to each other in order to ensure operator commutators
rules. Here we will use this approach with an expression of the photothermal force f (t) reminiscent of Eq. (1), where a
thermal response function h(t) is convoluted with the operator number of photons absorbed by the oscillator nabs. In this
approach quantum fluctuations are accounted for using commutations relations of x for the oscillator and nabs for photons.
The classical part of the dynamics enters the description through the linear response h(t).

An interesting article [21] already employed such approach to discuss the limits of radiation pressure and photothermal
cavity cooling, with some conclusions that however seemed erroned to us. In this article, the photothermal force amplitude
was considered to be at most half of that of the radiation-pressure force, with the underlying idea that an absorbed photon
transmits �k momentum to the mirror upon absorption in comparison to 2�k when the photon is reflected. The conclusions
reached in [21] were hence limited to the very special case where both pressures are comparable in magnitude. In reality, as
already discussed in the introduction, the photothermal pressure can be orders of magnitude larger than radiation pressure
for a given incident power on the mirror and it is actually this interesting property that we want to use in the present
context. Additionally, even when placing ourselves in the regime of Ref. [21], we did not find the exact same results for
some equations.

Here we will hence follow the interesting path of Ref. [21] but redo the calculations in the case of a dominating pho-
tothermal interaction. These calculations are slightly more general than those of Section 2, since they now also include
radiation pressure. Interestingly, they allow us to recover the outcome of the classical calculations and to give additional
insights into the conclusions reached in Section 2.

We hence write a quantum Langevin equation for the oscillator position operator x, where Γ ensures the preservation
of commutation relationships.

mẍ + mΓ ẋ + K x = F Langevin(t) + F opt(t)

F opt(t) =
√

2h̄k

τ0
I(t) + β

√
2h̄k

t∫
−∞

du

τth
e
−( t−u

τth
)
I abs(u) (14)

with the same notations as in Section 2, and with a close match with those of Ref. [21]. Now I(t) = a+(t)a(t) is the
intracavity intensity operator with the intracavity field annihilation operator a(t). The intensity absorbed by the movable
back-mirror is represented by I abs(t) = a+

abs(t)aabs(t) where aabs(t) = √
(A/τ0)a(t) − bin(t) and bin(t) is the annihilation

operator corresponding to vacuum fluctuations entering the cavity through the absorption process [25]. Note that with this
definition, I(t) and I abs(t) do not have the same dimension. The cavity field dynamical equation is given by:

ȧ(t) = −(κ + i�c)a(t) + i
k

τ0
√

2
x(t)a(t) + √

T /τ0ain(t) + √
A/τ0bin(t) (15)

with the annihilation operator ain(t) of the field injected in the cavity through the front-mirror, the empty cavity detuning
�c and k = 2π/λ. The advantage of the approach used here, which models the absorption process as an “effective mirror” of
transmission A, is that it allows to directly recover the correct white noise statistics of absorbed photons, since all vacuum
fluctuations are now automatically accounted for.

An important difference with respect to Ref. [21] is that the parameter β can here be much larger than one, offering the
possibility to have a photothermal pressure overcoming radiation pressure by far. As mentioned in the introduction, β could
even be negative. We will however restrict ourselves to the positive case for clarity.
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The semi-classical steady-state mean value of the position operator now reads:

〈x〉 =
√

2h̄k

Kτ0
(1 + β A)α2 (16)

with α = 〈a〉 the mean value of operator a and

�nl = h̄k2

Kτ 2
0

(1 + β A)α2 (17)

the non-linear detuning induced by the steady-state intracavity photons pressure on the movable mirror. The overall cavity
detuning � is the sum of the empty cavity detuning �c and of this non-linear term, � = �c − �nl.

To study the dynamics of the system and its quantum fluctuations, we proceed linearising the operators around these
semi-classical mean values x = 〈x〉 + δx, a = α + δa, ain = 〈ain〉 + δain and bin = 0 + δbin (no classical drive at the cavity
output port). The linearised optical force fluctuation contains a part proportional to δx as a result of the optomechanical
coupling. The rest relates to fluctuations of the input light source and is named thereafter δ f opt.

Eqs. (14) and (15) are Fourier transformed and lead to first order in the fluctuations to:

δx(ω) = χeff(ω)
[
δF Langevin(ω) + δ f opt(ω)

]
(18)

with

χ−1
eff (ω) = m

(
ω2

0 − ω2 + iΓ ω
) − 2�

h̄k2

τ 2
0

α2
(

1 + β A

1 + iωτth

)[
1

D(ω)D∗(−ω)

]
(19)

with D(ω) = κ + i� + iω. Eqs. (18) and (19) correspond to Eq. (6) in the classical calculation of Section 2. Now χeff(ω) is a
complex number and x, F Langevin and f opt are operators.

We find back Eq. (15) of Ref. [21] relating to δ f opt with the only obvious change that A has to be replaced by β A each
time A appears in connection with the “thermal filter term” 1/(1 + iωτth).

We proceed with the calculations of the variances and associated quantum noise spectra. The quantum noise spectrum
corresponding to an operator x is defined via

〈
δx(ω)δx

(
ω′)〉 = 2πδ

(
ω + ω′)Sx(ω) (20)

leading for the position variance:

�x2 =
+∞∫

−∞
Sx(ω)

dω

2π
(21)

with from Eq. (18):

Sx(ω) = ∣∣χeff(ω)
∣∣2(

S FLangevin(ω) + S fopt(ω)
)

(22)

For clarity, we adopt the same normalised notation as in Ref. [21]: b = ω0/κ , the hybrid quality factor, ϕ = �/κ , the
normalised detuning, ϕnl = �nl/κ(1 + β A), d = ω0τth and Ω = ω/ω0. We also normalise the position operator x to the
zero-point fluctuation of the oscillator by defining a normalised X = x

√
(mω0/�) and find the following equation:

�X2 =
+∞∫

−∞

dΩ

2π

1

(1 − Ω2 + δΩ)2 + (Ω/Q m + δΓ Ω/ω0)2

[
�S FLangevin(Ω) + ϕnl

�S fopt(Ω)
]

(23)

with the appearance of normalised noise spectra both for the Langevin and optical force. Note that, instead of being single-
sided like in Ref. [21], the integral is now taken from −∞ to +∞ to account for a possible angular frequency asymmetry in
the noise spectrum. In Eq. (23), δΩ and δΓ correspond to a resonance shift (real part of the susceptibility) and an optically
modified damping (imaginary part of the susceptibility).

We found the normalised noise spectrum of the optical force (including both radiation pressure and photothermal pres-
sure) to be:

�S fopt = 1

(1 − b2Ω2 + ϕ2)2 + (4b2Ω2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2T

T + A

∣∣∣∣1 + β
A

1 + iΩd

∣∣∣∣
2(

1 + ϕ2 + b2Ω2 − 2bΩϕ
)

+ 2A

T + A

∣∣∣∣(1 + iΩb − iϕ)

[
1 + β

T + A

2(1 + iΩd)

(
A − T

T + A
− iϕ − ibΩ

)]∣∣∣∣
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(24)
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Eq. (24) is different from the result found in [21], with the important difference that the spectrum is now asymmetric in
frequency, reflecting the asymmetry between emission and absorption process. In contrast to Refs. [10,26], our choice of
convention (Eq. (2)) implies that S fopt(+ω) corresponds to the emission of energy quanta by the cavity into the mechanical
oscillator.

We will focus on the case where the effective damping time of the mechanical oscillator remains large in comparison to
the correlation time of optical and Langevin forces. This means that the photon-dressed mechanical oscillator has a peaked
frequency response. In this limit the frequency shift δω and effective damping Γeff are given by:

δΩ = −2ϕϕnl

(1 − b2 + ϕ2)2 + 4b2

((
1 − b2 + ϕ2)(1 + β A

1 + d2

)
− 2β Abd

1 + d2

)
(25)

Γeff = Γ

[
1 + 2ϕϕnl Q m

(1 − b2 + ϕ2)2 + 4b2

((
1 − b2 + ϕ2) β Ad

1 + d2
+ 2b

(
1 + β A

1 + d2

))]
(26)

These expressions correspond to Eq. (7) obtained by classical calculations in Section 2. Here again, we are mainly interested
in discussing the quantum limits of the strong cooling regime, where the frequency shift remains moderate but the effective
damping allows efficient quenching of the mechanical oscillator Brownian fluctuations (Γeff � Γ ). In this regime and for a
peaked frequency response, the normalised position fluctuations reduce to:

�X2 � Γ

Γeff

[
1 + 2ni + ϕnl

2
Q m�S fopt(Ω = 1) + ϕnl

2
Q m�S fopt(Ω = −1)

]
(27)

where ni = 1/(exp(�ω0/kBT ) − 1) is the average number of quanta in the environment at frequency ω0. Reaching the
quantum ground-state of the oscillator means reaching the limit �X2 = 1.

In case of negligible photothermal effects (taking the limit A = 0) and in the strong cooling regime, Eqs. (24) to (27) lead
the usual conclusions concerning radiation-pressure cooling: one needs to be in the good-cavity limit to cool the oscillator
arbitrary close to its ground-state. We will not insist here on radiation-pressure cooling, which has already been discussed
in details in several articles [10–13].

We focus on situations where photothermal pressure overcomes radiation pressure (β A � 1). This means that absorption
at the back-mirror is not negligible and generally implies that we are working in the “bad-cavity limit”, where ω0 � κ . Of
course, “bad cavity” is just a naming here and the cavity finesse can in reality be reasonably large, provided that A and T
are small enough. β A is indeed the important parameter to quantify the photothermal force: β A can be large and A small
in some cases of interest.

In Fig. 2a, we have plotted the optical force spectral noise density for a set of parameters close to that considered in
Section 2 (ϕ = 1, A = 0.01, T = 0.001, d = 1, β = 10,000) and for a value of b = 0.01 which places us deeply in the “bad-
cavity” limit. The comparison with Fig. 1a is instructive: the spectrum is now asymmetric in frequency and possesses a
radiation-pressure “bump” on top of the dominating photothermal contribution centred at null frequency. The overall noise
is not simply the sum of photothermal and radiation-pressure contributions, it is a subtle interference between the two that
will be discussed below.

Fig. 2b shows the normalised variance �X2 obtained from Eq. (27) as a function of the normalised detuning ϕ = �/κ
and of the d parameter (d = ω0τth), in the regime of strong cooling and in the limit of large ϕnl. As can be seen on the
figure, the quantum ground-state is approached for a large set of values of ϕ and d. A large value of detuning ϕ for example
reduces the influence of radiation-pressure noise and is generally favourable to approach the ground-state. But the situation
offers other regimes of interest. For ϕ = 1 for example, we observe that increasing the parameter d from 0 to 100 allows
to reduce the position variance and approach the ground-state. For values of d between 0 and 100 the position variance is
similar to the one plotted in Fig. 1b in the classical model. For values of d much larger than 100 here (that is well above
β A), the variance increases again reflecting the fact that optomechanical damping of photothermal origin becomes less
efficient and does not damp the response of the oscillator fluctuations to radiation-pressure noise anymore. This increase
of the position variance for large d was absent from the calculations in Section 2 because we did not include radiation-
pressure effects in our first description. In reality, we see that the inclusions of photothermal and radiation-pressure effects
lead to the existence of an optimum value of d. Still our important conclusion remains: the ground-state can be reached by
photothermal cavity cooling in the bad-cavity limit and in a regime of moderate detuning where photons are more easily
injected into the cavity by the pump field.

The minimum number of phonons in the oscillator that can be reached by cavity cooling is obtained directly from the
optical force noise density spectrum using a detailed balance argument [10,26]:

nmin =
[

S fopt(−ω0)

S fopt(ω0)
− 1

]−1

(28)

Fig. 3 plots nmin as a function of d = ω0τth, for a detuning ϕ = 1 (flank of the cavity resonance), in the “bad-cavity” limit
b = 0.1 and for different values of β A. Occupation factors well below one are obtained here by an appropriate choice of the
parameter d. For example, an occupation factor of about 0.1 is obtained for A = 0.1 and β = 104. More generally, very small
occupations are obtained in the “bad-cavity” regime by careful adjustment of β , A, T , d and for moderate values of ϕ ∼ 1.
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Fig. 2. Quantum calculation with both photothermal and radiation pressure. (a) Normalised noise spectrum of the complete optical force, including both
radiation and photothermal pressures, for A = 0.01, β = 104, T = 0.001, ϕ = 1, d = 1 and in a bad-cavity situation b = 0.01. (b) Normalised variance X2 as
a function of the normalised detuning �/κ and of the parameter d = ω0τth .

Fig. 3. Minimum phonon occupation of the mechanical oscillator as a function of d = ω0τth , for a detuning ϕ = 1 and for various values of the parameters
β and A.

We used a numerical bound constrained minima research algorithm to get a clearer insight into the minimal occupancy. We
found for example that it is possible to reach nmin ∼ 4×10−2 for a set of parameters which places us in the bad-cavity limit
and at a slightly detuned cavity (ϕ ∼ 1.2, b ∼ 0.6, d ∼ 105, β ∼ 105, T ∼ 0, A ∼ 0.45). However, because of the complexity
of Eq. (24), we were unable to find a simple expression allowing an analytical survey of the minimal occupancy dependence
on all involved parameters.



J. Restrepo et al. / C. R. Physique 12 (2011) 860–870 869
As discussed in [10,26], the asymmetry in the noise spectrum is responsible for a net exchange of energy between
optical and mechanical resonators. The optomechanical damping is obtained directly from the force noise spectrum using
the formula:

Γopt = x2
ZPF

h̄2

[
S fopt(−ω0) − S fopt(ω0)

]
(29)

This formula can be seen as generalised Kubo formula [27]. Using Eq. (24) in the “bad-cavity” limit b � 1 and injecting
the result into Eq. (29), we obtain an expression for the optomechanical damping on the “red-detuned” flank of the cavity
resonance (ϕ = 1) when the absorption dominates other losses in the cavity (T � A):

Γopt

Γ
= Q mβ

ω0τth

1 + ω2
0τ

2
th

2

c
Pabs

8F

π

1

K
(30)

where we have made use of the following equivalence between normalisation factors of the classical and quantum calcula-
tions: 1/κ(

√
2�kα/τ)2 = (2R/c)2

�ωL Pcirc F/π in the limit R ∼ 1.
Eq. (30) is exactly the expression found classically in Section 2 (Eq. (7)), showing a good level of consistency between

classical and quantum calculations. However, the quantum approach provides us with an additional understanding: the exact
photothermal cavity cooling actually results from an interference between radiation pressure and photothermal couplings.
The asymmetry of the total optical force quantum noise spectrum, which is the necessary ingredient to cool the mechanical
oscillator, is the result of this interference. Classically it can be understood as the radiation-pressure coupling providing the
(cavity) resonance in the interaction between photons and the mechanical oscillator, and the photothermal effects providing
a large optically induced force with the time lag necessary for dynamical back-action cooling.

4. Conclusions

We have presented a classical and a quantum treatment of the problem of cavity cooling of a mechanical oscillator by
photothermal dynamical back-action. Both approaches are consistent and show that the quantum ground-state of the oscil-
lator can be reached using photothermal optomechanical cavity cooling, even in the “bad-cavity” limit where the lifetime of
photons in the cavity is smaller than the mechanical time period of the oscillator. This is in strong contrast to the case of
cooling by radiation pressure and opens new experimental perspectives. Using photothermal cooling, the ground-state could
be reached without having to fulfil the “good-cavity” condition and in situation of moderate cavity detuning where a large
number of incident photons would be injected in the cavity.

Our calculations are valid for any semi-classical force that can be written in the form of Eq. (1) or Eq. (14). They could
hence be adapted to other delayed photo-induced forces arising for example from radiometric pressure or photo-strictive
effects. The choice of a simple exponential retardation function with a unique time-scale τ is motivated by our approach
of neglecting the details of involved microscopic processes. As mentioned above, for what concerns the photothermal force,
this choice is validated by several experimental studies [14,16–19]. A more complex behaviour of the force, represented for
example by several time-scales, would only modify quantitatively the force noise spectrum and not affect qualitatively our
conclusions.

Note added

After submission of this work we became aware of another theoretical work dealing with the problem of photothermal
cavity cooling (Ref. [28]). This work, albeit valid only in the bad-cavity limit and treating photothermal and radiation-
pressure effects as independent channels, also concludes that the mechanical oscillator quantum regime can be reached
using photothermal cavity cooling.
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