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Quantum radiation pressure noise has never been experimentally demonstrated, though
it has been predicted for more than thirty years. It is, however, expected to limit the
low-frequency sensitivity of second generation gravitational-wave interferometers. We have
demonstrated classical radiation-pressure-induced correlations between two optical beams
sent into the same high-finesse cavity with a moving mirror. Our two-beam scheme can
be used to retrieve quantum noise embedded in an overwhelming classical noise, and has
applications both in high-sensitivity measurements and in quantum optics.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Bien que prévu depuis plus de trente ans, le bruit quantique de pression de radiation
n’a jamais été mis en évidence expérimentalement. On s’attend néanmoins à ce qu’il
limite la sensibilité à basse fréquence des interféromètres gravitationnels de seconde
génération. Nous avons mis en évidence des corrélations classiques induites par la pression
de radiation entre deux faisceaux envoyés dans la même cavité de grande finesse dont un
miroir est mobile. Notre dispositif à deux faisceaux permet de retrouver le bruit quantique
même lorsque le bruit classique est prédominant, et a des applications dans les domaines
des mesures de grande sensibilité et de l’optique quantique.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Quantum radiation pressure noise (QRPN) has been studied for more than thirty years [1,2], in particular in the frame-
work of gravitational wave detection [3,4]. Radiation pressure builds up correlations between intensity fluctuations and
mirror displacements inside the optical interferometer and enforces quantum limits to the sensitivity of large-scale inter-
ferometers [1,2,5]. Overcoming such limits was a major motivation for the squeezing experiments [6–8] performed since
then.
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Fig. 1. Two possible experimental setups to demonstrate quantum radiation pressure noise (QRPN). (Left) One laser beam is sent into a moving mirror cavity.
The reflected field is monitored by a homodyne detection and reproduces the mirror motion. QRPN appears as a displacement noise spectrum scaling as
the intracavity power P . (Right) Two-beam setup: both an intense signal beam and a weaker meter beam are sent into the cavity. Intensity fluctuations
of the signal beam are imprinted by radiation pressure onto the position fluctuations of the moving mirror, and onto the phase fluctuations of the meter
beam. The two reflected beams then display intensity–phase correlations, retrieved with both a photodiode and a homodyne detection.

Meanwhile, a number of table-top experimental setups have been designed in order to demonstrate radiation pressure
effects with smaller scale optomechanical resonators. However, the pioneering experiments [9–11] had to deal with a low
optomechanical coupling and more recent ones [12–17] mainly focused on the possible demonstration of the quantum
ground state of a mechanical resonator [18–20], so that up to now, QRPN still hasn’t been demonstrated, the only exception
being a related optical back-action heating of ultracold atoms trapped in a high-finesse cavity [21].

A conceptually simple experiment to demonstrate QRPN is to simply monitor the displacement noise spectrum of a
moving mirror probed by laser light in an optical cavity. At (very) high power, such a noise spectrum should only be
related to QRPN, with a characteristic linear dependence with the power P in of the incident laser beam. Such a technique is
currently being developed in medium-size experiments [22], typically performed with small-size moving mirrors embedded
within large-scale optical interferometers, taking advantage of the technical background in both suspensions and vacuum
systems of the gravitational-wave experimental groups involved.

As such an experiment involves a combination of low temperature, high mechanical quality factor and a very high
optical power for QRPN to prevail over thermal displacement noise, we report in this work a novel two-beam technique
[23,24] in order to demonstrate optomechanical correlations close to the quantum level. As a proof-of-principle, classical
optomechanical correlations have been measured with a tiny classical intensity modulation that mimics QRPN. A closely
related experiment is also underway with a membrane optical cavity setup [25].

In Section 2, we review the experimental challenge set by such a QRPN-demonstration experiment. We then proceed to
present in Section 3 the principle of our experiment and related experimental results in Section 4. In Section 5, we review
the way to extend our results to the quantum domain in order to demonstrate QRPN. Section 6 is dedicated to a review
of the different approaches towards the ultimate optomechanical resonator currently under study at Laboratoire Kastler
Brossel.

2. QRPN: an experimental challenge

For a lossless single-ended optical cavity at resonance (see Fig. 1, left), neglecting the cavity bandwidth effects, the phase
fluctuations δϕout of the reflected field are:

δϕout = δϕin + 8F
λ

(δxcl + δxrad) (1)

where F is the cavity finesse, λ the laser wavelength, δϕin the (quantum) phase fluctuations of the incoming field, δxcl
the classical displacement fluctuations of the moving mirror inserted in the cavity (thermal noise, low-frequency vibrations,
etc.) and δxrad its position fluctuations induced by the (possibly quantum) fluctuations of the intracavity intensity.

To monitor radiation pressure effects down to the quantum level, one obviously has to enhance the optomechani-
cal coupling with a high-finesse cavity (F � 1): this makes the measurement noise δϕin negligible, provided the mirror
displacements are large enough, which is easily met at or close to a mechanical resonance frequency. Monitoring the dis-
placement noise spectrum through the phase of the reflected field (see Fig. 1, left) is then sufficient to demonstrate QRPN as
long as the position fluctuations δxrad induced by the quantum intensity fluctuations of the signal beam are the dominant
noise source. This requires to lower the thermal fluctuations δxT of the moving mirror. For a harmonic oscillator of mass M ,
resonance frequency ΩM/2π , and mechanical quality factor Q , the corresponding ratio between the radiation pressure and
thermal noise spectra can be written [23,24]:
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Fig. 2. Experimental setup. The laser beam is split in two independent beams by a polarizing beamsplitter (PBS). A resonant electro-optical modulator
(REOM) is used to lock the laser onto the optical resonance via a Pound–Drever–Hall technique. Acousto-optic modulators (AOM1 and AOM2) are used to
stabilize the intensities of both beams after their spatial filtering by the mode cleaner cavity. A second EOM modulates the intensity of the signal beam to
mimic quantum radiation pressure noise. Intensity fluctuations of the reflected signal beam are monitored with a photodiode, as are the phase fluctuations
of the meter beam with a quantum-limited homodyne detection. For simplicity, most polarizing elements are not shown.

where Tm is the mirror environment temperature and P in the incident power of the laser beam. The stated values have
all already been achieved independently in various state-of-the-art optomechanical systems [12–17,26,27], but combining
the favourable mechanical behaviour of NEMS [26] with a very high optical finesse [27] is an even greater experimental
challenge. However, a number of experiments are currently carried out in order to reach a regime where the ratio (2) is
larger than one [22].

3. Two-beam setup

In order to demonstrate QRPN, we have developed an alternative approach. Two beams are sent into the same moving
mirror cavity (see Fig. 1, right): the intensity fluctuations of the first, intense, signal beam drive the mirror into motion
by radiation pressure, whereas the resulting position fluctuations are monitored through the phase of the second, weaker,
meter beam.

Indeed, neglecting optical losses and irrelevant noises such as the quantum fluctuations of the meter beam, we have the
following input–output relations for the fluctuations of the various fields involved, at a given frequency Ω [24]:

δ Iout
s [Ω] = 1 + iω

1 − iω
δ I in

s [Ω] (3)

δϕout
m [Ω] = 8F

λ(1 − iω)

(
δxT[Ω] + δxrad[Ω]) (4)

with straightforward definitions for the fluctuations, and ω = Ω/Ωcav is the reduced frequency (Ωcav is the cavity band-
width). The radiation pressure noise δxrad is related to the incident signal intensity fluctuations by:

δxrad[Ω] = 8F
λ(1 − iω)

h̄χ [Ω]δ I in
s [Ω] (5)

where χ [Ω] is the mechanical susceptibility of the moving mirror. The reflected signal intensity noise δ Iout
s reproduces the

incident fluctuations δ I in
s , with only a global phase shift, whereas the reflected meter phase δϕout

m reproduces the same
incident signal intensity δ I in

s via the mirror motion (Eqs. (4) and (5)): the intensity–phase correlations observable between
the two reflected beams therefore provide a direct measurement of the optomechanical correlations in the regime where
radiation pressure noise prevails over thermal noise.

4. Experimental implementation and results

4.1. Experimental setup

The signal and meter beams are cross-polarized beams, emitted by the same Titane–Sapphire laser working at 810 nm.
As the cavity is birefringent, two independent acousto-optic modulators (AOM1 and AOM2 in Fig. 2) detune the two beams
so that they both match the cavity resonance. The overall resonance is controlled by locking the laser frequency via a Pound–
Drever–Hall technique. A mode cleaner ensures the quality of the spatial profile of both beams, while their intensities are
stabilized by servo-loops which drive the amplitude control of the AOMs.
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Fig. 3. Fused silica plano-convex mirrors used as optomechanical resonators. (Left) Geometrical characteristics of the resonator. (Right) Thermal noise
spectrum of the fundamental mechanical mode, with a mechanical quality factor Q = 750 000.

The moving mirror cavity is a single-ended optical cavity, with a 1-inch fused silica cylindrical input mirror and a
moving mirror based on a fused silica resonator (see Section 4.2) as end mirror. Concerning its optical characteristics,
the low roughness of the silica substrates allows for ultra low-loss optical coatings. We have obtained a cavity finesse
F = 330 000, mainly limited by the 20 ppm transmission of the input mirror, which is crucial as additional losses would
lower the quantum correlations between the intracavity and output fields. The cavity is only 0.33 mm long in order to keep
a sufficient cavity bandwidth (Ωcav/2π = 700 kHz). It also prevents laser frequency noise from limiting the displacement
sensitivity.

The phase fluctuations δϕout
m of the reflected meter beam are monitored by a homodyne detection. For an incident power

of 500 μW, one gets a shot-noise-limited displacement sensitivity at the 10−20 m/
√

Hz level for frequencies above 200 kHz.
This makes quantum phase noise completely negligible in the vicinity of mechanical resonances. Intensity fluctuations δ Iout

s
of the reflected signal beam are monitored by a high-efficiency photodiode. Optical rejection of the double-beam system is
higher than 35 dB, in such a way that phase fluctuations of the meter beam are insulated from the intensity fluctuations of
the signal beam: observable effects of the signal beam are then necessarily induced by intracavity radiation pressure.

As our current optomechanical system is expected to have a ratio Srad
x /ST

x around 10−3 [Eq. (2)], we have first tested
our setup with an additional classical intensity noise which mimics QRPN [27,28]: the signal beam (150 μW) is intensity-
modulated with an electro-optic modulator (EOM in Fig. 2) before entering the cavity to produce a classical intracavity
radiation pressure noise. The driving noise has a typical bandwidth of a few hundreds of Hz, larger than any bandwidth
used in the correlations acquisition process: it can therefore be considered as a white noise. The center frequency Ωc of
the noise is not necessarily at the mechanical resonance frequency ΩM: working at resonance (Ωc = ΩM) indeed amplifies
the radiation pressure and thermal displacements by a factor up to the quality factor Q , but the strong amplitude and
phase dependencies of the mechanical response across the resonance has to be taken into account in order to analyze the
resulting mirror motion. Note that the ratio (2) does not depend on the frequency, at least as long as mechanical losses
can be considered constant. Furthermore, we will see in Section 5 that operating at the resonance actually presents some
drawbacks when aiming at demonstrating QRPN. We therefore focus in the following on experimental results obtained at
a lower frequency, with Ωc/2π = 1.123 MHz, about 600 mechanical linewidths below the resonance frequency (ΩM/2π =
1.125 MHz and Q > 500 000).

All fluctuations are monitored through their quadratures [30]. In the case of the signal beam intensity for instance, its
incident fluctuations δ I in

s are defined with respect to Ωc by:

δ I in
s (t) = X in

Is
(t) cos(Ωct) + Y in

Is
(t) sin(Ωct) (6)

where X in
Is

(t) and Y in
Is

(t) are slowly-varying noises. These two quadrature noises are randomly generated by a computer and
loaded into a dual-channel waveform generator (Tektronix AFG3022B) in order to produce the two amplitude-modulated
cosine and sine functions oscillating at frequency Ωc in Eq. (6). These signals are then summed to drive the EOM, with a
resulting radiation pressure noise δxrad up to 5 times larger than the mirror thermal noise δxT (Srad

x /ST
x � 25). Two spectrum

analyzers Agilent MXA directly extract the quadratures of the reflected signal intensity (Xout
Is

(t), Y out
Is

(t)) and meter phase
(Xout

ϕm
(t), Y out

ϕm
(t)) with an analysis bandwith of 400 Hz. Temporal evolution of the quadratures are acquired over a span time

of 200 ms, equal to the scan time of the random amplitude-modulation pattern.

4.2. Fused silica mirrors as optomechanical resonators

For this specific experiment, according to Eq. (2), we have favoured optical characteristics and used a cm-size fused silica
moving mirror. As such a mirror takes advantage of the amount of work performed in the framework of gravitational-wave
detection to decrease optical and mechanical losses, it provides both a very high optical finesse and mechanical quality
factor, at the expense of a mass in the mg range.

The actual moving mirror, used as the end mirror of the high-finesse cavity, is a plano-convex 34-mm diameter and
2.55-mm thick mirror (see Fig. 3), which displays Gaussian internal vibration modes [29]. We work at frequencies close to a
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Fig. 4. Phase-space trajectories of the intensity noise of the reflected signal beam (a) and the phase noise of the meter beam, in the case Srad
x /ST

x � 25 (b)
and Srad

x /ST
x � 1 (c). The phase noise is calibrated as displacements of the moving mirror. The main features of the intensity random walk can be seen on

the phase noise as well when Srad
x /ST

x � 1, giving a first evidence for optomechanical correlations, whereas phase noise mainly depicts thermal noise for
smaller Srad

x /ST
x ratios.

mechanical resonance with the following optomechanical characteristics, deduced from the thermal noise spectrum at room
temperature: ΩM/2π = 1.125 MHz, M � 50 mg (strongly dependent on the beam spot location over the resonator surface),
and Q = 750 000 in vacuum. This Gaussian mode is actually well confined around the central axis of the plano-convex
structure, and the effective mass of the mode is thus much smaller than the total mass of the mirror, on the order of 5 g.
This also prevents clamping losses at the edge of the mirror that may otherwise decrease the mechanical quality factor.

4.3. Results in phase space

Fig. 4 presents the observed phase-space trajectories of the reflected signal intensity and meter phase, drawn as the
temporal evolution of the quadratures in their respective planes: clear correlations are evident between the intensity noise
of the signal beam (left) and the meter phase noise in the case Srad

x � ST
x (center). Radiation pressure noise is however still

superimposed to the thermal noise δxT, which explains the small glitches observed between the two trajectories. Note the
typical level of displacement, at the 10−15 m level.

Beyond this striking visual demonstration of the correlations, these can be quantified by computing the correlation
coefficient CIs,ϕm defined from both trajectories:

CIs,ϕm = 〈δ Iout
s

	
δϕout

m 〉

Iout

s 
ϕout
m

(7)

where the brackets 〈· · ·〉 stand for a temporal average and 
 represents the corresponding standard deviation. In the
case Srad

x /ST
x � 25, we obtain a correlation coefficient |C Is,ϕm |2 � 0.96, in excellent agreement with the expected value

(1 + ST
x/Srad

x )−1 deduced from Eqs. (3) to (5) [24].
In the Srad

x � ST
x case, the reflected meter phase fluctuations δϕout

m are mainly related to random thermal noise and the
differences between both trajectories are not just glitches but far more severe (see Fig. 4, right). The correlation coefficient
computed from a single experimental run has little meaning as its value strongly fluctuates from one run to the other.

4.4. Averaging to retrieve low correlation coefficients

It is however well known that when using a correlation technique, getting a signal out of the noise is mainly a matter of
time. Indeed, our experimental setup enables to demonstrate optomechanical correlations even in the Srad

x � ST
x case. The

technique is emphasized on Fig. 5, which presents several runs performed with the same random intensity noise pattern
(with Srad

x /ST
x � 0.03) and the subsequent averaging of 500 runs, together with a close-up in phase space.

Averaging over these 500 runs, the thermal noise contribution – though overwhelming at the single-run level – even-
tually averages to zero while the radiation pressure term – though negligible over a single run – does not. Consequently,
averaging the individual trajectories allows to recover the intensity noise pattern, on a scale much smaller than the single-
shot thermal noise scale. The resulting averaged correlation coefficient also eventually tends to its small but non-zero
expected value (1 + ST

x/Srad
x )−1 � 0.03, with a statistical uncertainty at least 10-times smaller (2.5 × 10−3 for 500 aver-

ages) [24].

5. Towards QRPN

The optomechanical correlations demonstrated so far are still at the classical level but QRPN in our system would cor-
respond to Srad

x /ST
x � 10−3 for a temperature of 1 K. Further averaging once working at low temperature should then

be sufficient to retrieve the corresponding quantum correlations and hence demonstrate radiation pressure noise. In this
section, we estimate the required averaging time and discuss the implications of the cavity losses upon the laser/cavity
frequency stability requirements.
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Fig. 5. Proof of principle of the ability of the two-beam setup to retrieve quantum optomechanical correlations even in the Srad
x /ST

x � 1 limit. Phase-space
trajectory of the intensity noise of the signal beam (a) now corresponds to a ratio Srad

x /ST
x = 0.03, and the resulting phase noise of the meter beam for

different experimental runs (b) and (c) is blurred by thermal noise. The initial intensity noise pattern is retrieved by the average of 500 similar experimental
runs (d), and close-ups (e) and ( f ).

5.1. Constraints on averaging

When the motion is dominated by the thermal noise (Srad
x � ST

x ), the correlation coefficient appears as the sum of two
contributions CIs,ϕm � Crad + CT deduced from Eqs. (4) and (7):

Crad = 〈δ Iout
s

	
δxrad〉


Iout
s 
xT

, CT = 〈δ Iout
s

	
δxT〉


Iout
s 
xT

(8)

The first term represents the quantum optomechanical correlations induced by radiation pressure, whereas the second term
vanishes as the intensity fluctuations are uncorrelated with the thermal noise. Both terms are effectively normalized to

x � 
xT . Using Eqs. (3) and (5), the correlation coefficient then reduces to |C Is,ϕm |2 � Srad

x /ST
x , a small but non-zero value.

In a real experiment, however, the correlation coefficient is calculated from a limited set of data {Iout
s (t),ϕout

m (t)} mea-
sured over a finite time τave. The thermal correlation coefficient CT(τave) calculated from this data set using Eq. (8) can
then reach a non-zero value, of the same order or even larger than the expected quantum correlations Crad. This leads to
a constraint on the averaging time τave in order to reach a given accuracy a in the measurement. From the comparison
between the dispersion 
CT(τave) on the correlations measurement and the expected quantum correlations level Crad, one
gets [31]:

a = 
CT(τave)

Crad
�

√
Srad

x

ST
x

× 1√
Γspanτave

(9)

where Γspan is the typical bandwidth of the measurement, namely the spectrum-analyzer bandwidth when working out of
the mechanical resonance, or the mechanical bandwidth ΓM = ΩM/Q when the measurement is made at the mechanical
resonance frequency.

Working close to a resonance characterized by a high mechanical quality factor, where both the magnitude and the
phase of the mechanical behaviour dramatically depend on the frequency, severely expands the averaging time. In contrast,
working far enough from any mechanical resonance in order to have a mechanical response as flat in frequency as possible,
one has the possibility to integrate the noise over a frequency band as large as possible: with our current setup, one may
easily find a 10 kHz-wide frequency band free of any mechanical resonance, to be compared to the 1 Hz or so width of
an individual mechanical resonance. For a targeted accuracy of 10%, the expected averaging time for our system at 1 K
experiences a 10 000-fold decrease, from 1 hour to less than a second.

Fig. 6 shows an experimental illustration of this time averaging, obtained with a tiny classical intensity noise as in the
previous section, with Srad

x /ST
x � 0.03. The total correlations Crad + CT, calculated for 20 different runs (left), clearly tend to
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Fig. 6. (Left) Time average of the total correlations CIs ,ϕm = Crad + CT, obtained with a classical intensity noise in the Srad
x /ST

x � 1 limit. Each curve
corresponds to an experimental run, and the dashed curves show the theoretical dispersion 
CT(τave). The correlation tends to its non-zero expected value
Crad within a total average time τave shorter than 2 s. (Right) The residual dispersion 
CT(τave) of the correlations is deduced from the experimental
runs (a) and compared to a theoretical fit with Γspan/2π = 320 Hz (b), in good agreement with the spectrum-analyzer bandwidth (400 Hz) as experimental
and theoretical filter transfer functions do not have the exact same analytical expression.

the expected radiation pressure correlations Crad �
√

Srad
x /ST

x � 0.17 after an averaging time of a few seconds. The dispersion

CT (right), which characterizes the accuracy a of the measurement, evolves as 1/

√
τave as expected from Eq. (9).

5.2. Contamination of the intensity by displacement noise

Averaging is not the only issue one has to deal with when targeting QRPN with our setup. Since any high-finesse
cavity has unavoidable optical losses, a major problem arises from the reflectivity dip at resonance (see Fig. 7). When
the laser is not perfectly resonant with the cavity, as the Airy peak slope is non-zero, additional intensity noise stems from
displacement noise, which is mainly thermal noise in our case. Neglecting the cavity filtering at the frequency of interest
(ωc = Ωc/Ωcav � 1), these additional intensity fluctuations δ Iout

s,x are [31]:

δ Iout
s,x � 4F

dIout
s

d( ν
νcav

)

δxT

λ
(10)

as expected from the definition of the slope dIout
s /dν , where νcav = Ωcav/2π is the cavity bandwidth, which also corre-

sponds to an equivalent displacement λ/4F .
One no longer probes the incident intensity fluctuations responsible for quantum correlations when monitoring the

reflected signal intensity, and this inevitably leads to fake correlations as both the signal intensity and meter phase simply
display the effect of thermal noise. The thermal correlation coefficient CT(ν) at a given mean detuning ν (Eq. (8)) no longer
vanishes and may become comparable to the quantum correlations Crad, thus limiting the accuracy a of the measurement,
now given by [31]:

a =
∣∣∣∣ CT(ν)

Crad

∣∣∣∣ � 4F√
Iout

s

∣∣∣∣dIout
s (ν)

d( ν
νcav

)

∣∣∣∣
√

ST
x

λ

√
ST

x

Srad
x

(11)

This sets a limit upon the maximum mean detuning ν allowed, which only appears in this equation via the slope of the Airy

peak dIout
s /dν . Other relevant parameters are the thermal noise amplitude

√
ST

x , and the ratio
√

ST
x/Srad

x between thermal
and radiation pressure noises: the accuracy reaches as better values as these 3 parameters are smaller.

Fig. 7. Principle of the contamination of the reflected intensity of the signal beam by the mirror displacements in a lossy cavity. When the laser frequency
is slightly detuned from the cavity resonance (right), the reflected intensity becomes sensitive to mirror displacements.
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Fig. 8. Silicon beams as optomechanical resonators. Left: SEM view of a 1 mm × 400 μm × 30 μm doubly-clamped beam. Right: Computed vibration profiles
of the (0,2) and (1,2) modes.

At the mechanical resonance frequency, where the thermal noise
√

ST
x is enhanced by the resonance, this yields:

a � 8l

|1 − l|√1 + l
× kB Tm

h̄ΩM
× ν

νcav
(12)

where l = L/T is the ratio between the cavity losses L and the transmission T of the front mirror. This equation shows that
the requirement on the mean detuning ν/νcav only depends on the cavity losses [first term in (12)], and on the phonon
number kB Tm/h̄ΩM which characterizes the thermal noise level. If one wants to extract optomechanical correlations with
a 10% accuracy, for our experimental setup (with F = 2π/(T + L) = 330 000, L � T /4), obeying such a relation implies for
the frequency mismatch to be lower than 10 mHz (for a 1 MHz cavity bandwidth), which is a very stringent condition.

Lowering the challenge to the stabilization can however be done by working once again far from a resonance frequency.
In that case, the thermal noise amplitude

√
ST

x in Eq. (11) is indeed much lower and one finds that the maximum frequency
mismatch ν is reduced by an amount 1/φ0, where φ0 is the loss angle at the mechanical frequency of interest (for a single
resonant mode, one would have φ0 = 1/Q ). With our setup, a value φ0 � 10−6 yields a frequency locking accuracy that has
to be better than 10 kHz, which is quite feasible. Finally note that the same stringent condition on the laser–cavity detuning
can be drawn in the regime where radiation pressure noise prevails over thermal noise (Srad

x � ST
x ) [31].

6. A review of optomechanical systems

We present in this section a review of the different optomechanical resonators under study at Laboratoire Kastler Brossel,
with different experimental goals.

6.1. Silicon micro-resonators

As described in Section 4.2, the first optomechanical resonator is a fused silica mirror, which provides both a very high
optical finesse and a high mechanical quality factor, at the expense of a rather high mass. Another approach consists in
taking advantage of the progress in ion etching of silicon. A typical silicon micromirror (1 mm × 400 μm) doubly-clamped
beam, with a thickness of 30 μm allows an optical finesse of the order of 30 000 [12,13], with the following typical optome-
chanical parameters: ΩM/2π � 1 MHz, M � 50 μg, and Q � 10 000 for transverse modes with a low displacement at the
clamping location.

One immediately sees that, with the prospect of demonstrating QRPN, the net gain over the mass with respect to the
fused silica mirrors (more than 2 orders of magnitude) is lost due to the poorer optical finesse (squared in Eq. (2)) and
mechanical quality factor. That specific kind of resonator is currently used in experiments designed to demonstrate 3-mode
effects in a nearly degenerate optical cavity [32].

6.2. Quartz micro-pillar

We are also developing a new generation of micromirrors designed for cavity-cooling experiments [13–17], which specif-
ically require a high mechanical resonance frequency in order to reach the resolved sideband regime [17], and a high
mechanical quality factor Q as the cooling considerably increases the effective damping of the resonator. To reduce both
clamping and coating mechanical losses, our resonator is based on a compression mechanical mode rather than a shear
mode: we use the first length extension mode of a quartz micro-pillar, clamped at its center by a thin membrane (see
Fig. 9) [33].

Such a mechanical mode is expected to have a very high Q . Single-crystal quartz has been chosen to benefit from its
high intrinsic quality factor, especially at low temperature [34,35]. The symmetry of the resonator lowers the displacement
at the clamping location, decreasing the clamping losses. Also, the mirror-carrying surface at the top of the pillar has a
quasi-null strain, lowering the coating losses. We have used Finite Element Method (FEM) simulations to accurately model
the damping, including the real geometry of the resonator and taking into account the etching pattern defects observed after
the first microfabrication steps. The size and geometry of both the pillar and the membrane have been carefully optimized
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Fig. 9. Quartz micro-pillars as optomechanical resonators. (Left) 3D view of the concept: a symmetrical resonator clamped at the node of its fundamental
mode. (Center) FEM simulation of the fundamental mode. (Right) SEM top view of a processed mechanical resonator. The size of the pillar is of the order
of 200 μm.

in order to keep the pillar mechanically isolated and to avoid any interference with other mechanical modes. The final
processed geometry also respects the quartz internal trigonal symmetry.

Micro-pillars typically have a transverse size of the order of 200 μm and are 1 mm long. The expected mass is then
around a few tens of μg. Until now, resonators have been tested without the final optical coating and a test-bench based on
a simpler Michelson interferometer configuration has been built to easily measure and optimize the resonator parameters.
The current best sample exhibits a very high quality factor, around 400 000 at 0.2 mbar and room temperature, for a
resonance frequency of 3.66 MHz. Note that such a system has a radiation-pressure over thermal-noise ratio (2) of a few
hundreds at a cryogenic temperature of 100 mK, turning it into a promising candidate to demonstrate QRPN as well.

Such a high Q value can furthermore be considered as an underestimate of the real quality factor since we have not been
able to obtain reliable values at lower pressure. The top of the pillar indeed currently has an Au-coating: when the vacuum
is better than 10−1 mbar, laser light induces a small heating of the mirror surface, which induces a thermal asymmetry of
the pillar and a decrease of the quality factor. Such a thermal effect will disappear with the final high-reflectivity coatings.

6.3. Photonic bandgap membrane

A number of theoretical and experimental works have been dedicated to the “membrane-in-the-middle” approach [16],
where a thin membrane is inserted inside a high-finesse optical cavity, taking advantage of both the mechanical charac-
teristics of the membrane and the optical properties of the cavity. It has however been shown that the most interesting
experiments considered, such as the QND measurement of the number of phonons of the membrane, do require an optical
reflectivity very close to unity [16,36]. We study the possibility to use a photonic crystal to fabricate such a high-reflectivity
membrane. With a careful choice of the lattice, the photonic crystal can support zero group velocity modes at the so-called
� point [37]: a normal incidence beam can be fully coupled to in-plane non-propagating resonances, yielding zero transmis-
sion. In addition, the dispersion of these modes can be flat enough to have a good reflectivity on a broad range of incidence
angles, allowing to work with very small optical waists.

We have started investigating such resonators, to be used as an end mirror in a high-finesse cavity. The resonator is an
InP membrane processed by e-beam lithography, with a typical transverse size of a few tens of microns and a thickness of
the order of 200 nm. Square holes are processed with a typical step size of 650 nm and a filling factor of 50%.

The mechanical properties of the first membranes have been investigated on our Michelson test-bench. The sample is
mounted on a high-frequency/high-power piezoelectric actuator driven by a high power RF amplifier. The spectral response
of the membrane is obtained using a network analyzer to synchronously drive the actuator and collect the resulting intensity
modulation at the output of the interferometer. Fig. 10 shows the mechanical response of a 10 μm × 20 μm membrane,
doubly-clamped by two 1 μm long strips. Observed resonance frequencies are in the MHz band, in excellent agreement
with the FEM simulations. The expected masses are of the order of 10 ng. We also note that the frequencies are quite
reproducible from one sample to the other, thus emphasizing the quality of the microfabrication process. Mechanical quality
factors are currently limited to a few thousands, but may be improved by a better optimization of the geometrical design.
Four different loss schemes are identified in such systems: squeeze film damping due to the residual air layer between
the membrane and the substrate [38], thermoelastic damping, structural losses due to crystalline defects, and dissipation
through the clamping of the resonator to the substrate. The latter has been identified as the very dominant damping
mechanism in our case.

From the optical point of view, our Electromagnetic Finite Differences in Time Domain (FDTD) simulations have shown
that a careful optimization of the lattice geometry would allow to obtain a high reflectivity over a wide spectral range:
theoretical reflectivities can reach more than 99.99% over a spectral window of 30 nm around 1064 nm. We have processed
samples of such periodic arrangements of two-dimensional photonic crystal structures and the reflectivity obtained by
Fourier Transform InfraRed (FTIR) measurements corroborates some striking spectral features predicted by our simulation.
As only uncalibrated reflectivity measurements have been performed yet, work is still underway.
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Fig. 10. Photonic crystal membranes as optomechanical resonators. (Left) Mechanical response of an InP membrane, from 500 kHz to 6.5 MHz. Four specific
modes are highlighted, together with a FEM simulation of their mode shape. (Right) SEM view of a processed resonator.

7. Conclusion

We have demonstrated optomechanical correlations induced between two light beams by the displacement of a moving
mirror through radiation pressure. Although still at the classical level, the technique presented here is extendable to the
quantum regime, even in the case where thermal noise is dominant over radiation pressure effects: a temporal average of
the experimental signal should enable to retrieve the corresponding quantum correlations and hence demonstrate radiation-
pressure noise.

We have theoretically studied the average time needed to detect quantum correlations with a given accuracy, and the
effect of the intensity–noise contamination induced by the residual jitter of the laser. Both show that experimental con-
straints are relaxed when working at a frequency far from any mechanical resonance of the moving mirror: in the case of
our plano-convex mirrors, an average time of a few seconds and a jitter less than 10 kHz should be sufficient, whereas the
constraints are increased by at least 4 orders of magnitude when working at a mechanical resonance frequency.

Direct observation of quantum radiation pressure noise would benefit from using micromirrors combining very high
optical reflectivity and very good mechanical response. For that purpose, we develop new generations of micromirrors. The
first one is based on a quartz resonator in a length extension mode. Preliminary experimental measurements give interesting
results concerning 3 key parameters of the optomechanical coupling: high resonance frequency, high quality factor and low
mass. The second resonator is a photonic-crystal suspended membrane with a size of few tens of microns and a sub-micron
thickness. With a careful optimization of the photonic crystal lattice, a high reflectivity for a light beam at normal incidence
may be obtained, together with a very low mass.

With a planned ratio between radiation pressure effects and thermal noise expected to be of the order of few hun-
dreds, these new micromirrors are good candidates for the direct observation of quantum radiation pressure effects. One
can also envision radiation-pressure-induced quantum optics experiments, such as optomechanical squeezing [39] or QND
measurements [23,40].
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