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Electronic Raman scattering measurements have been performed on hole doped copper
oxide (cuprate) superconductors as a function of temperature and doping level. In the
superconducting state, coherent Bogoliubov quasiparticles develop preferentially over the
nodal region in the underdoped regime. We can then define the fraction of coherent
Fermi surface, fc around the nodes for which quasiparticles are well defined and
superconductivity sets in. We find that fc is doping dependent and leads to the emergence
of two energy scales. We then establish in a single gap scenario, that the critical
temperature Tc is proportional to fcΔmax where Δmax is the maximum amplitude of
the d-wave superconducting gap. In the normal state, the loss of antinodal quasiparticles
spectral weight detected in the superconducting state persists and the spectral weight is
only restored above the pseudogap temperature T ∗ . Such a dichotomy in the quasiparticles
dynamics of underdoped cuprates is responsible for the emergence of the two energy
scales in the superconducting state and the appearance of the pseudogap in the normal
state. We propose a 3D phase diagram where both the temperature and the energy
phase diagrams have been plotted together. This 3D diagram advocates in favor of a low
temperature phase transition inside the superconducting dome. We anticipate that the
development of coherent excitations only on a restricted part of the Fermi surface is a
general feature in high Tc cuprate superconductors on approaching the Mott insulating
side.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Des mesures de diffusion Raman électronique ont été menées sur les oxydes de cuivre
supraconducteurs dopés en trous en fonction de la température et du dopage. Dans l’état
supraconducteur du régime sous dopé, le poids spectral des quasiparticules de Bogoliubov
reste important dans les regions nodales alors qu’il est réduit dans les regions antinodales.
On peut alors définir la fraction cohérente de la surface de Fermi, fc autour des noeuds
pour laquelle la supraconductivité se développe. Nous avons découvert que fc dépend
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du dopage et est à l’origine de l’apparition de deux échelles d’énergie dans le régime
sous dopé de l’état supraconducteur. Nous avons alors établi dans un scenario à un seul
gap que la température critique Tc est proportionnelle à fcΔmax où Δmax est l’amplitude
maximale d’un gap de symétrie d. Dans l’état normal, la perte de poids spectral (observée
dans l’état supraconducteur) persiste et ne disparait qu’au dessus de la température
de pseudogap T ∗ . Nous pensons que cette forte dichotomie dans la dynamique des
quasiparticules est responsable à la fois de l’apparition des deux échelles d’énergie dans
l’état supraconducteur et du pseudogap dans l’état normal des cuprates sous dopés. Nous
proposons un diagramme de phase 3D où sont représentés simultanément les diagrammes
de phase en température et en énergie en fonction du dopage. Ce diagramme 3D privilégie
un scenario où un changement d’état doit exister à basse température à intérieur du dôme
supraconducteur. Nous pensons que le développement des excitations cohérentes sur des
portions restreintes de la surface de Fermi est un trait caractéristique des cuprates à haute
température à l’approche d’un isolant de Mott.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

One of the most challenging issues in copper oxide superconductors is to understand how superconductivity emerges
from a Mott insulating state as a hole concentration (doping level, p) is increased [1]. Cuprates consist of an alternated
stacking of CuO2 planes and reservoir planes. The low energy electronic structure of these planes is characterized by a
single energy band [2]. At low doping level, this energy band is half filled. Band theory would predict this to be a metal
but the actual material is an insulator. The origin of this insulating behavior is the Coulomb repulsion which prevent the
hopping of an electron from one Cu site to the next. The electrons are then localized. The spins of these Cu ions form an
antiferromagnetic order (known as a Néel lattice). As the doping level increases, electrons are transfered from CuO2 planes
to the “reservoir” planes. Holes then appear in the CuO2 planes allowing the electron hopping from one Cu site to an other,
and so rapidly destroy the Néel lattice. En artificial metal is then built and remarkably, around p ≈ 0.05, a superconducting
state emerges (see Fig. 1(a)).

The evolution of the superconducting transition temperature, Tc , as a function of the hole doping level, is remarkably
universal. Tc has a dome-like shape and exhibits two distinct regimes: (i) the underdoped regime where the critical temper-
ature Tc increases with doping until the optimal doping, p ≈ 0.16; and (ii) the overdoped regime where Tc decreases with
doping and vanishes for p ≈ 0.27. It is now established that the superconducting gap has a dominant d-wave symmetry
across the entire phase diagram although a smaller s-wave component cannot be ruled out [3,4]. The superconducting gap

Fig. 1. (a) Cuprate phase diagram; (b) amplitude of a superconducting d-wave gap in the first Brillouin zone.
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Fig. 2. (a) Temperature and (b) energy phase diagrams versus hole doping level.

reaches its maximum values along the principal axes of the Brillouin zone (BZ) and vanishes along the diagonal of the BZ.
This corresponds respectively to the antinodal and nodal directions (see Fig. 1(b)).

In the underdoped regime, above Tc and below the temperature T ∗ a pseudogap state develops. It corresponds to a
partial suppression of spin and charge excitations [5,6] and it is also associated to broken symmetries [7–10].

On the one hand, a growing number of transport measurements such as electrical and thermal conductivities, entropy,
heat capacity and Hall coefficient, see for a review [11–13] advocate in favor of a temperature phase diagram where T ∗ do
not merge with Tc in the overdoped side but rather cuts through (or end at) the Tc dome (see Fig. 2(a)).

On the other hand, spectroscopic investigations such as Andreev–Saint-James reflection [14], electronic Raman scatter-
ing (ERS) [15–18] angle resolved photoemission spectroscopy (ARPES) [19–21], infrared reflectivity (IR) [22], and scanning
tunneling microscopy (STM) [23–25] lead to an energy phase diagram at low temperature (well below Tc) where a single
energy scale is detected in the overdoped regime while two distinct energy scales appear in the underdoped side of the
superconducting state (see Fig. 2(b)). The low energy scale decreases while the high energy one increases with underdoping.
How can we understand these two distinct phase diagrams in a global picture of high Tc cuprate superconductors? Are we
able to depict a 3D cuprate phase diagram which involves both energy and temperature as a function of hole doping level?

These questions are a real challenge that we propose to address here. More precisely, we will try to reveal physics which
control Tc and T ∗ by performing and discussing Raman experiments on several high Tc cuprate superconductors through
a large range of doping levels and temperatures. This leads us to point out the emergence of two distinct quasiparticle
dynamics and two distinct energy scales in the superconducting state of underdoped cuprates.

We show that coherent Bogoliubov quasiparticles develop preferentially over a restricted region of the momentum–
space in underdoped regime: around the nodal direction. The density of Cooper pairs appears to be strongly anisotropic
in momentum–space with underdoping. Most of the supercurrent is then carried out by electronic states around the nodal
region in the momentum–space. This contrasts to conventional superconductors where superconductivity develops uniformly
along the normal-state Fermi surface.

We can then define the fraction of coherent Fermi surface, fc around the nodes for which quasiparticles are well defined
and superconductivity sets in. We find that fc is doping dependent and we establish that Tc ∝ fcΔmax where Δmax is the
maximum amplitude of the d-wave superconducting gap. This new relation differs from the standard BCS theory and gives
us some clues for increasing Tc in the cuprates.

Just above Tc , in the underdoped regime, the fraction of coherent Fermi surface is still observable. This manifests experi-
mentally by a sizeable quasiparticle spectral weight in the nodal region while it is strongly reduced in the antinodal region.
This is the signature of the pseudogap state. The quasiparticle spectral weight in the antinodal region is only recovered
above T ∗ .

The loss of coherent quasiparticles in the antinodal region is then acting as a foe of superconductivity since it prevents
from the formation of coherent Cooper pairs around the antinodes in underdoped cuprates. Loss of coherent quasiparti-
cles on restricted parts of the Fermi surface is then responsible for both the existence of the two energy scales in the
superconducting state and the appearance of the pseudogap in the normal state.

These results have bearing on the fundamental problem of how superconductivity emerges as holes are doped into a
Mott insulating state. We anticipate that the development of coherent excitations on a restricted part of the Fermi surface
only is a general feature in high Tc cuprate superconductors.

2. Electronic Raman scattering

Raman scattering is usually known for its ability to probe the vibrational modes of the crystal lattice. However Raman
scattering is also an efficient tool to investigate electronic excitations in the spin and charge channels such as collective
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Fig. 3. Electronic Raman scattering process (Stokes process): a crystal is irradiated by a monochromatic wavelength of a laser beam and the scattered light is
collected. The difference in frequency between the laser and scattered frequencies (ΩL and ΩS respectively) is called the Raman shift, ΩR , and corresponds
to the energy of an electron–hole pair excitation around the Fermi level.

modes (magnon, plasmon) or single particles excitations (quasiparticles). Indeed, electronic Raman scattering (ERS), like
angle resolved photoemission spectroscopy (ARPES), is both an energy and a momentum probe of quasiparticles. ERS allows
us to reach an energy accuracy of less than one tenth meV on a selected part of the BZ. ERS is an inelastic light scattering
process where an incident photon is absorbed by the crystal and a scattered one is emitted, with the simultaneous creation
(Stokes) or annihilation (anti-Stokes) of an electronic excitation. ERS is particularly suitable for cuprates where the light
penetration depth is typically of the order of 100 nm corresponding roughly to one hundred cells irradiated. Here we will
deal only with Stokes process illustrated in Fig. 3.

Since two photons are coming into play, Raman scattering is a second order process in the electromagnetic field. This
second order effective interaction with electronic excitations comes from both a direct second order term in the interaction
Hamiltonian, and from a first order term treated up to second order in perturbation. As introduced by Abrikosov and
Genkin [26], one may consider that both terms can be gathered in a single effective second order term in the Hamiltonian
which can be written as:

H R = e2

m
〈A S AL〉e−iΩt ρ̂q (1)

where e is the electronic charge and m its bare mass. AL and A S are the vector potentials of the incoming laser and scattered
light, and the bracket is for the proper matrix element over the photons states. The difference between the incident and the
scattered photon frequencies is noted Ω = ΩL − ΩS , and the difference between the photon momenta is q = kL − kS . The
operator ρ̂q is given by:

ρ̂q =
∑

n f ,ni ,k

γn f ,ni ,kc+
n f ,k+qcni ,k (2)

It is quite similar to the standard density operator, where k is the initial electronic momentum and n f ,ni are the final
and initial electronic bands. The only difference is the term γn f ,ni ,k for the scattering process, known as the Raman vertex
which is given explicitly by:

γn f ,ni ,k = e∗
S .eLδn f ,ni + 1

h̄m

∑
nm

〈n f ,k + q|e−iks.re∗
S .|nm,k + kL〉〈nm,k + kL |eikL .reL .p|ni,k〉

εni ,k − εnm,k+kL + ΩL + iη
+ (L ↔ S) (3)

where e∗
S and eL are, respectively, the electric field polarizations of the incident and scattered light and εn,k the electronic

states.
The Raman vertex depends on the electronic band structure of the material studied and it is far to be easy to calculate it

explicitly. Strictly speaking, the Raman vertex depends on k, q, ΩL and Ω . However, in the visible range which is the applied
field of ERS, the photon momentum transfered q is negligible with respect to the BZ. Practically, we consider q = 0 in the
Raman scattering process. Moreover for low-frequency range (typically Ω less than 1/8 eV ≈ 1000 cm−1) in comparison
with the electronic transitions (2 eV), we consider that the Raman vertex does not depend on Ω [27]. The Raman vertex is
k dependent however and its contraction in Eq. (3), by the incident and scattered electric fields allows us to select different
part of the BZ. Indeed, cuprates have a pure or slightly distorted tetragonal structure. As a consequence, the Raman vertex
(related to CuO2 plane) can be decomposed on the basis of the 2D irreducible representations of the D4h-space group.

γ̃ (k) = γA1g (k)

(
1 0
0 1

)
+ γB1g (k)

(
1 0
0 −1

)
+ γB2g (k)

(
0 1
1 0

)
(4)

In a such a case, the contraction of the Raman vertex tensor (�e∗
S .γ̃ (k).�eL ) by the incident and scattered electric field

polarizations fix one of its component, each component having a well-defined symmetry which corresponds to a specific
momentum–space dependence.

As for an example, see Fig. 4, diagonal cross polarizations
( 1

1

)
and

( 1
−1

)
active the B1g tensor component while the

B2g and A1g tensor components are not active. The B1g tensor (with respect to the Neuman’s theorem) [28] transforms as
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Fig. 4. Raman selection rules in cuprates. The cross polarizations at 45◦ from the copper oxide bonds in the real space will probe the principal axes of
the BZ in the momentum–space (B1g symmetry). The cross polarizations along the copper oxide bonds in the real space will probe the diagonal of the BZ
in the momentum–space (B2g symmetry). The antinodal (AN) and nodal (N) regions refer to the d-wave superconducting gap symmetry which takes its
maximum amplitude along the principal axes and vanishes along the diagonals of the Brillouin zone.

(k2
x − k2

y). It vanishes along the diagonal of the BZ and therefore probes mainly the principal axes of the BZ (the antinodes).

On the opposite, cross polarizations
( 1

0

)
and

( 0
1

)
will select the B2g tensor component which transforms as (kxky) and

probes mainly the diagonal of the BZ (the nodes).
In summary, by a judicious choice of the incident and scattering electric fields we are able to probe different parts of

the BZ. The contraction of the Raman vertex acts as a filter which hides some specific regions of the BZ. In cuprates, we can
probe the nodal region (N) and the antinodal regions (AN).

Raman experiments give a direct access to the Fourier transform of the density–density correlation function called the
“dynamical structure factor” [29]:

S(q,Ω, T ) =
∫

dt

2π
eiΩt 〈ρ̂†(q, t)ρ̂(q,0)

〉
T (5)

where 〈..〉T is the thermal average.
According to the fluctuation dissipation theorem [30], S(q,Ω, T ) is related to the imaginary part χ ′′(q,Ω, T ) of the

response function χ(q,Ω, T ) as follows:

S(q,Ω, T ) = h̄

π

(
1 + n(Ω, T )

)
χ ′′(q,Ω, T ) (6)

where n(Ω, T ) = (e−h̄Ω/kB T − 1)−1 is the Bose–Einstein factor, and χ ′′(q,Ω, T ) is related to the electronic density fluctua-
tions induced by the electric field of the incident light into the crystal.

The Raman response function (or the dynamical structure factor) can be explicitly calculated in some specific cases such
as the normal state of a Fermi liquid with or without impurity or the superconducting state in BCS theory. We can consider
several ways to calculate the dynamical structure factor, one of them consists to use the Matsubara formalism which leads
to an analytical expression of the Raman response function at finite temperature. This formalism will be used in the next
sessions. We invite the reader to refer to Refs. [31–33] for more details.

3. k-space islands of coherent Cooper pairs in the superconducting state of underdoped cuprates

We have first performed Raman measurements on a single CuO2 layer compound: HgBa2CuO4+δ (Hg-1201). Raman
spectra in both B1g (AN) and B2g (N) geometries (for several doping levels) are displayed in Fig. 5.

At a first glance, we observe in the superconducting state of overdoped samples a strong peak in the B1g geometry and a
weaker one in the B2g geometry (first and third panels from the left). Remarkably these B1g and B2g peak energies exhibit
two distinct doping dependence in the underdoped regime (second and forth panels from the left). The B1g peak increases
in energy while the B2g one decreases in energy with underdoping.

At the optimal doping level (Tc = 95 K, bottom of the first and third panels from the left), the B1g low energy spectrum
(below 400 cm−1) exhibits a nearly cubic frequency dependence. On the opposite, the low energy B2g spectrum displays
a linear frequency dependence. These two distinct power laws (cubic and linear) are the Raman signature of a d-wave
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Fig. 5. (Color online) Raman spectra of HgBa2CuO4+δ (Hg-1201) single crystals for several doping levels. The gray (red) curves correspond to the Raman
spectra of the superconducting state in the B1g (AN) and B2g (N) geometries respectively. The black curves correspond to the Raman spectra in the normal
state just above Tc [15].

superconducting gap and can be qualitatively understood as follows (see for more details [34]). In the B1g geometry (around
the antinodes, see Fig. 6(a)), the superconducting gap has its maximum amplitude which prevents low energy electronic
excitations. We then expect the electronic continuum to be weak below 2Δ0 (see Fig. 6(b)).

On the opposite, in B2g geometry (close to the nodes, see Fig. 6(c)), the amplitude of the superconducting gap vanishes.
This allows substantial low energy electronic excitations. Since the number of available electronic states increases with
energy, we expect the Raman spectrum to exhibit a linear frequency dependence at low energy (see Fig. 6(d)).

3.1. Area of the nodal and antinodal superconducting peaks and evolution of the density of Cooper pairs with underdoping

Beyond the analysis of the low energy electronic continuum in B1g and B2g geometries, Fig. 5 reveals that the antinodal
B1g peak measured at T = 10 K exhibits a strong decrease in intensity with underdoping before disappearing (close to
p = 0.12, Tc = 78 K) while the nodal B2g peak persists down to the lowest doping level (p = 0.09, Tc = 63 K).

In order to make reliable comparison between the Raman intensities of the B1g and B2g superconducting peaks, we have
performed quantitative Raman measurements which allow a direct comparison of the intensities for different doping levels
(see Section 7).

Obtaining intrinsic Raman measurements on cuprates with various doping levels is a true challenge for experimentalists.
It requires not only an extremely high level of control of the crystal surface quality, the optical set up but also the knowl-
edge of the optical constants for each crystal studied. In order to overcome these difficulties, we have chosen to work on
Bi2Sr2CaCu2O8+d (Bi-2212) system rather than on the Hg-1201 one [15–17]. One of the reason is that Bi-2212 crystals can
be easily cleaved providing large homogeneous surfaces (≈ mm2).

We have performed all the measurements during the same run and the crystals with various doping levels have been
mounted on the same sample holder in order to keep the same optical configuration. With a laser spot of about 50 μm
in diameter, we have measured Raman intensity variations of less than 5% from one point to another on the same cleaved
surface. Crucially, we have also observed only weak intensity changes for two distinct crystals of the same nominal doping
level mounted side-by-side on the sample holder of the cryostat. These observations give us confidence that the doping
dependence of the Raman intensity variations reported here are intrinsic. Finally, the Raman cross-section at each doping
level was obtained by correcting the Raman response function for the optical constants [35].
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Fig. 6. (Color online) (a) Antinodal regions probed by the B1g geometry (gray (orange) circles) and (b) the calculated B1g Raman response for a d-wave
superconducting gap. (c) Nodal regions probed by the B2g geometry (gray (green) circles) and (d) the calculated B2g Raman response for a d-wave gap.
The (violet) petals correspond to the amplitude of the d-wave superconducting gap. It takes its maximum amplitude along the principal axes of the BZ and
vanishes along the diagonals.

Figs. 7(a) and (b) display the intrinsic B2g and B1g superconducting responses of Bi-2212 for several doping levels in the
superconducting and normal states.

We focus first on the B1g and B2g peak areas deduced from the subtraction between the superconducting and the
normal Raman responses (in gray in Figs. 7(a) and (b)).

Our data reveal a strong decrease of the area under the B1g peak with underdoping. It disappears close to p = 0.1 while
the B2g superconducting peak area slightly increases from p = 0.22 to 0.19 and then remains almost constant as the doping
level is reduced down to 0.1. The doping evolution of the B2g and B1g peak areas (ΣB1g ,ΣB2g ) is reported in Fig. 7(c).

Are these two peaks truly associated to coherent excitations of the superconducting state or can subsist above Tc? In
order to precisely answer to this question, we have performed Raman measurements as a function of both doping level and
temperature. In Fig. 8(a) and (b) are displayed the Raman responses χ ′′(Ω, T ) of Bi2Sr2CaCu2O8+d (Bi-2212) single crystals
with different doping levels, in B1g (antinodal) and B2g (nodal) geometries, for several temperatures ranging from well
below Tc to 10 K above Tc .

In both geometries, these spectra show the gradual decreasing of a peak (or rather a broad shoulder in the B2g geometry)
as the sample is heated up to Tc .

In order to clearly reveal the temperature-dependence of the B1g and B2g peak areas, we have plotted in Fig. 8(c)–(d), the
difference between these spectra and the spectrum measured at 10 K above Tc on the same sample. From these subtracted
spectra, we obtain the normalized areas of the B1g and B2g peaks, which are displayed in Fig. 8(e) as a function of T /Tc .
Fig. 8(f) shows the B1g and B2g areas for the Hg-1201 crystals. These plots demonstrate that the peak intensities vanish
continuously at Tc , providing quantitative support to our interpretation as coherence peaks of the superconducting state.

What is the meaning of the superconducting peak area? For a non-interacting Fermi liquid, in the framework of BCS
theory, the Raman response in the limit q → 0 and use of Matsubara formalism [33,37] leads to:

χ ′′
μ(q = 0,Ω, T ) = π

∑
k

(
γ

μ
k

)2
tanh

(
Ek

2kB T

) |Δk|2
E2

k

δ(Ω − 2Ek) (7)

where μ refers to the B1g and B2g geometries, γ
μ

k is the Raman vertex, Δk , the superconducting gap and kB the Boltzman

constant. Ek is the Bogoliubov quasiparticle energy defined such as: Ek =
√

ξ2
k + Δ2

k and ξk = εk − μ. εk is the electronic

state energy and μ the chemical potential.
It is then straightforward to show that the integral of the Raman response over Ω when T tends to zero, gives:

∫
χ ′′

μ(Ω)dΩ = π
∑(

γ
μ

k

)2 |Δk|2
E2

(8)

k k
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Fig. 7. Intrinsic Raman measurements on the superconducting and normal states in (a) B2g and (b) B1g geometries for distinct doping levels. The grey zones
correspond to the subtraction between the superconducting and the normal Raman responses under the superconducting pair breaking peaks. (c) B1g and
B2g superconducting peak areas (ΣB1g ,ΣB2g ). (d) slope of the B2g electronic continuum [35].
.

The sum
∑

k
|Δk |2

E2
k

is equal to 4
∑

k(uk vk)
2 where v2

k and u2
k are the probabilities of the pair (k ↑,−k ↓) being occupied

and unoccupied respectively. This sum is non-vanishing only around the Fermi energy E F in the range of 2Δk [38]. This
quantity corresponds to the density of Cooper pairs, formed around the Fermi level as the gap is opening [39]. A priori, the
density of coherent Cooper pairs is distinct from the superfluid density which is just the total carrier density at T = 0 K. The
integral of the Raman response is then proportional to the density of Cooper pairs, weighted by the square of the Raman
vertex which selects specific area of the Brillouin zone: the nodal or the antinodal regions.

Applying this analysis to our data reveals that the superconducting peak area (in gray in Figs. 7(a) and (b)) provides a
direct estimate of the density of Cooper pairs in the nodal and antinodal regions.1

The data reported in Fig. 7(c) show that the density of Cooper pairs is strongly anisotropic in the k-space as a function
of doping level.

At low doping level, the density of Cooper pairs becomes very weak at the antinodes and vanishes below p = 0.1, while
it is still sizeable around the nodes. Therefore we are led to conclude that Cooper pairs are k-space confined. At low doping
level Cooper pairs form k-space islands around the nodes. This is consistent with the picture where most of the supercurrent
is carried out by electrons’ small patches centered on the nodal points on the underdoped regime as proposed by Ioffe and
Millis [40]. This picture is consistent with the loss of antinodal quasiparticles coherence reported in tunneling [24,41] and
ARPES [42–44]. The Doping evolution of the density of Cooper pairs is sketched in Fig. 9.

4. Two energy scales in the superconducting state of underdoped cuprates

4.1. Nodal and antinodal energy scales in the underdoped side of the superconducting dome

As pointed out in previous section (see Fig. 5), the B1g and B2g peak energies exhibit distinct doping dependences in
both Hg-1201 and Bi-2212 systems. This can also be seen in Fig. 8(c) and (d). The B1g peak energy increases while the B2g
one decreases with underdoping. This gives rise to two energy scales in the superconducting state of underdoped cuprates

1 This analysis makes the assumption that for an interacting Fermi liquid (as it is the case for cuprates), the renormalized quasiparticles spectral weight
which comes from the coupling between quasiparticles in interaction and the electromagnetic field follows the same doping dependence than the coherent
Bogoliubov quasiparticles.
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Fig. 8. Temperature dependence of the Raman spectra. (a) and (b): Raman response, χ ′′(ω, T ) of Bi-2212 single crystals for several doping levels in B1g

(AN) and B2g (N) geometries. (c) and (d): Raman spectra subtracted from the one measured at 10 K above Tc for each sample in each geometry. A direct
visual comparison of the subtracted spectra to a reference energy (chosen as the peak position for the most overdoped sample, drawn as a guide to the
eyes) clearly reveals the distinct doping dependence of these two energy scales. (e) and (f): temperature dependence of the normalized areas of the B1g

and B2g peaks with respect to the area measured at T = 10 K for Bi-2212 and Hg-1201 crystals respectively [36].

Fig. 9. Sketches of the d-wave superconducting gap amplitude in the momentum–space for three distinct doping levels. The dark (red) zone corresponds
to a high density of coherent Cooper pairs and the bright one to a low density of Cooper pairs. Cooper pairs develop preferentially around the diagonal of
the Brillouin zone in the underdoped regime forming k-space island of Cooper pairs. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
.

as reported in Figs. 10(a). The B1g and B2g energy scales coincide at high doping levels (p � 0.19), but depart from each
other as doping level is reduced. The B1g energy scale increases monotonically as doping is reduced, while the B2g energy
scale follows a dome-like shape approximately similar to that of the critical temperature Tc .

In Fig. 10(b), are reported on the same plot the ERS [15,45,46], tunneling [24,25,47,48] and ARPES [19,21,49,50] mea-
surements performed on Bi-2212 system well below Tc . We clearly observe two energy scales as a function of doping level.
The high energy scale (filled symbols) corresponds to quasiparticles related to the antinodal region while the lower energy
scale (open symbols) corresponds to quasiparticles related to the nodal region.
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Fig. 10. The two energy scales in the superconducting state of underdoped cuprates, T � Tc [15,35]. (a) Doping dependence of the B1g and B2g supercon-
ducting peak energies for both Bi-2212 and Hg-1201. (b) Plot of the two energy scales from several spectroscopic probes in Bi-2212 system well below Tc .
To be compared to ARPES and STM data, ERS data have been divided by 2. The N-slope is the slope of the superconducting gap at the nodes deduced from
ARPES and STM data. It is also quoted vΔ .

4.2. Toward an understanding of the two energy scales in the underdoped side of the superconducting dome

The origin and significance of these two scales are largely unexplained, although they have often been viewed as evidence
for two distinct gaps in the superconducting state of underdoped cuprates. A popular view has been to associate one of the
gap to the superconducting state while the other one is unrelated to superconductivity but associated with pseudogap [11,
51,52]. In principle angular resolved photoemission spectroscopy (ARPES) should be able to distinguish between these two
gaps but contradictory results have been reported up to now [53–56].

We have shown that the two energy scales disappear at Tc and are associated with coherent excitations of the super-
conducting state (see Fig. 8). This leads us to another view. Using a simple model, we show that these two energy scales
do not require the existence of two distinct gaps: a pseudogap and a superconducting one [57–60]. Rather, a single d-wave
superconducting gap with a loss of Bogoliubov quasiparticle spectral weight in the antinodal region is shown to reconcile
spectroscopic and transport measurements in underdoped cuprates.

In order to shed light on the origin of the two energy scales revealed by Raman in B1g and B2g geometries, we consider
a very simple phenomenological model of a superconductor with a gap function �(φ).

The angle φ is associated with momentum k on the Fermi surface. The gap function vanishes at the nodal point �(φ =
π/4) = 0 while it is maximal at the antinodes �(φ = 0) = Δmax.

Within a Fermi liquid description the quasiparticle contribution to the Raman response in the superconducting state is
described by [15,33]:

χ ′′
B1g ,B2g

(Ω) = 2π N F

Ω

〈
γ 2

B1g ,B2g
(φ)

(
ZΛ(φ)

)2 �(φ)2√
2 2

〉
(9)
(Ω) − 4�(φ) FS
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Fig. 11. Three scenarios for underdoped cuprates [36]. A-I–C-I: Doping evolution of the superconducting gap in the three scenarios (A–C). A-II–C-II: Angular
dependences of the quasiparticle spectral weights ZΛ(φ) as a function of doping level for each scenario. The angular dependence of the B2g Raman vertex
is shown in dotted line (see A-II). A-III–C-III, A-IV–C-IV: Calculated Raman spectra for each scenario in B1g and B2g geometries. The locations of the B1g

and B2g peaks are respectively controlled by the gap energy at the antinodes Φ = 0 and at the angle ΦN . Note that the low energy slope of the B2g Raman
response is constant with doping as observed experimentally [35].

The angular average over the Fermi surface is denoted 〈(· · ·)〉FS . N F is the density of states at the Fermi level, γB1g ,B2g

are the Raman vertices which read γB1g (φ) = γ 0
B1g

cos 2φ and γB2g (φ) = γ 0
B2g

sin 2φ, respectively. �(φ)2/
√

Ω2 − 4�(φ)2 is a
BCS coherence factor. Eq. (9) can be easily deduced from Eq. (7) (see Section 7).

The function Z(φ) is the spectral weight of the Bogoliubov quasiparticles, while Λ(φ) is a Fermi liquid parameter asso-
ciated with the coupling of these quasiparticles to the electromagnetic field. Expression (9) differs from simple BCS theory
for a non-interacting Fermi liquid at T = 0 (see Eq. (5)) by the presence of these quasiparticle renormalizations, which
importantly only enter through the product ZΛ(φ).

In the following, we will show that the angular dependence of this quasiparticle renormalization plays a key role in
accounting for the experimental observations.

Let us first consider the B1g geometry the Raman vertex γB1g (φ) is peaked at the antinode φ = 0 which dominates the
B1g response, resulting in a pair-breaking coherence peak at h̄ΩB1g = 2Δmax due to the singularity of the BCS coherence
factor. The weight of this peak is directly proportional to the antinodal quasiparticle renormalization (ZΛAN)2 = (ZΛ)2

(φ = 0). Hence, the fact that the B1g coherence peak looses intensity at low doping (and even disappears altogether at low
doping) strongly suggests that ZΛAN decreases rapidly as doping is reduced. This has been first suggested in earlier Raman
studies [61].

In the B2g geometry, the situation is more subtle because the Raman vertex is largest at the nodes, where the gap
function (and hence the BCS coherence factor) vanishes. This is illustrated in Fig. 11, panels (A-I–II).

As a result, the energy of the coherence peak depends sensitively on the angular dependence of the quasiparticle renor-
malization ZΛ(φ). If the latter is approximately constant along the Fermi surface, then the energy of the B2g peak is
determined solely by the angular extension of the Raman vertex γB2g (φ).



A. Sacuto et al. / C. R. Physique 12 (2011) 480–501 491
In contrast, let us consider a ZΛ(φ) which varies significantly from a larger value ZΛN at the node to a small value
ZΛAN at the antinode, with a characteristic angular extension φN around the node smaller than the intrinsic width of the
Raman vertex γB2g (φ). Then, it is φN itself which controls the position of the B2g peak: h̄ΩB2g = 2�(φN ).

As shown below, this explains the origin of the differentiation between the two energy scales in the underdoped regime.
To proceed further in the simplest possible way, we consider a simple crenel-like shape for ZΛ(φ), varying rapidly from

ZΛN for φN < φ < π/4 to ZΛAN < ZΛN for 0 < φ < φN (see Fig. 11, A-II–C-II).
Furthermore, we adopt the often-used [19] parametrization of the gap function. �(φ) = Δmax[B cos 2φ + (1 − B) cos 6φ],

consistent with d-wave symmetry where the nodal slope of the gap vΔ ≡ ∂Δ/∂φ|φ=π/4 = 2(4B − 3)Δmax does not nec-
essarily track Δmax. We thus have 5 parameters: Δmax, vΔ (or B), ZΛAN , ZΛN and the angular extension φN . These
parameters are determined by attempting a fit to our spectra, obeying the following constraints: (i) the maximum gap
Δmax is determined from the measured energy of the B1g peak according to 2Δmax = h̄ΩB1g ; (ii) the antinodal quasiparticle
renormalization ZΛAN is determined such as to reproduce the intensity of the B1g coherence peak; (iii) the angular ex-
tension φN is determined from the energy of the nodal coherence peak. Throughout the underdoped regime, this amounts
to 2Δ(φN ) = h̄ΩB2g as discussed above and finally the nodal renormalization ZΛN is constrained to insure that the ratio
(ZΛN )2/vΔ does not change as a function of doping level, at least in the range 0.1 < p < 0.16. This has been observed
experimentally in Ref. [35] and reported in Fig. 7(d).

This ratio controls the low-frequency behavior of the B2g Raman response. We assume here that the density of states
N F (associated with the Fermi velocity perpendicular to the Fermi surface) does not depend sensitively on doping level in
this range.

These 4 constraints leave one parameter undetermined, which can be taken as the deviation of the gap function from a
pure cos kx − cos ky form, as measured by the ratio vΔ/(2Δmax) = 4B − 3 of the nodal velocity to the maximum gap.

We will thus consider three possible scenarios: (A) pure coskx − cos ky gap: vΔ = Δmax (B = 1). This corresponds to a
superconducting gap involving a single characteristic energy, which increases as the doping level is reduced. (B) vΔ tracks
the critical temperature Tc . In this case, the gap function is truly characterized by two scales varying in opposite manner as
the doping level is reduced. (C) vΔ remains constant as a function of doping. This is also a two-scale superconducting gap
scenario, although with a milder variation of vΔ .

In Fig. 11, are displayed our fits of the B1g and B2g Raman spectra in the framework of this simple theoretical analysis,
following each of the three scenarios (A–C) above.

We observe that the main aspects of the experimental spectra, and most importantly the existence of two energy scales
ΩB1g , ΩB2g varying in opposite manners as a function of doping, can be reproduced within any of the three scenarios.

A common feature between all three scenarios is that the quasiparticle renormalization function ZΛ(φ) varies signif-
icantly along the Fermi surface. Quasiparticles have a large spectral ZΛN only on a restricted region around the nodes,
defined by φN , corresponding to a fraction fc ≡ (π/4 − φN)/(π/4) of the Fermi surface.

While Δmax increases with falling doping, �(φN ) decreases because of the rapid contraction of the coherent fraction fc ,
leading to the opposite doping dependence of the two scales, as illustrated in Fig. 12(a).

We note that linearizing the gap function in the coherent region is a reasonable approximation for the A and C scenarios,
leading to the relation h̄ΩB2g = π

4 fc vΔ ∝ kB Tc which links the nodal (B2g ) energy scale (proportional to Tc ), the nodal
velocity and the coherent fraction [62]. This approximation is not valid for the B scenario because it leads to fc as a
constant in contradiction with this scenario.

It is clear that having uniformly coherent Bogoliubov quasiparticles along the Fermi surface (corresponding to a constant
ZΛ(φ)) is inconsistent with our data, especially in view of the rapid suppression of the B1g coherence peak and the
corresponding decrease of ZΛAN .

Although the above features are common to all three scenarios, there are two key differences between them. The first
one is qualitative: in scenario A (a single gap vΔ ∝ Δmax) the nodal renormalization factor ZΛN increases as doping level is
reduced, while it decreases for scenario B (vΔ ∝ Tc) and stays constant for scenario C (vΔ ∝ const.). The second, quantitative,
difference is the rate at which the coherent fraction of the Fermi surface fc decreases with falling doping, being largest for
scenario A and smallest for B (Fig. 12(b)).

Clearly, highly accurate spectroscopy measurements in the nodal region aiming directly at the determination of vΔ or
ZΛN would discriminate between these three scenarios. Such measurements are, unfortunately, notoriously difficult and a
consensus has not been yet reached.

A determination of the coherent fraction f HC
c has been reported from heat-capacity (HC) measurements [64,65] and

reproduced on Fig. 12(b). It was also reported from ARPES [50,63] in the normal state that the Fermi arcs shrink upon
cooling as ∼ T /T ∗ . The doping evolution of coherent fraction f ARPES

c at Tc is displayed in Fig. 12(b). Remarkably, we find
that there is a good quantitative agreement between the doping dependence of fc reported from HC and ARPES and our
determination from Raman within scenario A (a single gap scale vΔ ∝ Δmax), which appears to be favored by this compar-
ison.

Although this quantitative agreement should perhaps not be overemphasized in view of the uncertainties associated
with each of the experimental probes, we conclude that this single-gap scenario (A) stands out as the most likely possibil-
ity.
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Fig. 12. (Color online.) Fermi surface coherent fraction and a single d-wave superconducting gap [36]. (a) Scenario A where coherent Bogoliubov quasipar-
ticles are partially suppressed on restricted parts of the Fermi surface and the superconducting gap has a single d-wave shape. (b) Doping evolution of
the coherent fraction of the Fermi surface ( fc ) in the three scenarios (A–C). The f ARPES

c curve is deduced from Larc/Lfull(Tc) = 1 − 0.70 Tc
T ∗ (see Ref. [63]),

expressed as a function of the doping level. f HC
c is extracted from the zero temperature specific heat coefficient in the normal-state γn(0) [64,65].

We note that this interpretation reconciles the distinct doping dependence of the two energy scales with the thermal
conductivity measurements of underdoped samples. Thermal conductivity measurements interpreted within the clean limit
and a Fermi velocity almost constant (in the doping range p ∼ 0.1–0.2) show that vΔ ∝ Δmax [66,67].

We can further note by combining the ratios (ZΛN )2/vΔ ∼ const. (deduced from Raman and penetration depth mea-
surements [35,68]) and (ZΛN )/vΔ ∼ p (deduced from heat capacity measurements under magnetic field [65]) that we
get: (ZΛN ) ∼ 1/p and vΔ ∼ 1/p2. Both (ZΛN ) and vΔ increase with underdoping as expected within the single gap sce-
nario (A). Here we have assumed that the nodal quasiparticles renormalization, ZΛN , takes roughly the same value for
Raman, penetration depth and heat capacity measurements.

With a single-scale superconducting gap, the relation between the critical temperature (or ΩB2g ) and the coherent frac-
tion reads: kB Tc ∝ fcΔmax (10). This is consistent with previous investigations [43,65] and more recent ones [25,69]. This
relation carries a simple physical meaning, namely that it is the suppressed coherence of the quasiparticles that sets the
value of Tc , while Δmax increases with falling doping. This relation differs from the standard BCS theory. Crucially, Tc in
cuprates depend on a prefactor, fc which is doping dependent. We can also pointed out that scenario (A) is consistent with
the Uemura relation (valid in the underdoped regime) and Homes’ law [70,71]. Indeed, ρS ∝ Tc and ρS ∝ σdcΔmax (valid
in the dirty limit) lead to Tc ∝ σdcΔmax (11). ρS and σdc are respectively the superfluid density and dc conductivity. By
combining Eqs. (10) and (11) we obtain fc ∝ σdc which makes sense since current flows on the fraction of coherent Fermi
surface.

Finally, our interpretation is also in agreement with previous observations on Giaver and Andreev–Saint-James (ASJ)
tunneling experiments which pointed out the existence of two distinct energy scales in superconducting state of underdoped
cuprates [14]. The high energy scale was assigned to the single particle excitation energy. This is the energy of the first
excited state required to break a Cooper pair in Giaver tunneling experiment [72]. This corresponds to the Raman B1g scale
associated to the pair breaking peak energy. The low energy scale was assigned to the energy range over which Cooper
pairs can flow in the ASJ tunneling. It is directly related to the Raman B2g scale since, this last one, is controlled by the
fraction of coherent Fermi surface fc around the nodes where supercurrents flow.

5. The pseudogap and loss of antinodal quasiparticles in underdoped cuprates

5.1. Raman experimental observation of the pseudogap

The exploration of the superconducting state of underdoped cuprates reveals that coherent Bogoliubov quasiparticles
are reduced on restricted regions of the Fermi surface around the antinodes. This manifests itself by a strong decrease of
the coherent Cooper pairs density at the antinodes while it is still sizeable around the nodes. We have defined a fraction
of coherent Fermi surface around the nodes where the d-wave superconducting gap develops. The loss of quasiparticles
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Fig. 13. Raman responses of underdoped Bi-2212 single crystals in B1g (antinodal) as a function of temperature above Tc . A strong depletion of the
electronic continuum is observed between 250 K and 90 K at low energy. The onset energy of the depletion is quoted ΩPG .

Fig. 14. (a) Temperature dependence of the B1g (antinodal) Raman spectra; (b) subtraction of the B1g Raman from the one measured at T = 250 K. We
clearly distinguish a low energy negative part and a high energy positive part. The positive part disappears around Tc while the negative one persists well
above Tc .

spectral weight is then responsible for the strong dichotomy in the quasiparticles dynamics between the antinodal and the
nodal regions and the emergence of two energy scales in the superconducting state.

The loss of antinodal Bogoliubov quasiparticles in underdoped regime below Tc is concomitant with a strong depletion
of the B1g electronic continuum in the normal state as the temperature is decreasing down to a temperature just above Tc .
This can be seen in Fig. 13 for an underdoped Bi-2212 sample (p ≈ 0.12 and Tc = 75 K). As the sample is cooled down
from T = 250 K to T = 90 K the low energy electronic background level decreases. Similar observations have been reported
in earlier works [17,73].

Such a coincidence leads us to wonder if the loss of quasiparticle spectral weight on restricted parts of the Fermi surface
that we have revealed in the superconducting state of underdoped cuprates (see previous section) persists above Tc and
more generally is a salient feature of the underdoped cuprates physics.
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Fig. 15. (a) Temperature dependences of the positive and negative parts obtained from the subtraction of the B1g and B2g Raman spectra of Bi-2212 for
various doping levels. The positive and negative parts have been normalized to their values at T = 10 K. The filled and open symbols refer to the B1g and
B2g geometries respectively. (b) Doping dependences of Tc and T ∗ extracted from the positive parts of the B1g and B2g Raman spectra and the negative
part of the B1g Raman spectra, respectively. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)

In order to address this question we have performed Raman measurements on a large range of temperatures below and
above Tc . In Fig. 14(a) is displayed the temperature dependence of the Raman response of an underdoped Bi-2212 single
crystal. For each temperature, the Raman response has been subtracted from the one measured at T = 250 K and it has
been reported in Fig. 14(b).

The subtracted Raman responses can then be decomposed in two parts: a positive and a negative one. The positive part
(at high energy above 400 cm−1) develops in the superconducting state up to Tc and corresponds to the coherent pairs
breaking peak already discussed in the previous section. The negative part (below 400 cm−1) corresponds to the depletion
of the low energy electronic continuum which is filled up when temperature increases. It persists well above Tc and only
disappears in the normal state around 200 K. The persistence of a low energy negative part well above Tc is interpreted by
us as the experimental signature of the pseudogap in ERS. The lowest temperature from which the negative part is no more
temperature dependent will set the pseudogap temperature T ∗ . Here T ∗ is close to 200 K.

In Fig. 15(a) is displayed the temperature dependence of the positive and negative parts obtained from the subtracted
B1g (antinodal) and B2g (nodal) Raman spectra of Bi-2212. The B2g Raman spectra will be shown in the next section.
For each doping level, the B1g and B2g Raman spectra have been subtracted by the lowest temperature from which no
more depletion is detected. Tc is indicated by a gray (red) arrow. We observe that the negative parts of the subtracted B1g

Raman spectra (black dot) persist well above Tc in particular for low doping levels. Lower is the doping level higher is the
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Fig. 16. Temperature dependences of the (a) B1g and (b) B2g Raman responses of an underdoped Bi-2212 single crystal of Tc = 75 K. The low energy part
of the B1g electronic background displays a strong depletion at 80 K which is filled up at T = 250 K. The B2g spectra can be decomposed in two parts:
a low energy part (below 180 cm−1) where the electronic background level decreases with heating and a high energy one (above 180 cm−1) where an
electronic depletion is seen between 80 K and 150 K high energy part with a significant depletion at 80 K which disappears at 150 K and a low energy
part which decreases as the temperature increases.

temperature from which the depletion disappears. This gives us an estimate of T ∗ (marked by a black arrow). In contrast
the B2g negative parts (related to the nodal region) (open black triangle) disappears around Tc . This shows that the pseudo-
gap is predominant in the antinodal region and becomes sizeable below the optimal doping level. This is consistent with
ARPES data [50,63,74]. We are then able to extract the pseudogap temperature T ∗ from our experimental data. T ∗ ≈ 130 K
for an optimal doping level (Opt90K), T ∗ ≈ 150 K for an underdoped sample with a Tc = 85 K, beyond T ∗ ≈ 200 K for an
underdoped sample with a Tc = 75 K and in between T ∗ ≈ 200 K and 250 K for an underdoped sample of Tc = 65 K. The
positive parts of the B1g and B2g Raman spectra (red dot and open triangle) both disappear at Tc as expected since they
correspond to coherent Cooper pairs (see previous section). The doping dependence of T ∗ and Tc extracted from our data
are plotted in Fig. 15(b) and it is consistent with the values of T ∗ reported by other techniques [75].

In summary, our experimental findings show that the pseudogap manifests itself in the normal state just above Tc ,
as a strong depletion of low lying electronic excitations at the antinodes which are only restored well above Tc at T ∗ .
Simultaneously, in the superconducting state the coherent Bogoliubov quasiparticles are strongly reduced at the antinodes
with underdoping (see Fig. 7). This leads us to conclude that the pseudogap suppresses quasiparticles around the antinodes
above and below Tc in the underdoped regime. The pseudogap is then “harmful” to the formation of Cooper pairs and acts
as a “foe” of superconductivity in underdoped cuprates.

The doping dependence of T ∗ is still a subject of intense debate, although a consensus emerges concerning the under-
doped regime where T ∗ is reported to increase as the doping level is reduced. In the overdoped regime the situation is not
yet clarified: three schemes are in discussion: (i) T ∗ merges with Tc ; (ii) crosses Tc ; or (iii) ends at the superconducting
dome in the overdoped regime [76].

Let us return to our experimental findings in the superconducting state (see previous sections). We have defined two
distinct regions in the superconducting state of the cuprates. The first one (in the overdoped side of superconducting dome)
corresponds to a single energy scale. The B1g and B2g energy scales merge together and quasiparticles are well defined
over the whole Fermi surface. On the contrary, in the underdoped side of the superconducting dome, we clearly detect two
distinct energy scales inside the superconducting state. The B1g and B2g energy depart from each other and result from
a loss of quasiparticles around the antinodes. Such a dichotomy inside the superconducting state which manifests itself by
a loss of quasiparticles in the underdoped part of the superconducting dome leads us to think that T ∗ has to cross the
superconducting dome.
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Fig. 17. Temperature dependences of the (a) B1g and (b) B2g Raman responses of an overdoped Bi-2212 single crystal of Tc = 75 K. The low energy part of
the B2g electronic background level decreases as the temperature is raised in the normal state. We observe the same trend for B1g electronic background
above T = 150 K.

5.2. Interpretation of the pseudogap

In the underdoped regime, the pseudogap develops around the antinodes and suppresses quasiparticles below T ∗ which
are not restored below Tc . A loss of quasiparticles in the antinodal region below T ∗ should manifest distinctly in the Raman
spectra according to the B1g or B2g geometries. We expect a depletion of the B1g (AN) electronic continuum level over a
large energy range which is filled up as the temperature is raised before disappearing above T ∗ when coherent quasiparticles
are restored over the whole Fermi surface.

On the other hand, we expect no continuum depletion at low energy in the B2g since the pseudogap vanishes in the
nodal region. The low energy quasiparticle dynamic is then expected to have a standard Fermi liquid behavior. This means
that the low energy slope of the B2g electronic continuum is expected to be proportional to the quasiparticle lifetime
according to a simple Drude like model [77] and increases with cooling. The pseudogap only manifests itself in the B2g

spectrum at higher energy by an electronic continuum depletion which disappears above T ∗ and involves the loss of quasi-
particles induced by the end of the pseudogap amplitude away from the antinodes. This is indeed what is experimentally
observed on the temperature dependence of the B1g and B2g Raman spectra of an underdoped Bi-2212 single crystal
(Tc = 75 K) and are reported in Fig. 16(a) and (b).

In Fig. 16(a), the B1g electronic background exhibits a strong depletion which is filled up as the temperature is raised
from 80 K to 250 K. This extends from 50 to approximately 700 cm−1. We can then notice that the onset of the depletion is
localized close to the energy of the coherent peak. On the contrary, the B2g electronic background do not exhibits depletion
below 180 cm−1 and only a weak depletion between 80 K and 150 K which extends from 180 cm−1 to approximately
700 cm−1. Such a weak depletion has been also observed in earlier works [17,78]. We can notice that this weak depletion
does not really affect the temperature dependence of the global B2g negative part reported in Fig. 15.

Below 180 cm−1 the low energy B2g background level decreases as the temperature increases in opposite way to the
low energy B1g electronic background level. This is a standard temperature dependence of the slope of an electronic Raman
continuum free of a pseudogap. As the consequence, the low and high energy parts of the B2g Raman spectra exhibit two
distinct temperature dependences in contrast to the B1g spectrum where the electronic background continuously increases
as the temperature increases.

The experimental observations are different for the overdoped cuprates. In Fig. 17(a) and (b) are displayed the tempera-
ture dependence of the B1g and B2g Raman spectra of an overdoped Bi-2212 single crystal (Tc = 84 K). No clear depletion
(which is filled up with heating) is observed in the B1g and B2g electronic Raman continua. In B2g Raman spectra, solely,
the decrease of the low energy slope of the electronic continuum is detected as the temperature is raised according to a
simple Drude model.
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Fig. 18. 3D phase diagram: horizontal plane corresponds to the temperature phase diagram versus doping level while the vertical plane to the energy phase
diagram versus doping level. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

In summary our experimental findings in the normal state of underdoped cuprates have permitted us to detect the
pseudogap in the electronic Raman responses and assign it to a partial suppression of coherent quasiparticles around the
antinodes which are only restored above T ∗ .

This depletion which starts in the superconducting state of underdoped cuprates, is responsible for the strong decrease
of the density of Cooper pairs in the antinodal region.

6. Conclusion

As the Mott insulating is approaching, superconductivity is paradoxically confined in the nodal region where the su-
perconducting gap amplitude is weak. k-space coherent Cooper pair islands are then formed in the nodal region while a
strong decrease of coherent Bogoliubov quasiparticles in the antinodal region is experimentally observed. We have defined
a fraction of coherent Fermi surface fc upon which superconductivity develops around the nodal region. Below the optimal
doping, fc controls Tc such as kB Tc ∝ fcΔmax. Tc is decreasing while the superconducting gap amplitude Δmax is increasing.
This leads to two energy scales in the superconducting state of underdoped cuprates. Such a dichotomy in the quasiparticle
dynamics persists in the normal state of underdoped cuprates up to T ∗ and is responsible for the emergence of the pseu-
dogap phase which manifests itself as a loss of quasiparticles around the antinodes. Physics of the nodal quasiparticles is
then predominant in underdoped cuprates.

6.1. A tentative 3D phase diagram

Let us now try to answer to the first question put in the introduction about a 3D phase diagram which involves both the
energy and temperature phase diagrams. An attempt to depict such a phase diagram is shown in Fig. 18.

The energy phase diagram (Ω, p) is plotted in the vertical plane. The B1g and B2g energy scales (which correspond to
the locations of the coherent peaks detected below Tc) are displayed. The upper B1g energy scale is no more detected at
low doping level while the lower B2g energy scale is still observable. The temperature phase diagram (T , p) is plotted in
the horizontal plane. As suggested by our experimental findings, T ∗ cuts the superconducting dome in the overdoped side.
The Tc and T ∗ curves are respectively in gray (green) and black.

The thin (blue) lines correspond to the onset energy of the B1g depletion, ΩPG , detected below T ∗ and above Tc (see
Fig. 13). Our preliminary results (see for an example Fig. 14) seem to indicate that ΩPG is roughly temperature independent
and merges with the B1g energy scale measured just below Tc . In Fig. 18, the dashed (blue) line delimit the zone of the 3D
phase diagram beyond which the B1g depletion disappears and ΩPG is no more detected.

In the strongly overdoped regime, above pc , the ΩB1g and ΩB2g energies exhibit the same temperature dependence and
they both decrease as Tc is reached. These observations have been reported in our previous studies [16,79] and shown in
Fig. 19(a) and (b). As the doping level is reduced, however the B1g energy scale is no longer temperature dependent while
the B2g energy scale is still temperature dependent and decreases (even slightly) as the temperature is increased up to Tc

(see Fig. 19(a) and (b)). This is sketched in Fig. 18 by the appearance of two distinct branches for ΩB2g and ΩB1g as the
temperature increases.

Although more investigations are needed to track the doping dependence ΩPG inside the superconducting dome, its
extrapolation (drawn in Fig. 18) seems to indicate that it rises from the pc doping level. pc is also the doping level from
which the B1g and B2g energy scales (in red and green, respectively) depart form each other. Our interpretation is that pc
is the starting doping level below which antinodal coherent quasiparticles become suppressed. Above pc , superconductivity



498 A. Sacuto et al. / C. R. Physique 12 (2011) 480–501
Fig. 19. Temperature dependences as a function of doping level of the B1g and B2g peak energies [16,79].

develops over the whole Fermi surface like in conventional superconductors. Below pc superconductivity is k-space confined
and only develops on the fraction of coherent Fermi surface fc around the nodes.

6.2. How is Tc increasing?

Our experimental findings in the underdoped cuprates tell us that Tc is limited by fc such as kB Tc ∝ fcΔmax. The true
challenge is then to increase fc in the underdoped regime. In other words: if we are able to restore a full Fermi surface
in the underdoped regime of cuprates, we should increase Tc in the cuprates. Unfortunately, loss of quasiparticles with
underdoping around the antinodes acts against superconductivity and reduces Tc .

Why coherent quasiparticles at the antinodes are suppressed as the doping level is reduced? We do not know yet. Strong
electron–electron interaction plays probably an important role in this mechanism. We are then looking for cuprates with
a normal resistivity as weak as possible above the optimal doping level (where both nodal and antinodal quasiparticles
contribute to transport). We follow the simple idea that weak resistivity corresponds to weak electron–electron coupling.
This contrasts with conventional superconductors where resistivity has to be chosen as large as possible to get a strong
electron–phonon coupling. Here, the “glue” of pairing should be electron–electron interactions but if they are too strong,
they reduce the coherent length and induce localization of Cooper pairs working against superconductivity.

7. Methods

7.1. Details of the experimental procedure

The ERS experiments have been carried out using a triple grating spectrometer (JY-T64000) equipped with a nitrogen
cooled CCD detector. ERS measurements give access to the dynamical structure factor, so the imaginary part of the Raman
response function is obtained after correcting all the spectra for the Bose–Einstein factor. χ ′′(q,ω, T ) is also corrected for
the spectral response of the spectrometer which involve mainly the efficiency of the gratings and the CCD detector. In some
special cases, for obtaining intrinsic Raman measurements from Bi-2212 crystals with various doping levels, we have placed
an extremely high level of control of the crystal surface quality, the optical set up and the knowledge of optical constants
for each crystal studied.
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ERS measurements on Hg-1201 single crystals have been performed with the red excitation line (1.9 eV) of a Kr+ laser
to obtain the electronic B1g and B2g Raman response functions, the reason is that we have experimentally noticed that
the Raman phonon activity is strongly reduced with the red line in comparison with the blue one [80–82]. This gives us
a direct view of the electronic response without invoking ad hoc phonon subtraction procedures usually used in cuprate
systems. In some cases, however, the green line has been used for probing the nodal region (B2g ) due to the high efficiency
of our detection in this energy range. Raman measurements on Bi-2212 single crystals have been carried out mostly with
the green excitation line (2.4 eV).

7.2. Crystal growth

The Hg-1201 single crystals have been grown by the flux method, and oxygen annealing have been performed in order
to overdope crystals [83]. The oxygen annealing is efficient within a few μm from the surface which is satisfactory for
performing Raman scattering (the light penetration depth being of the order of the 100 nm). The underdoped crystals are
homogeneous as-grown single crystals. Hg-1201 is a quite ideal cuprate material for ERS measurements see Refs. [15,16]
for more details. It takes a pure tetragonal symmetry without any Cu–O chain contrary to YBa2Cu2O7−δ (Y-123) or buckling
which alters the unit cell of Bi-2212. We can then separately measure pure nodal and antinodal Raman responses, without
mixing effects. Hg-1201 is made of one single CuO2 layer which is a plane of symmetry in the unit cell. Raman active
modes are therefore forbidden in the CuO2 layer. This allows us to investigate the low energy electronic Raman spectrum
without being hindered by extra phonons lines.

The Bi-2212 single crystals were grown by using a floating zone method [84]. Bi-2212 system can be easily cleaved
providing large homogeneous surfaces (≈ mm2). By using the same protocol as the one developed elsewhere [35], we
have obtained intrinsic Raman measurements to make reliable quantitative comparisons between the Raman intensities of
crystals with distinct doping level.

For both Hg-1201 and Bi-2212 systems, the doping value p is inferred from Tc using Presland and Tallon’s equation:
1 − Tc/T max

c = 82.6(p − 0.16)2 [85] and Tc has been determined from susceptibility measurements for each doping level.

7.3. Derivation of Eq. (8) from Eq. (5)

When T → 0, the Raman susceptibility becomes:

χ ′′
μ(Ω) = π

∑
k

(
γ

μ
k

)2 |Δk|2
E2

k

δ(Ω − 2Ek) (10)

with Ek =
√

ξ2
k + Δ2

k .

We can first notice that (i) the integrant is predominant when ξk goes to zero which means εk ≈ εF , and (ii) δ(Ω − 2Ek)

is a function of ξk . This means δ( f (ξk)) = ∑
i

1
| f ′(ξ i

k)|
δ(ξ i

k − ξk). Here ξ i
k are the zeros of ξk .

We consider a 2D Brillouin zone (convenient for cuprates) and we transform the sum over k by an integration such as
“dk” is chosen perpendicular to the constant-energy line. We put:

dk

2π
= dεk

2π |∇εk| = N⊥(εk)

We then obtain for a non-interacting Fermi liquid:

χ ′′
μ(Ω) = N F

∫
dφ

(
γ μ(φ)

)2 |�(φ)|2√
Ω2 − 4�2(φ)

(11)

where N F = N⊥(εF ) kF
2π .

For an interacting Fermi liquid, we have to take into account the square of the quasiparticle renormalization factor ZΛ(φ)

which then appears in the integrant of (Eq. (11)) [15].
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