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We consider theoretical motivations to search for extra short-range fundamental forces
as well as experiments constraining their parameters. The forces could be of two types:
1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental
techniques are sensitive in respective ranges of characteristic distances. The techniques
include measurements of gravity at short distances, searches for extra interactions on
top of the Casimir force, precision atomic and neutron experiments. We focus on neutron
constraints, thus the range of characteristic distances considered here corresponds to the
range accessible for neutron experiments.
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r é s u m é

Nous considérons les motivations théoriques pour rechercher des forces fondamentales
supplémentaires à courte portée ainsi que des expériences contraignant leurs paramètres.
Les forces peuvent être de deux types : 1) les forces indépendantes du spin ; 2) les forces
dépendant du spin, de type axion. Différentes techniques expérimentales sont sensibles
dans des domaines différents de distances caractéristiques. Les expériences incluent des
mesures de gravité à courte distance, la recherche d’interactions supplémentaires en
plus de la force de Casimir, des expériences atomiques et neutroniques de précision.
Comme nous mettons l’accent sur les contraintes neutroniques, la gamme de distances
caractéristiques considérées ici correspond à la plage accessible pour les expériences avec
les neutrons.
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1. Introduction

The existence of other fundamental interactions in nature, mediated by new bosons, has been extensively discussed,
given their possibility in many extensions of the Standard Model of particle physics [1–7]. Theories with large extra spatial
dimensions provide strong motivation to search for such forces. If a boson is allowed to travel in large extra compactified
dimensions, with a strong coupling constant in the bulk, it behaves in our 4d world as a very weakly coupled new boson,
the coupling being diluted in the extra dimensions. The light dark matter hypothesis also argues in favor of the existence of
new short range interactions. New bosons, for example, are predicted by most of the grand unified theories embedding the
Standard Model, with the coupling constant of ∼0.1. These strongly coupled bosons have to be heavier than ∼1 TeV if they
were not to conflict with present observations; heavier bosons will be searched for at the Large Hadron Collider. Lighter
bosons could mediate a finite range interaction between two fermions:

V (r) = Q 1 Q 2
g2

4π

h̄c

r
e− r

λ (1)

where V (r) is the interaction potential, g is the coupling constant, Q 1 and Q 2 are the charges of the fermions under
the new interaction, and the range of this Yukawa-like potential λ = h̄/Mc is inversely proportional to the boson mass M .
We consider the interactions of neutrons with nuclei of atomic number A, thus the charge of the atom under the new
interaction is equal Q 1 = A, and the neutron charge is equal to unity Q 2 = 1. The presence of light bosons would be shown
by deviations from the gravitational inverse square law.

The characteristic range of extra interactions, as well as their strength, varies largely in various theories. Therefore a
phenomenological approach is chosen: searches for extra Yukawa-type forces are pursued over a very broad range λ. Nev-
ertheless, in many cases one could point out promising distances. In theories with two large extra spatial dimensions, the
characteristic range is ∼10−5 m; in theories with three large extra dimensions it is ∼10−8 m. Other numbers of extra
spatial dimensions are ruled out by experiments or correspond to too small effects to be observed with known methods.
In all mentioned interesting cases the ranges are accessible for neutron experiments: 10−10–10−5 m; the optimum condi-
tion is usually met if λ ∼ λn , where λn is the neutron wavelength. Concerning the strength of extra interactions, one should
compare the constraints resulting from precision neutron experiments with those using all alternative methods. Searches for
short-range modifications of gravity are most sensitive at distances > 10−5 m [8,9]. Searches for extra forces on top of the
van der Waals/Casimir–Polder (vdW/CP) forces give the best constraints in the nanometer range λ: 10−7(8)–10−5 m [10,11].
Exotic atoms constrain the sub-picometer domain: < 10−12 m [12]. Even shorter distances are probed in high-energy accel-
erator experiments. Neutron constraints are most sensitive in the intermediate range of λ: 10−12–10−8 m. In the range of
λ: 10−8(7)–10−5 m neutron experiments could provide complementary information as well, and higher sensitivity in limited
cases.

An attractive feature of neutrons is the smallness of false effects due to their electric neutrality. On the other hand,
neutron experiments are strongly limited by the available statistics; this drawback might be overcome with new low-energy
neutron sources. The current constraints for spin-independent short-range interactions as well as perspectives for their
improvement using neutron experiments are shown in Fig. 1. The range of distances in this figure covers the range of
interest for neutron experiments plus that for the best alternative methods on its lower and upper boundaries. In this plot,
we give the limits for g2 as defined in Eq. (1), and for α in another parameterization of spin-independent short-range
interactions, where α is normalized to the strength of gravity:

V (r) = αG
m1m2

r
e− r

λ (2)

Here m1 and m2 are masses of the fermions that interact. Neglecting the small difference between the neutron mass mn
and the proton mass mp we can translate:

g2 = 4πGm2
n

h̄c
α (3)

The neutron constraints are derived:

1) From studies of neutron gravitational quantum states [13–17], based on data published in Refs. [18–20] (line 5 in Fig. 1).
This first experiment has proven the existence of the phenomenon itself. Much more precise measurements seem to
be feasible concerning both eventual systematic effects and statistical sensitivity [21,22]. First improvements might be
expected in near future in flow-through-type experiments [23–25]; thus the sensitivity of [24] to new short-range
interactions is discussed in [26], and is shown as line 9 in Fig. 1. In a second step we aim at large increase in sensitivity
profiting from long storage of UCN in gravitational quantum states in the closed trap in the GRANIT spectrometer (line
10 in Fig. 1);

2) From the data on neutron whispering gallery effect [27–29] (line 6 in Fig. 1). This very first measurement provided al-
ready the absolute accuracy of measuring energy differences of quantum states significantly better than 10−3, however,
proper analysis of potential systematic effects has not yet been done. We present therefore a conservative estimation
for the short-range-forces constraints based on the given accuracy that could be guaranteed on the present stage of our
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Fig. 1. The exclusion plot for new spin-independent interactions: limits on the interaction strength α, normalized to the gravitational interaction (on left),
and the interaction strength g2 (on right) are given as a function of the characteristic distance. The best currently constraints are shown in thick solid lines;
preliminary results are indicated in thick dash-dotted lines; the best neutron constraints, but not the best currently available, are given in thick dashed
lines; thin dotted lines in purple color correspond to projected sensitivity in various neutron experiments. Red color is reserved for measurements of gravity
at short distances; blue-color constrains result from precision measurements of Casimir interactions; all constraints originated from neutron experiments
are shown in green; constraint from measurements of exotic atoms is indicated in orange. Constraints “1” and “2” are obtained from measurements of
short-range gravity in the torsion-balance [8] and the cantilever [9] experiment respectively. Constraints “4”, “12” and “13” follow from measurements of
extra forces on top of Casimir and van der Waals interactions in Refs. [11,35], in reanalysis presented in Ref. [10] of the experiment [36], and in Ref. [37]
respectively. We do not show the limit “3” from Ref. [10], based on an experiment by Lamoreaux [38], as well as the limit “14” from Ref. [39], based on
an experiment by Ederth [40], as solid constraints; Ref. [41] shows that correlations between fitted parameters deteriorate the sensitivity; furthermore a
new systematical uncertainty was found [42] in the original experiment [38]. Constrain “5” follows from measurements of neutron gravitational quantum
states [13]. Constrain “6” is derived from the data on neutron whispering gallery effect [30]. Constrain “7” follows from neutron scattering on nuclei [12].
Constrain “8” is obtained from analysis of precision measurements of exotic atoms [12]. Constrain “15” is obtained using searches for low-mass bosons from
the Sun in a high-purity germanium detector [43]. Lines “9”, “10”, “11” correspond to our estimations of eventual improvements in neutron constraints
following from measurements of gravitational quantum states in a flow-through mode, in storage mode using the GRANIT spectrometer, from quasi-elastic
scattering of UCN at diluted noble gases and from neutron whispering gallery effect respectively.

Fig. 1. Figure d’exclusion pour une interaction supplémentaire indépendante du spin : l’intensité de l’interaction α normalisée par rapport à l’interaction
gravitationnelle (axe de gauche) et l’intensité g2 (à droite) sont reportées en fonction de la portée de l’interaction. Les meilleures contraintes actuelles
sont indiquées par les lignes épaisses, les résultats préliminaires par des lignes épaisses discontinues, les meilleures contraintes neutroniques qui ne sont
pas les meilleures disponibles sont indiquées par une ligne épaisse discontinue. Les lignes mauves en pointillé correspondent aux sensibilités attendues
pour diverses expériences neutroniques. La couleur rouge est réservée pour les expériences de gravite à courte distance ; la couleur bleue concerne les
expériences de mesure de la force de Casimir ; toutes les contraintes neutroniques sont indiquées en vert, les contraintes issues des atomes exotiques en
orange. Les contraintes « 1 » et « 2 » sont obtenues en mesurant la gravité à courte distance avec un pendule [8] et une micropoutre [9] respectivement.
Les contraintes « 4 », « 12 » et « 13 » proviennent des recherches d’une interaction supplémentaires s’ajoutant aux forces de Casimir et de Van der Waals
dans [11,35], dans l’analyse de l’expérience [36] présentée dans [10], et dans [37] respectivement. Nous ne considérons pas comme contraintes solides
la limite « 3 » de [10] basée sur l’expérience de Lamoreaux [38] ainsi que la limite « 14 » de [39] basée sur l’expérience de Ederth [40] ; en effet [41] la
corrélation entre les paramètres ajustés détériore la sensibilité, de plus, une nouvelle erreur systématique a été découverte [42] dans l’expérience [38]. La
contrainte « 5 » est issue de la mesure des niveaux quantiques gravitationnels du neutron [13]. La contrainte « 6 » est déduite de la mesure de l’effet galerie
de chuchotement » [30]. La contrainte « 7 » est déduite des mesures de diffusion de neutrons par les noyaux [12]. La contrainte « 8 » est obtenue à partir de
l’analyse des mesures de précision sur des atomes exotiques [12]. La contrainte [15] est obtenue en cherchant des bosons de faible masse produits par le
Soleil en utilisant un détecteur Germanium de haute pureté. Les lignes « 9 », « 10 » et « 11 » correspondent à nos estimations des améliorations éventuelles
des contraintes neutroniques en mesurant les niveaux quantiques gravitationnels en flux continu, en mode stockage avec le spectromètre GRANIT, par
diffusion quasi-élastique des UCNs par un gas noble dilué et par l’effet « galerie de chuchotement », respectivement.

analysis, and will continue working on further improvements (line 11 in Fig. 1). The method to calculate the constraint
is given in these proceedings [30];

3) From neutron scattering on nuclei [12]) (line 7 in Fig. 1). The idea of this method was proposed in Ref. [31]. Preliminary
estimation of an even stronger constraint from neutron scattering on nuclei at shortest distances is available [32]; as the
calculation procedure used there is based on possibly incomplete information, as stated by the author, on resonances in
the nuclei used, as well as on complex multi-parametric mathematical analysis, without any study of global and local
minima in the fit, it would be of interest to finalize the analysis and provide a reliable constraint. Concerning neutron
scattering on nuclei, further improvements in sensitivity (line 11 in Fig. 1) are expected to follow from measurements
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Fig. 2. Searches for short-range electron spin-dependent interactions. Each line is excluding the region to the top. The limit from [51] (1, black solid line)
has been achieved with a (unpolarized) torsion pendulum made from silicon; and anomalous torque caused by a polarized electron source nearby has
been searched for. Like in all these experiments, a big issue is the suppression of magnetic interactions. Successful elimination of magnetic anomalies
can be tested in varying the distance between source and pendulum. The limit from [52] (2, blue solid line), the torque of an external circular mu-metal
shield, polarized in a strong transverse magnetic field, on 3 unpolarized copper test masses coupled to a superconducting torsion pendulum in the center
is measured. The usual magnetic field is strongly suppressed in the mu-metal shield, whereas an interaction as in Eq. (2) would cause a signal. The limit
from [53] (3, red solid line) is derived from the response of a SQUID to the induced magnetization of a parametric salt by a (unpolarized) copper source
mass rotating around the salt. Usual magnetic fields are shielded with a superconducting shield.

Fig. 2. Recherches d’interactions supplémentaires dépendant du spin de courte portée agissant sur les électrons. Chaque ligne exclue la région au-dessus.
La limite [51] (1, ligne noire) est obtenue avec un pendule de torsion (non polarisé) de silicium, on recherche un couple anormal induit par une source
d’électrons polarisés à proximité. Comme dans toutes ces expériences, le problème principal est de minimiser les interactions magnétiques. L’efficacité
de l’élimination des anomalies magnétiques peut être vérifiée en faisant varier la distance entre la source et le pendule. La limite [52] (2, ligne bleue)
est obtenue en mesurant le couple induit par un écran mu-métal externe polarisé dans un champ transverse intense sur 3 masses non polarisées de
cuivre couplées à un pendule de torsion supraconducteur. Le champ magnétique usuel est fortement atténué dans l’écran en mu-métal tandis qu’une
interaction du type eq. (2) induirait un signal. La limite [53] (3, ligne rouge) est obtenue à partir de la réponse d’un SQUID a la magnétisation induite
d’un sel paramagnétique par une source (non polarisée) de cuivre tournant autour du sel. Les champs magnétiques usuels sont écrantés par un blindage
supraconducteur.

of quasi-elastic scattering of UCN on atoms in diluted noble gases using gravitational spectrometers of total energy [30],
and from measurements of asymmetry of scattering of slow neutrons on atoms in diluted noble gases [12]. A possi-
bility of improving constraints using neutron-optical experiments is discussed in Ref. [33]. High-energy neutron–proton
scattering on small angles was analyzed in view of getting constraints at even shorter distances than those presented
in Fig. 1 in Ref. [34].

Many experiments look for spin-dependent short-range forces. Additional spin-dependent interaction could be caused
by new, light, pseudo-scalar bosons such as the Axion. The Axion was originally proposed in Refs. [44–47] as a solution to
the strong CP problem, caused by the smallness of the neutron electric dipole moment. The Axion would have profound
consequences in cosmology and astrophysics [48], and the non-observation of these effects limits the Axion to have a mass
in between approximately 10 μeV and 10 meV. The general form of the potential caused by the exchange of a pseudo-scalar,
axion-like, boson between a polarized spin-1/2 particle and another unpolarized particle of the same kind is [49]:

V (r) = g1
S g2

P
(h̄c)2

8πm2c2
(σ2 · r̂)

[
1

rλ
+ 1

r2

]
exp(−r/λ) (4)

Here, g1
S g2

P is the product of the relevant coupling coefficient between particle 1 (unpolarized) and 2 (polarized), and gives
the strength of the potential. m2 and σ2 are the mass and the spin of the polarized particle, r is the distance between the
particles, and λ = h̄/mc is the Yukawa range of the new interaction. The Yukawa range is used as a free parameter in the
analysis, as the mass m of the new exchange boson is not known a priori.
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Most experiments look for new forces between electrons. More recently, much progress was made in searches for new
forces between nucleons. Comparisons between the coupling strengths for electrons and nucleons require a particular model
of the new interaction; therefore it is not given here. We summarize present searches in the following exclusion plots. Fig. 2
shows the exclusion for new interactions between electrons (a chapter in the recent review [50] has been devoted to this);
the distance scale λ on this plot is chosen to be equal to that in Fig. 3 in order to facilitate comparison. Fig. 3 shows the
exclusion for new interactions between nucleons. The range for the λ values shown here is given by optimum sensitivity of
neutron and polarized 3He experiments.

This article is organized as follows: Theoretical motivations to short-range interactions are overviewed in Section 2.
Casimir force studies are analyzed in Section 3. Measurements of atom–surface van der Waals interaction and test of
non-Newtonian gravitational interaction by atom interferometry are presented in Section 4. GRANIT constraints for Stan-
dard Model extensions are mentioned in Section 5. Eventual constraints for spin-dependent short-range forces from the
GRANIT experiment are derived in Section 6. A torsion pendulum searches for axion and exotic forces are overviewed in
Section 7, in particular a new large improvement for constraints for such forces is presented. New experimental constraints

Fig. 3. Searches for short-range nucleon spin-dependent interactions. Each line is excluding the region to the top. The limit from [54] (1, black solid line)
was achieved by comparing the precession frequencies of atomic magnetometers made from either 199Hg or Cs atoms in presence of a 475 kg source
mass made from lead. The sensitivity of the experiment with polarized 3He, described in Section 9, is indicated in (2, thin dotted blue line). The limit
from Ref. [55] (3, blue solid line) was derived from the spin relaxation rate in polarized 3He cells; after subtraction of known causes of relaxation, the
new interaction would constitute an extra relaxation channel. An even more constraining limit from experiments on storage of polarized 3He has been
proposed [56] but the validity of the method used is being questioned [57]. The limit in Ref. [58] (4, thin green dash-dotted line) was derived from the
study of gravitationally bound states of ultra-cold neutrons; the publication [58] triggered much of the recent experimental activity on spin-dependent
short-range nucleon–nucleon interaction presented in the present proceedings. The limit from Ref. [59] (5, thick green dashed line, proposed in [60]) was
derived from comparison of the precession frequencies of ultra-cold neutrons in chambers in a vertical magnetic field, where the chamber bottom plate
is made from a more dense material than top plate and vice versa. A force as in Eq. (2) changes the precession frequency with a sign which depends on
the position of the denser plate. The limit from Ref. [61] (6, thick green solid line, criticized in Ref. [62]) was derived from the fact that a new short-range
spin-dependent force would cause spin relaxation of ultra-cold neutrons in vicinity of a reflecting surface; limits on the depolarization probability were
turned into limits on new forces of that kind. The transmission of polarized neutrons through a horizontal slit with an absorber at the top would look
differently from the measurement if a sufficiently strong new interaction given by Eq. (2) would modify the wave functions of the gravitational bound
states in dependence of their spin, as in a Stern–Gerlach experiment. We add projected sensitivities of different stages of the study of gravitationally bound
quantum states: The constraint 7 is from a proposal to measure the neutron spin-dependent change of the transmission of UCNs through a horizontal slit
made from an absorber and a mirror with GRANIT. This proposal was discussed in Ref. [164] (7, thin purple dotted line). The ultimate goal of GRANIT is
to measure energy difference between quantum states of stored ultra-cold neutrons. Assuming an accuracy of 10−6, which is achieved if the precision is
just the natural line-width of the transition, and assuming this line width is limited only by the neutron beta decay lifetime, we get the second project
limit (8, thin purple dotted line). In Ref. [63], a more optimistic scenario where a precision better than the size of the natural line width with the help
of a Ramsey technique is discussed. An analogous method based on spin precession in a setup measuring neutron EDM and not requiring gravitational
quantum states of neutrons is proposed in Ref. [64]. Finally, note that although most constraints presented on this figure are bound to the distance range
corresponding approximately to the “axion window” there are no formal limitations for extending the range when considering axion-like particles; thus
one should remember about experimental constraints at even shorter distances as those presented in Section 12.
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Fig. 3. Recherches d’interactions supplémentaires dépendant du spin de courte portée agissant sur les nucléons. Chaque ligne exclue la région au-dessus. La
limite [54] (1, ligne noire continue) est obtenue en comparant les fréquences de précession de magnétomètres atomiques utilisant des atomes de 199Hg et Cs
en présence d’une masse de plomb. La sensibilité des expériences avec 3He polarisé (2, ligne bleue point-tilles) est décrite dans Section 9. La limite [55] (3,
ligne solide bleue) a été obtenue par le taux de relaxation du spin dans les cellules de 3He après correction des processus de relaxation connus, l’interaction
supplémentaire constituant un canal de relaxation additionnel. Une meilleure limite a été proposée [56] à partir d’expériences de stockage de 3He polarisé
mais la validité de la méthode est remise en cause [57]. La limite [58] (4, ligne discontinue verte) est obtenue à partir de l’étude des niveaux quantiques
du neutron dans le champ de pesanteur ; la publication [58] a enclenché un vaste programme expérimental pour sonder ‘une interaction de courte portée
nucléon–nucléon dépendant du spin qui fait l’objet de cet article. La limite [59], proposée dans [60] (5, ligne discontinue verte épaisse) est obtenue par
comparaison de la fréquence de précession de neutrons ultrafroids dans un champ magnétique dans deux chambres de précession avec un matériau lourd
en haut, léger en bas, et vice versa. Une interaction de type de l’eq. (2) modifierait la fréquence de précession avec un signe dépendant de la position du
matériau dense. La limite [61] (6, ligne verte continue épaisse), critiquée dans [62], se base sur le fait que l’interaction supplémentaire provoquerait une
relaxation du spin des neutrons ultrafroids au voisinage d’une surface réfléchissante ; les limites sur la probabilité de dépolarisation sont alors interprétées
comme une limite sur une nouvelle interaction dépendant du spin. Si la nouvelle interaction donnée par l’eq. (2) est suffisamment intense, elle modifierait
les fonctions d’onde des états quantiques du neutron dans le champ de pesanteur selon l’état de spin des neutrons et la courbe de transmission de neutrons
non polarises à travers une fente horizontale avec un absorbeur au-dessus serait différente de celle observée, comme dans l’expérience de Stern et Gerlach.
Nous considérons la sensibilité attendue pour les étapes futures de l’étude des niveaux quantiques : supposant une précision de 10−3 pour la mesure de la
différence d’énergie entre l’état fondamental et le deuxième état excité dans l’expérience en flux continu de neutrons décrite dans cet ouvrage (Section 5
de la ref. [21]), un nouveau domaine de la figure d’exclusion dans le domaine micrométrique serait accessible (7, ligne mauve discontinue). Le but ultime
de GRANIT est de mesurer les différences d’énergie des états quantiques en mode stockage de neutrons. Supposant la précision de 10−6 qui serait atteinte
si la précision correspondait à la largeur naturelle de la transition pour des neutrons stockés pendant la durée de vie beta, nous obtenons la seconde
limite attendue (8, ligne mauve discontinue). La ref. [63] présente un scenario plus optimiste ou une précision meilleure que la largeur naturelle pourrait
être obtenue à l’aide de la technique de Ramsey. Une méthode analogue, basée sur la précession du spin dans un appareil mesurant le moment dipolaire
électrique du neutron est proposée dans [64]. Finalement, il est à noter que la plupart des contraintes présentées sur cette figure sondent un domaine
de distance correspondant à la « fenêtre de l’axion », mais il n’y a pas de raison fondamentale empêchant de considérer des distances encore plus courtes,
comme celles présentées en Section 12.

for spin-dependent short-range forces from storage of polarized 3He are presented in Section 8; and those from 3He/129Xe
clock comparison are given in Section 9. Constraints for short-range spin-independent short-range forces from neutron
experiments are reproduced in Section 10. Constraints for spin-dependent interactions from could also be derived from
neutron-EDM experiments using ultra-cold neutrons (Section 11), or from neutron-EDM experiments using propagation of
cold neutrons in non-centrosymmetric crystals (Section 12); a largely improved new experimental constrain is presented in
the later case.

2. Theoretical motivations to short-range interactions (Ignatios Antoniadis)

2.1. Strings and extra dimensions

In all physical theories, the number of dimensions is a free parameter fixed to three by observation, with one exception:
string theory, which predicts the existence of six new spatial dimensions (seven in the case of M-theory). For a long
time, string physicists thought that strings were extremely thin, having the smallest possible size of physics, associated to
the Planck length ∼10−35 meters. However, the situation changed drastically over the recent years. It has been realized
that the “hidden” dimensions of string theory may be much larger than what we thought in the past and they become
within experimental reach in the near future, together with the strings themselves [1–4]. These ideas lead in particular to
experimental tests of string theory that can be performed in particle colliders, such as LHC.

The main motivation came from considerations of the so-called mass hierarchy problem: why the gravitational force
remains much weaker than the other fundamental forces (electromagnetic, nuclear strong and weak), at least up to present
energies? In a quantum theory, the masses of elementary particles receive important quantum corrections, which are of the
order of the higher energy scale present in the theory. Thus, in the presence of gravity, the Planck mass M P ∼ 1019 GeV
attracts all Standard Model particles to become 1016 times heavier than what they are. To avoid this catastrophe, one has
to adjust the parameters of the theory up to 32 decimal places, resulting in a very ugly fine-tuning.

A possible solution is provided by the introduction of supersymmetry, which may be a new fundamental symmetry
of matter. One of its main predictions is that every known elementary particle has a partner, called superparticle. Since
none of these superparticles have ever been produced in accelerators, they should be heavier than the observed particles.
Supersymmetry should therefore be broken. However, protection of the mass hierarchy requires that its breaking scale, i.e.
the mass splitting between the masses of ordinary particles and their partners, cannot be larger than a few TeV. They can
therefore be produced at LHC, which will test the idea of supersymmetry.

On the other hand, a new idea was proposed that solves the problem if the fundamental string length is fixed to
10−18–10−19 m [4]. In this case, quantum corrections are controlled by the string scale, which is in the TeV region, and do
not destabilize the masses of elementary particles. Moreover, it offers the remarkable possibility that string physics may be
testable soon in particle colliders.

2.2. The string scale at the TeV

An attractive and calculable framework, allowing the dissociation of the string and Planck scales without contradict-
ing observations, is provided by the so-called type I string theory. In this theory, gravity is described by closed strings
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Fig. 4. In the type I string framework, our Universe contains, besides the three known spatial dimensions (denoted by a single blue line), some extra
dimensions (d‖ = p − 3) parallel to our world p-brane (green plane) where endpoints of open strings are confined, as well as some transverse dimensions
(yellow space) where only gravity described by closed strings can propagate.

Fig. 4. Dans le cadre de la théorie des cordes de type I, notre univers contient, en plus des trois dimensions spatiales connues (indiquées par la seule ligne
bleue), des dimensions supplémentaires d‖ = p − 3 parallèles a notre p-brane (plan vert) où les extrémités des cordes ouvertes sont confinées, ainsi que
des dimensions transverses (volume jaune) où seule la gravité, décrite par des cordes fermées, peut se propager.

which propagate in all nine dimensions of space, while matter and all other Standard Model interactions are described
by open strings ending on the so-called D-branes. This leads to a braneworld description of our Universe, localized on a
hypersurface, i.e. a membrane extended in p spatial dimensions, called p-brane (see Fig. 4). Closed strings propagate in all
nine dimensions of string theory: in those extended along the p-brane, called parallel, as well as in the transverse ones.
On the contrary, open strings are attached on the p-brane. Obviously, our p-brane world must have at least the three
known dimensions of space. But it may contain more: the extra d‖ = p − 3 parallel dimensions must have a finite size,
in order to be unobservable at present energies, and can be as large as TeV−1 ∼ 10−18 m [1]. On the other hand, trans-
verse dimensions interact with us only gravitationally and experimental bounds are much weaker: their size could reach
0.1 mm [8].

In the framework of type I string theory, the string scale Ms can be lowered in the TeV region at the expense of
introducing large transverse dimensions of size much bigger than the string length. Actually, the string scale fixes the
energy at which gravity becomes strongly coupled with a strength comparable to the other three interactions, realizing the
unification of all fundamental forces at energies lower by a factor 1016 from what we thought in past. On the other hand,
gravity appears to us very weak at macroscopic distances because its intensity is spread in the large extra dimensions [3].
The basic relation between the fundamental (string) scale and the observed gravitational strength is:

Total force = observed force x transverse volume

expressing the Gauss law for higher-dimensional gravity. In order to increase the gravitational force at the desired magnitude
without contradicting present observations, one has to introduce at least two extra dimensions of size that can be as large as
a fraction of a millimeter. At distances smaller than the size of extra dimensions, gravity should start deviate from Newton’s
law, which may be possible to explore in laboratory tabletop experiments [8,65,11,66,67,13,12] (see Fig. 9).

Type I string theory provides a realization of this idea in a coherent theoretical framework. Calculability of the theory
implies that parallel dimensions should not be much bigger than the string length, while the size of transverse dimensions
is fixed from the observed value of Newton’s constant; it should thus vary from the Fermi scale (10−14 meters) to a
fraction of a millimeter, depending on their number (varying from six to two, respectively). It is remarkable that this
possibility is consistent with present observations and presents a viable and theoretically well motivated alternative to low
energy supersymmetry, offering simultaneously a plethora of spectacular new phenomena that can be tested in laboratory
experiments and be a surprise in LHC and other particle accelerators. The main experimental signal is gravitational radiation
in the bulk from any physical process on the world-brane that gives rise to missing-energy. Explicit computation of these
effects leads to the collider bounds given in Table 1.
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Table 1
Collider bounds on the size of gravitational extra dimensions R⊥ in mm.

Tableau 1
Limites sur la taille des dimensions supplémentaires gravitationnelles issues des collisionneurs.

Experiment n = 2 n = 4 n = 6

LEP 2 5 × 10−1 2 × 10−8 7 × 10−11

Tevatron 5 × 10−1 10−8 4 × 10−11

LHC 4 × 10−3 6 × 10−10 3 × 10−12

2.3. Short range forces

There are three categories of predictions in “table-top” experiments that measure gravity at short distances:
(i) Deviations from the Newton’s law 1/r2 behavior to 1/r2+n , which can be observable for n = 2 large transverse dimen-

sions of sub-millimeter size. This case is particularly attractive on theoretical grounds because of the logarithmic sensitivity
of Standard Model couplings on the size of transverse space [68,69] that allows determining the hierarchy [70].

(ii) New scalar forces in the sub-millimeter range, related to the mechanism of supersymmetry breaking, and mediated by
light scalar fields ϕ with masses: mϕ

∼= m2
susy/M P ∼= 10−4–10−6 eV, for a supersymmetry breaking scale msusy ∼= 1–10 TeV.

They correspond to Compton wavelengths of 1 mm to 10 μm. msusy can be either the compactification scale of parallel
dimensions 1/R‖ if supersymmetry is broken by compactification [71,72] or the string scale if it is broken “maximally” on
our world-brane [3,4]. A universal attractive scalar force is mediated by the radion modulus ϕ ≡ M P ln R , with R the radius
of the longitudinal (R‖) or transverse (R⊥) dimension(s). In the former case, the above result follows from the behavior of
the vacuum energy density Λ ∼ 1/R4‖ for large R‖ (up to logarithmic corrections). In the latter, supersymmetry is broken
primarily on the brane, and thus its transmission to the bulk is gravitationally suppressed, leading to the same result. For
n = 2, there may be an enhancement factor of the radion mass by (ln R⊥)M S ∼= 30, decreasing its wavelength by an order
of magnitude [70]. The coupling of the radius modulus to matter relative to gravity can be easily computed and is given by:

√
αϕ = 1

M

∂M

∂ϕ
with αϕ =

{
∂ lnΛQCD

∂ ln R
∼= 1

3 for R‖
2n

n+2 = 1–1.5 for R⊥
where M denotes a generic physical mass. In the longitudinal case, the coupling arises dominantly through the radius
dependence of the QCD gauge coupling [71,72], while in the case of transverse dimension, it can be deduced from the
rescaling of the metric which changes the string to the Einstein frame and depends slightly on the bulk dimensionality
(αϕ = 1–1.5 for n = 2–6) [70]. Such a force can be tested in microgravity experiments and should be contrasted with the
change of Newton’s law due the presence of extra dimensions that is observable only for n = 2 [8,65,11,66,67,13,12]. The
resulting bounds for the higher-dimensional gravity scale M∗ from an analysis of the radion effects, are [73]: M∗ � 6 TeV
(for R⊥). In principle there can be other light moduli which couple with even larger strengths. For example the dilaton,
whose vacuum expectation value determines the string coupling, if it does not acquire large mass from some dynamical
mechanism, can lead to a force of strength 2000 times bigger than gravity [74].

(iii) Non-universal repulsive forces much stronger than gravity, mediated by possible abelian gauge fields in the bulk
[3,75]. Such fields acquire tiny masses of order M2

S/M P , as in case (ii), due to brane localized anomalies [75]. Although
their gauge coupling is infinitesimally small, g A ∼ M S/M P ∼= 10−16, it is still bigger that the gravitational coupling E/M P
for typical energies E ∼ 1 GeV, and the strength of the new force would be 106–108 stronger than gravity.

In Fig. 5, we depict the actual information from previous, present and upcoming experiments [8,65,11,66,67,13,12]. The
excluded regions lie above these solid lines. Measuring gravitational strength forces at short distances is challenging. The
horizontal lines correspond to theoretical predictions, in particular for the graviton in the case n = 2 and for the radion in
the transverse case. Finally, in Fig. 1 of the introduction of this chapter, recent improved bounds for new forces at very short
distances are displayed by focusing on the left hand side of Fig. 5, near the origin [65,11,66,67,13,12].

2.4. Warped spaces

Braneworld models in curved space (warped metric) with non-compact extra dimensions may lead also to gravity mod-
ification at short distances. In particular in RS2, space–time is a slice of anti-de Sitter space (AdS) in d = 5 dimensions
while our Universe forms a four-dimensional (4d) flat boundary [76]. The 4d Planck mass is given by: M2

P = M3∗/k, with
k2 = −Λ/24M3∗ in terms of the 5d cosmological constant Λ. Note that M P is finite, despite the non-compact extra dimen-
sion in the 5d AdS space, because of the finite internal volume. As a result, gravity is kept localized on the brane, while the
Newtonian potential gets corrections, 1/r + 1/k2r3 which are identical with those arising in the compact case of two flat
extra dimensions. Using the experimental limit k−1 � 0.1 mm, one finds a bound for the 5d gravity scale M∗ � 108 GeV,
corresponding to a brane tension T � 1 TeV. Notice that this bound is not valid in the compact case of six extra dimensions,
because their size is in the Fermi range and thus the 1/r3 deviations of Newton’s law are cutoff at shorter distances.

This work is supported in part by the European Commission under the ERC Advanced Grant 226371 and the contract
PITN-GA-2009-237920.
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Fig. 5. Present limits on new short-range forces (yellow regions), as a function of their range λ and their strength relative to gravity α. The limits are
compared to new forces mediated by the graviton in the case of two extra dimensions, and by the radion.

Fig. 5. Limites actuelles pour une nouvelle force de courte portée (région jaune), en fonction de la portée λ et de l’intensité relative à la gravite α. Les
limites sont comparées aux nouvelles forces induites par le graviton dans le cas de deux dimensions supplémentaires, et par le radion.

3. The Casimir force studies (Serge Reynaud and Astrid Lambrecht)

The Casimir effect [77] is an observable effect of vacuum fluctuations visible on macroscopic objects, which deserves
careful attention as a crucial prediction of quantum field theory [78–81].

It is also a fascinating interface between quantum electrodynamics and other important aspects of fundamental physics.
It has connections with the puzzles of gravitational physics through the problem of vacuum energy [82] (and references
therein) as well as with the principle of relativity of motion through the dynamical Casimir-like effects [83,84] (and refer-
ences therein). It shows an extremely rich interplay with geometry [85,86] (more discussions below).

Casimir physics also plays an important role in the tests of gravity law at sub-millimeter ranges [87,88]. Strong constraints
have been obtained in short range Cavendish-like experiments [8]: Should a hypothetical new force have a Yukawa-like
form, its strength could not be larger than that of gravity if the range is larger than 56 μm. For scales of the order of the
micrometer, similar tests are performed by comparing with theory the results of Casimir force measurements [89,66,90].
Other tests can be performed with atomic [90] or nuclear [12] force measurements (more discussions in other articles in
this volume).

3.1. Comparison of the Casimir force measurements with theory

A new force would appear as a difference between the experimental measurement Fex and the theoretical prediction Fth
of the Casimir force. This implies that the accuracies of Fex and Fth have to be assessed independently from each other.

Casimir calculated the force between a pair of perfectly smooth, flat and parallel plates in the limit of zero temperature
and perfect reflection. He found universal expressions for the force FCas = −h̄cπ2 A/240L4 and energy ECas = −h̄cπ2 A/720L3

with L the inter-plate distance, A the area, c the speed of light and h̄ the Planck constant. This universality comes from the
saturation of the optical response of perfect mirrors which reflect 100% of the incoming fields. Clearly, this idealization does
not correspond to any real mirror. The effect of imperfect reflection is large in most experiments, and a precise knowledge
of its frequency dependence is essential for obtaining a reliable theoretical prediction for the Casimir force [91].

The most precise experiments are performed with metallic mirrors which are good reflectors at frequencies below the
plasma frequency ωP . Their optical response is described by a reduced dielectric function usually written at imaginary
frequencies ω = iξ as ε(iξ) = ε̂(iξ) + σ(iξ)/ξ . The function ε̂(iξ) represents the contribution of inter-band transitions and
is regular at the limit ξ → 0; σ(iξ) = ω2

P /(ξ + γ ) is the reduced conductivity (measured as a frequency) which describes
the contribution of conduction electrons.

A simple description corresponds to the lossless limit γ → 0 often called the plasma model. As γ 	 ωP for a metal
such as Gold, this model captures the main effect of imperfect reflection. However it cannot be considered as an accurate
description since a much better fit of tabulated optical data is obtained with the Drude model which corresponds to a non-
null value of the relaxation parameter γ . Furthermore, the Drude model meets the important property of ordinary metals
which have a finite static conductivity σ(0) = ω2

P /γ , in contrast to the lossless limit which would correspond to an infinite
value for σ(0).

Another correction to the Casimir expressions is associated with the effect of thermal fluctuations [92,93] (and references
therein). Even a small non-zero value of γ had a significant effect on the force evaluation at non-null temperature [94–96]
(and references therein). After years of improvement of Casimir experiments, it now turns out that the most precise Casimir
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experiments favor predictions obtained with γ = 0 rather with the expected γ 
= 0 (see Fig. 1 in Ref. [97]). The ratio
between the predictions at γ = 0 and γ 
= 0 reaches a factor 2 at the limit of large temperatures or large distances. This
large deviation is confirmed by microscopic descriptions of the Casimir interaction between two metallic bulks, which lead
to predictions agreeing with the lousy Drude model rather than the lossless plasma model [98–100].

After this part of the overview was written, new experimental results have been published which favor the Drude model
after subtraction of a large contribution of the patch effect: [101], see also the discussion in [102].

3.2. The role of geometry

The geometry of Casimir experiments might play an important role in this context. Precise experiments are indeed
performed between a plane and a sphere whereas calculations are often devoted to the geometry of two parallel planes.
The estimation of the force in the plane–sphere geometry involves the so-called “Proximity Force Approximation” (PFA)
[103], which amounts to averaging over the distribution of local inter-plate distances the force calculated in the two-planes
geometry, the latter being deduced from the Lifshitz formula [104,105]. This trivial treatment of geometry cannot reproduce
the rich interconnection known to take place between the Casimir effect and geometry. In the plane–sphere geometry used
for the experiments, the PFA can only be valid when the radius is much larger than the separation between the plates
[106]. But even when this limit is met in experiments, the PFA does not tell one what is its accuracy for a given value of
L/R or whether this accuracy depends on the material properties of the mirror. Answers to these questions can only be
obtained by pushing the theory beyond the PFA, which has been done in the past few years (see references in [107–110]).
In fact, it is only very recently that these calculations have been done with plane and spherical metallic plates coupled to
electromagnetic vacuum [111], thus opening the way to a comparison with experimental studies of PFA in the plane–sphere
geometry [112].

Another specific geometry of great interest is that of surfaces with periodic corrugations. As lateral translation symmetry
is broken, the Casimir force contains a lateral component which is smaller than the normal one, but has nevertheless been
measured in dedicated experiments [113,114]. Calculations beyond the PFA have first been performed with the simplifying
assumptions of perfect reflection [115] or shallow corrugations [116–120]. The PFA was thus found to be accurate only
at the limit of large corrugation wavelengths. Very recently, experiments have been able to probe the beyond-PFA regime
[121,122] while it also became possible to calculate the forces between real mirrors with deep corrugations [123,124].

The best tool available for addressing these questions is the scattering approach which has been developed for years
[125,126] and is now used by different groups using different notations [127–129]. It has also been used for analyzing other
situations of interest, such as the torque appearing with non-aligned corrugations [130], or non-trivial effects of geometry
which should be visible with atoms in a Bose–Einstein condensate used as a local probe of vacuum above a nano-grooved
plate [131,132].

3.3. Discussion

At the end of this discussion, we have to face a lasting discrepancy between theory and experiment. This discrepancy
may have various origins, in particular artefacts in the experiments or inaccuracies in the calculations. There may also exist
yet unmastered differences between the situations studied in theory and the experimental realizations. Hence more work is
needed to reach a reliable comparison of experiment and theory on the Casimir effect.

For example, the effect of temperature is also correlated with the plane–sphere geometry [133,134]. The first calculations
accounting simultaneously for plane–sphere geometry, temperature and dissipation have been published very recently [135]
and they show striking features. The factor of 2 between the long distance forces in Drude and plasma models is reduced
to a factor below 3/2 in the plane–sphere geometry. Then, PFA underestimates the Casimir force within the Drude model at
short distances, while it overestimates it at all distances for the perfect reflector and plasma model.

Experiments are performed with large spheres for which the parameter L/R is smaller than 0.01, and efforts are de-
voted to calculations pushed towards this regime [136]. If the results just reported were conserved for the experimental
parameters L/R < 0.01, the actual values of the Casimir force calculated within plasma and Drude model could turn out to
be closer than suggested by PFA, which would diminish the discrepancy between experimental results and predictions of
the thermal Casimir force using the Drude model. Other possibilities are still open, and progress will hopefully result from
ongoing work an experimental as well as experimental issues [137].

The authors thank A. Canaguier-Durand, I. Cavero-Pelaez, J. Chevrier, D. Dalvit, R. Decca, E. Fischbach, R. Guérout, G.L. In-
gold, M.-T. Jaekel, J. Lussange, P. Maia Neto, R. Messina, R. Onofrio, I. Pirozenkho, and V. Nesvizhevsky for fruitful discussions
and the ESF Research Networking Programme CASIMIR (www.casimir-network.com) for providing excellent possibilities for
discussions and exchange.

4. Measurements of atom–surface van der Waals interaction and test of non-Newtonian gravitational interaction by atom
interferometry (Matthias Büchner, S. Lepoutre, H. Jelassi, G. Trénec, J. Vigué, V.P.A. Lonij, A.D. Cronin)

Atom interferometers have proven their capability to measure precisely interactions between atoms and their environ-
ment [138]. As with their optical analogues, it is possible to split coherently a matter wave, to perturb only one arm of the
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Fig. 6. Our atom interferometer. A supersonic lithium beam is strongly collimated by two thin slits. It then crosses three laser standing waves which play
the role of beam-splitters and mirrors for the atom wave, thus forming a Mach–Zehnder atom interferometer. A nanograting G is introduced on one arm
only and the phase shift of the interference fringes is measured as a function of the atom velocity.

Fig. 6. Un faisceau supersonique de lithium est fortement collimaté par deux fentes minces. Il traverse ensuite trois ondes stationnaires laser qui jouent
le rôle de séparateur de faisceau et de miroirs pour l’onde d’atomes, formant ainsi un interféromètre atomique de Mach–Zehnder. Un nanoréseau G est
introduit sur un seul bras et le déphasage des franges d’interférences est mesuré en fonction de la vitesse des atomes.

interferometer and to detect the perturbation on the interference signals. Several experiments of this type have been done,
among which the measurement of atomic electric polarizability [139–141] and of the refraction index of gases for matter
waves [142–144].

Atom–surface interaction is intensively studied in literature [145], in the van der Waals regime (i.e. for short atom–
surface distance below ca. 100 nm) or in the Casimir–Polder regime (for longer ranges). This interaction has been studied by
various atom optics experiments, by studying the diffraction of an atomic or molecular beam by a nanograting [146–148]
or the reflection properties of a matter wave by an evanescent light field [149]. In 2005, J.D. Perreault and A.D. Cronin
[150] used their sodium atom interferometer to measure the phase-shift of the atom wave transmitted by a nanograting in
the zeroth-order beam and they showed that this phase-shift is due to the atom–surface interaction in the van der Waals
regime. In the present paper, we describe a very similar experiment done with the Toulouse atom interferometer. We have
been able to improve considerably the accuracy of the measurements for the following reasons: the Toulouse interferometer
has a lower phase noise than the Arizona interferometer; the Arizona interferometer uses diffraction by nanogratings [150],
which produces many diffracted beams and these beams complicate the analysis. The Toulouse interferometer, which uses
Bragg diffraction on laser standing waves, produces essentially a Mach–Zehnder configuration with almost no stray beams
and this simplifies considerably the analysis of the signals.

Our experimental arrangement, which is similar to the one of Ref. [150], is schematically represented in Fig. 6. Here is
a brief description of our interferometer (for more details, see [151]). We use expansion of lithium seeded in a rare gas
(pure or mixtures) to produce a supersonic atomic beam, with a velocity tunable over the 740–3400 m/s range by changing
the carrier gas. This beam is strongly collimated by two thin slits, before crossing three laser standing waves which are
produced by reflecting laser beams on mirrors M1, M2 and M3. These laser standing waves play the role of beam-splitters
and mirrors for the atom wave. The laser wavelength λL is chosen near the first resonance line of lithium at 671 nm, with a
blue detuning, and we use the atom diffraction in the Bragg regime. The angle between the diffracted beams is 2pΘB where
p is the diffraction order and ΘB is the Bragg angle given by ΘB = λdB/λL , where λdB is the de Broglie wavelength. For
an atom velocity v = 1000 m/s, λdB = 53 pm and the Bragg angle is ΘB = 80 μrad. For first order diffraction and with the
chosen value of the distance L between laser standing waves, L = 0.6 m the maximum arm separation is close to 100 μm
(and to 200 μm for second order diffraction).

We introduce the Au/Pd coated silicon-nitride nanograting already used by J.D. Perreault and A.D. Cronin [150] in the
interferometer arms. A 250 μm wide opening in the grating allows to study consecutively several configurations with 0, 1
or 2 interferometer arms going through the grating. By comparing the case where one arm goes through the grating and
the other one through the opening to the case where both arms go through the opening, we can study the effect of the
grating on the atom propagation. We have shown that only the zeroth-order diffraction beam contributes to the interference
fringes (while the other diffraction order contribute to some stray intensity) and the effect of the nanograting is simply to
multiply the amplitude of this beam by the zeroth-order diffraction amplitude. The phase of this diffraction amplitude does
not vanish because of the existence of an atom–surface interaction and the observed fringe phase shift is equal to the phase
�0 of this amplitude.

This phase shift Φ0 has been measured for six atom velocities and the results are plotted in Fig. 7b. The two data points
with v > 2000 m/s were obtained with an interferometer using second order Bragg diffraction. This was needed to keep a
sufficient arm separation but, in this case, the measurements are less accurate because of some stray beams due to residual
first order Bragg diffraction. The experimental data points are very well fitted by a power law, Φ0 ∝ v−0.49 (the data point
at 3350 m/s, which deviates from the general trend, was excluded from the fit).

Let us discuss briefly the calculation of this phase-shift (for more details, see our papers [90,152]). For an atom inter-
action with a homogeneous half-space, the atom–surface interaction in the van der Waals regime is given by V vdW(r) =
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−C3/r3, where r is the atom–surface distance and C3 the van der Waals coefficient. The exact potential seen by an atom
going through the nanograting would be very complex to evaluate and, as done by previous authors [146,150], we approxi-
mate the potential V vdW for an atom in the channel between two grating bars by the potential caused by two infinite planes
coincident with the two nearest grating walls and we then allow the potential to be ‘on’ only while the atom is between
the grating bars. We take into account the exact nanograting geometry measured in a separate experiment [153]. Using the
WKB approximation, it is possible to express the phase associated to each atom trajectory:

φ(ξ) = 1

h̄v

LG∫
0

V vdW(z, ξ ; w,α)dz (5)

φ(ξ) depends on the nanometer scale position of atom ξ within the nanograting. As the atom beam diameter is much
bigger than the width w of the grating, one should consider all possible ξ positions. Using Fourier optics the complex
diffraction amplitude A0 for the 0th order diffraction can be written:

|A0|eiΦ0 = 1

d

w/2∫
−w/2

exp
[
iφ(ξ)

]
dξ (6)

We have tested the behavior of the van der Waals potential by using a more general potential of the form V (r) = −C p/r p

and we have varied p and C p and plotted the chi-square χ2 of the best fit. The minimum chi-square is obtained for
p = 2.9 ± 0.1, perfectly consistent with the p = 3 value of the non-retarded van der Waals interaction. For p = 3, we have
found C3 = 3.25±0.2 meV/nm3, in good agreement with a theoretical evaluation of this coefficient. We have also explained
the origin of the peculiar velocity dependence of the phase shift Φ0 ∝ v−0.49. An obvious 1/v factor appears in Eq. (5) but
the integral of Eq. (6) is also velocity-dependent: this integral is similar to the Cornu-type integrals appearing in Fresnel
diffraction theory and the phase shift is dominated by a range of atom–surface distance which also depends of the velocity.
To give an example, for v = 750 m/s, the region around ξ ≈ 9 nm contributes the most, while for v = 3500 m/s, this region
is closer to the surface, around ξ ≈ 5 nm. Our analysis can be extended to give constraints for a hypothetical non-Newtonian
gravitational interaction. This is usually done by adding a Yukawa term to the Newton gravitational potential between two
masses m1 and m2:

V grav = −G
m1m2

r

[
1 + α exp(−r/λ)

]
(7)

G is the gravitational constant, while λ and α are the range and the proportionality constants of the Yukawa term re-
spectively. The normal gravitational interaction is too weak to be detected and we consider only the Yukawa term. The
interaction between an atom and a nanograting bar of thickness e takes the following form:

V grav = −2πGmLiραλ2[exp(−ξ/λ) − exp
(−(ξ + e)/λ

)]
(8)

mLi is the lithium atom mass, ρ is the nanograting density [90,152]. We substituted the vdW interaction in the integral
of Eq. (5) by a modified potential, which is the sum of the vdW term and the non-Newtonian gravitational term (Eq. (8)).
We have considered three values of the range λ (λ = 1,2,10 nm) and we have calculated the phase shift induced by this
modified potential as a function of C3,α and the velocity v .

For a small set of positive α values, we have plotted the chi-square value χ2 as a function of the value of the C3
coefficient. Fig. 7 shows these plots for λ = 2 nm and three different α values: for α = 1025, the non-Newtonian gravitational
interaction is nearly negligible and the best fit is obtained for C3 = 3.23 meV/nm3 with χ2 = 3.1; for α = 1026, the best
fit is obtained with C3 = 3.12 meV/nm3 and this moderate change of C3 is perfectly acceptable, as C3 is not very well
known, but the larger chi-square value χ2 = 4.2, proves that the fit is less good; for α = 1027, we find a too low C3 value,
C3 = 2.55 meV/nm3 and a very large chi-square value χ2 = 69.0. We deduce from this analysis that for λ = 2 nm, α < 1026

and a similar bound is found if we consider negative α values.
Finally we can give the following constraints on λ, α: for λ = 1 nm, |α| < 1028; λ = 2 nm, |α| < 1026; for λ = 10 nm,

|α| < 1023. Fig. 8 compares the present bounds to those available in the literature. Our results give similar bounds to those
obtained by previous experiments (“vdW” [154,155], “Ederth” [40,39]) made with macroscopic samples of matter but our
bounds are considerably less good than those obtained by neutron optics and interferometry experiments [156,12,157].
This is easy to understand: the van der Waals interaction of neutron is negligible because its electric polarizability (near
10−48 m3 [157]) is many orders of magnitude weaker than the one of atoms (for example 2.43×10−29 m3 for 7Li [140]). In
practice, in all the experiments only with ordinary matters, the upper bound on a non-Newtonian gravitational interaction
will be a small fraction of the van der Waals interaction, this fraction decreasing with the error bars on the measurements.

We want to point out that, because of its small mass and large electric polarizability, lithium is not the best choice
among the atoms if one wants to detect a non-Newtonian gravitational interaction. We have used it because we have a very
efficient atom interferometer with excellent phase sensitivity and an arm separation sufficient for the present experiment.
To improve the sensitivity to a non-Newtonian gravitational interaction, one should work with an atom with a larger mass
and a smaller electric polarizability. A natural choice would be the heaviest non-radioactive rare gas, xenon: its mass to
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(a)

(b)

Fig. 7. a) χ2 as a function of C3 for three different α values (λ = 2 nm). b) Velocity dispersion of the induced phase shift for λ = 2 nm: we have plotted
the calculated phase shift for α = 0 (black full line), for α = 1026 (black dotted line) and α = 1027 (green dashed line), with in each case the C3 value
which minimizes χ2.

Fig. 7. a) χ2 en fonction de C3 pour différentes valeurs de α (λ = 2 nm). b) Dispersion des vitesses du déphasage induit pour λ = 2 nm : nous avons reporté
le déphasage calculé pour α = 0 (ligne pleine noire), pour α = 1026 (ligne noire discontinue) et α = 1027 (ligne verte discontinue), avec dans chaque cas la
valeur de C3 qui minimise χ2.

polarizability ratio is 33 × 1030 amu/m3 [158], more than two orders of magnitudes larger than for 7Li for which this ratio
is 0.3 × 1030 amu/m3. However, the only way of diffracting xenon atom is to use nanogratings and the readily available
gratings, with a 100 nm period, will provide rather small diffraction angles (e.g. 60 μrad for a velocity v = 500 m/s) and
this small angle will limit the interferometer arm separation.

Here, we have described a precision measurement of the van der Waals interaction between lithium and a nanograting,
based on atom interferometry. The velocity dispersion of the observed phase shift proves that the atom–surface interaction
is well described by the non-retarded van der Waals regime and we have measured the C3 coefficient of this interaction with
a 10% error bar. We have also tested the sensitivity of our experiment to detect a non-Newtonian gravitational interaction
and, for a range λ between 1 and 10 nm, we have achieved a sensitivity comparable to those obtained by macroscopic
experiments with ordinary matter. However, the sensitivity already achieved by neutron experiments for ranges in the
nanometer region is considerably better than our own and even of what can be reached in a near future.



768 I. Antoniadis et al. / C. R. Physique 12 (2011) 755–778
Fig. 8. Bounds for λ and α (figure taken from [157]). Our results give similar bounds to those obtained by previous experiments (“vdW” [154,155], “Ederth”
[40,39]) made with macroscopic samples of matter. Neutron based experiments (“neutron (a), (b)”) provide more restrictive bounds in the nanometer range
of λ.

Fig. 8. Limites pour λ et α (figure provenant de [157]). Notre résultat donne des limites comparables à celles obtenues dans des expériences précédentes
(« vdW » [154,155], « Ederth » [40,39]) utilisant des échantillons macroscopiques de matière. Les expériences neutroniques (« neutron (a), (b) ») fournissent
des limites encore plus restrictives dans le domaine nanométrique pour λ.

The Toulouse group thanks CNRS department INP, Région Midi-Pyrénées and ANR (grant ANR-05-BLAN-0094) for support.
A.C. thanks NSF for Grant No. PHY-0653623.

5. GRANIT constraints for Standard Model extensions (Orfeu Bertolami)

A particular class of extensions of the Standard Model of particle physics is related to non-commutative quantum me-
chanics [159–163].

6. Constraints for spin-dependent short-range forces from GRANIT (Stefan Baessler)

Constraints on spin-dependent short-range forces from the study of gravitationally bound states have been already dis-
cussed in other publications: The existing limit on spin-dependent short-range forces [58] was extracted from a previous
measurement of the (unpolarized) neutron transmission through a slit made from a bottom mirror and a rough absorber
[20]. The improvement that could be gained in a new measurement in the GRANIT spectrometer, in which one would use
polarized neutrons for a similar measurement, is discussed in [164].

A measurement of energy differences between different neutron quantum states with GRANIT would allow setting up
a superior limit. These measurements can be done with UCN stored in gravitationally bound quantum states. In order to
show the sensitivity to new interactions, we assume that it is possible to achieve a precision in the energy differences
between low-lying states n ↔ l in the order of the natural line width, that is �En↔l

En↔l
(see Section 9 in Ref. [21] for a more

thorough discussion). The limit shown as curve 10 in Fig. 1 is computed by setting the energy shift due to a new short
range interaction (as calculated in the first order perturbation theory) equal to 10−6 · En↔l . It is assumed that the bottom
mirror is coated with tungsten or gold to increase the sensitivity. If the range of the new interaction λ is between 1 μm and
1 mm, the most sensitive transition is just the one between ground state and first exited state.

The sensitivity of the flow-through setup described in Section 5 in Ref. [21] to new short-range interactions is shown as
curve 9 in Fig. 1. The curve is derived in [26]. Here, first order perturbation theory cannot be used to calculate the energy
shift. The measurement of transition frequencies between energy levels of neutron quantum states in the gravitational field
is sensitive to new spin-dependent short-range interactions too. The observable is then the possible change of the transition
frequency with the direction of the neutron spin, as opposed to the value of the transition frequency used previously. The
sensitivity is shown as curves 7, 8 in Fig. 3. For that limit, we assume a measurement precision of 10−6 · En↔l but we don’t
assume a mirror coating. Again, for the relevant length ranges of the new interaction, the transition 1 ↔ 2 is the most
sensitive one.

7. A torsion pendulum based searches for axions and exotic forces (Seth Hoedl, E.G. Adelberger, B.R. Heckel)

Since the time of Cavendish, torsion pendulum based experiments have tested the fundamental forces of nature. Mod-
ern torsion pendulums achieve unprecedented sensitivity and impose some of the strongest constraints on extensions to the
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Fig. 9. A scale drawing of the ISL pendulum.

Fig. 9. Dessin à l’échelle du pendule ISL.

Fig. 10. A drawing of the spin pendulum. The blue material is
SmCo5. The green material is AlNiCo.

Fig. 10. Dessin du pendule de spin. Le matériau bleu est SmCo5.
Le matériau vert est AlNiCo.

Standard Model. The Eöt–Wash torsion balances operate with a very simple principle: an oscillating force or acceleration act-
ing on a torsion pendulum generates an oscillating twist that can be observed by an autocollimator. The room temperature
thermal noise of most of our experiments corresponds to an angular noise of approximately 1 nrad/

√
day. By observing the

motion of almost a mole of atoms with such sensitivity, we impose interesting constraints on gravity-scale particle physics.
A thorough review of the Eöt–Wash torsion pendulums and their theoretical motivations has recently been published [50].
Here we briefly summarize the results from three torsion pendulums that look for short-range deviations from Newton’s
Law of Gravitation [8], violations of Lorentz symmetry [165] and exotic forces mediated by axions or axion-like particles
[51].

Precision measurements of the inverse square law (ISL) test a number of theoretical predictions. For example, the fat
graviton scenario [166] and models with extra time dimensions [167] would weaken gravity at short distance scales, while
the extra space dimensions of M-theory would strengthen gravity at scales smaller than the size of the largest compactified
dimension [3]. The exchange of massive scalar or vector particles would also modify the ISL at short distances [168].

In our most recent ISL test [8], the torsion pendulum was suspended above a rotating attractor that consisted of two
disks (see Fig. 9). 42 holes were machined in a 21-fold rotationally symmetric pattern into a molybdenum disk on the
pendulum, called the detector, and into each disk of the attractor. The gravitational interaction between the missing mass
in the detector and the attractor generated a torque that oscillated 21 times for each complete rotation of the attractor. The
holes in the upper attractor disk were rotated by π/21 rad with respect to the holes in the lower attractor disk, so that
when the bottom surface of the detector was 100 μm away from the top surface of the attractor, the Newtonian torque
generated by each attractor disk canceled each other.

We parameterize deviations from the ISL by looking for a potential of the form:

V (r) = −G
m1m2

r

(
1 + α · e−r/λ) (9)

where λ and α are the range and strength of a Yukawa force respectively. Fig. 5 shows our most recent 2-σ limits. Our
bounds imply that the maximum size of any extra dimension must be less than 44 μm. The ISL tests also impose many
interesting constraints on scalar or vector particles [168]. For example, a coupling between a massive scalar and two photons
will induce a modification to the ISL at short distances [169]. For a scalar mass of 1 meV/c2, our results constrain the
coupling strength gϕγ γ � 1.6 × 10−17 GeV−1. Note that this constraint is 1011 times smaller than the coupling that was
claimed to explain the dichroism and birefringence of the vacuum initially observed by the PVLAS Collaboration [170,171].

We have also employed a torsion pendulum to look for interactions that couple to intrinsic spin [165]. In this apparatus,
the torsion pendulum consisted of four octagonal “pucks” (see Fig. 10). One half of each puck was made of AlNiCo; the other
half was made of SmCo5. The magnetic field of AlNiCo is created almost entirely by electron spin; approximately half of the
field of SmCo5 is created by electron spin, and the balance is created by the orbital moment of the electrons. The magnetic
field was contained in each puck, minimizing leaking magnetic fields; yet, each puck had a net spin moment of ∼1023

polarized electrons. The four pucks were arranged to minimize coupling to gravity gradients and to cancel a composition
dipole that would make the pendulum sensitive to a violation of the equivalence principle. In this experiment, the torsion
balance itself, including the optical read-out, rotated in the laboratory frame. By looking for a coupling of the pendulum’s
intrinsic spin to a preferred frame, we placed an upper bound of 10−22 eV on the energy required to flip an electron spin
about an arbitrary direction fixed in inertial space. A preferred-frame arises not only in the context of Lorentz violation, but
also in non-commutative space–time geometries predicted in some D-brane theories [172,173].
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Fig. 11. The a scale diagram of the axion apparatus.

Fig. 11. Dessin à l’échelle du dispositif pour la recherche de l’axion.

Fig. 12. The 2-σ exclusion plot on an axion mediated force.

Fig. 12. Zone d’exclusion à 2-σ pour une force induite par un axion.

In these models, the space–time coordinates xμ do not commute, but instead satisfy [x̂μ, x̂v ] = iΘμv , where |Θ|
represents the smallest “patch” of area. The non-commutative geometry is equivalent to a pseudo-magnetic field that
defines a preferred direction, ηi = ε i jkΘ jk . Our preferred-frame constraints imply that the minimum observable area is
|Θ| � 4.9 × 10−59 m2, which corresponds to a length scale � = 350lGUT , where lGUT = ∼c/(1016 GeV).

A wide variety of extensions to the Standard Model predict the existence of light pseudo-scalar particles. Typically, these
new particles correspond to a spontaneously broken symmetry and have a variety of names including familons, majorons,
arions and axions. Pseudo-scalar particles are also predicted by string theories [174]. The axion is the most well developed
pseudo-scalar and several experimental searches are actively underway. For simplicity, we refer to both axions and other
pseudo-scalars as axion-like particles (ALPs).

Any ALP that couples to fundamental fermions with both scalar and pseudo-scalar vertices will mediate a parity and
time violating (PTV) macroscopic force between polarized electrons and unpolarized nucleons [49] given by:

V PTV(σ̂ ,�r) = h̄2

8πme

(
gN

s ge
p

h̄c

)
(σ̂ · r̂)

(
1

rλALP
+ 1

r2

)
e−r/λALP (10)

where r is the electron–atom separation vector, λALP = mALP/h̄c is the ALP Compton wavelength, σ̂ and me are the spin
unit-vector and mass of the polarized electron respectively, ge

p is the ALP pseudo-scalar coupling constant to a polarized

electron and gN
s is the ALP scalar coupling constant to a nucleon. Although the spin-pendulum is very sensitive to a PTV

force with λALP > 1 m, for shorter ranges a dedicated experiment is necessary. λALP between 2 cm and 20 μm is especially
interesting because this range corresponds to the “axion-window” allowed by cosmological [175] and astrophysical limits
[176].

The axion apparatus [51], consisted of two parts: a split toroidal electromagnet and a planar torsion pendulum suspended
between the two magnet halves (see Fig. 11). The magnet halves were fixed to the apparatus; the pendulum was free to
twist about the torsion fiber axis. The pendulum twist was observed by an autocollimator. The signal of a macroscopic PT
violating force was a change in the equilibrium angle of the pendulum when the magnetic field was switched from the
clockwise to counterclockwise orientation. Because the pendulum was suspended in a region with a strong magnetic field
(3.59 kg), spurious signals associated with the finite magnetic susceptibility of the silicon dominated the data. Nevertheless,
a constraint on an ALP mediated force was still obtained because an ALP force should strengthen when the pendulum is
moved closer to either magnet half, whereas magnetic systematics depends only on the magnetic field. Thus, by measuring
the ALP signal at different pendulum distances from the pole faces, we were able to constrain the PT violating force. Fig. 12
shows our 2-σ exclusion bounds.

This work was primarily supported by NSF grant PHY0653863 and secondarily via DOE support for the Center for Exper-
imental Nuclear Physics and Astrophysics at the University of Washington. After this part of the overview was written, new
experimental results have been obtained and the final analysis of the experiment has been published in Ref. [51].
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Fig. 13. A scheme of lay-out of the experimental setup.

Fig. 13. Schéma du principe du dispositif expérimental.

8. Constraints for spin-dependent short-range forces from storage of polarized 3He (Alexander Petukhov)

New experimental constraints for spin-dependent short-range forces from storage of polarized 3He are presented. A de-
tailed description of the experimental method used, as well as justification for the constraints derived, is presented in
Ref. [55].

9. Search for spin-dependent short-range interactions in 3He/129Xe clock comparison experiments (Yuri Sobolev,
C. Gemmel, W. Heil, S. Karpuk, K. Lenz, K. Tullney, M. Burghoff, W. Kilian, S. Knappe-Gruneberg, W. Muller, A. Schnabel,
F. Seifert, L. Trahms, U. Schmidt)

The existence of a new spin dependent short-range Yukawa force may be a signature of pseudo-scalar boson particles
like the “invisible axion” which is of interest as a possible component of cold dark matter. Originally, the axion was invented
by Peccei and Quinn [43] to solve the so-called “strong CP problem”, i.e. presence of CP violating terms (θ -term) in the QCD
Lagrangian that arise from the non-trivial QCD vacuum structure. Such axions were not found in early searches, ruling out
”standard axions” which have been related to the electroweak scale of symmetry breaking in the original Peccei–Quinn
model. However, in case of a much higher energy breaking scale the axion becomes a very light, very weakly coupled and
very long-lived particle that is named “invisible axion” [175,176]. Such hypothetical particle can mediate interaction between
fermions which in case of monopole–dipole coupling violates parity and time symmetries. The Yukawa-type potential of this
monopole–dipole interaction with range λ can be presented in the following form [47]:

V SP(r) = h̄2

8πm
gS gP (σ · r̂)

(
1

λr
+ 1

r2

)
e−r/λ (11)

where gS and gP are dimensionless scalar and pseudo-scalar constants for the axion–fermion vertices, r̂ is the unit distance
vector from the polarized nucleus to the unpolarized matter, λ is the range of the Yukawa force (λ = h̄/mac ≈ 20 cm/ma
(μeV), ma – axion mass), m is mass of nucleon and σ is the spin of the polarized nuclei. The potential (1) effectively acts
near the surface of a massive unpolarized sample (r � λ) as a pseudo-magnetic field and gives rise to a change in spin
precession frequency �νSP with �νSP = VΣ/h. The potential VΣ is obtained by integration of V SP(r) from Eq. (11) over the
volume of the massive sample.

Our approach to search for non-magnetic spin-dependent interactions is to use a sensitive low-field co-magnetometer
based on simultaneous detection of free spin precession of gaseous, nuclear polarized 3He and 129Xe samples both placed in
same glass cell, thus occupying the same volume, with a SQUID as magnetic flux detector [177]. The gyromagnetic ratios of
3He and 129Xe differ by a factor ∼2.75, whereas the coupling to new spin-dependent forces is expected to be very similar for
both isotopes. Then the influence of ambient magnetic fields can be canceled in weighted precession frequencies difference
�ν = νHe − γHe/γXe · νXe and it rests sensitive to the anomalous frequencies shifts coupled with new interactions with
proportionality factor ∼1.2 as it was calculated in [178]. The experiment was carried out inside the magnetically shielded
room BMSR-2 at the Physikalisch-Technische Bundesanstalt Berlin (PTB). BMSR-2 has a passive shielding factor exceeding
108 above 6 Hz. A homogeneous holding magnetic field of about 400 nT was provided inside the shielded room by means
one (Bx-coil) of two square coil pairs which were arranged perpendicular to each other whereas second (B y-coil) was used
to manipulate with spins of samples and their precession [177]. The experimental setup is shown in Fig. 13. For detection of
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Table 2
Results for measured shifts of the weighted precession frequencies difference which can be sensitive to
a new pseudo-scalar short-range interactions.

Measurement v (nHz) σcorr (nHz) σstat (nHz)

vSP,left 46.6 11.1 1.4
vSP,right 37.0 8.6 0.6
δv 4.8 7.0 0.5

the spin precession we used a low-Tc DC-SQUID vector magnetometer system designed for biomagnetic applications [179,
180]. To obtain signals of the precessing magnetic moments of the polarized gases (3He, 129Xe) we used a subset of SQUIDs
which act as first order SQUID gradiometer. The pick-up coils of the gradiometer were oriented in the horizontal plane and
the lower 3 coils were placed at a distance of 24 mm from the bottom plate of Dewar whereas the upper coil was at 14 cm
higher. The lower pick-up coils of the SQUID modules are shown in Fig. 13 in the top-right corner. The system noise of the
SQUIDs was about 2.3 fT/

√
Hz in precession frequencies range. Most part of the environmental noise was from the effect

of Dewar vibration relative to the Bx coil. However, the use of a SQUID gradiometer helps to suppress this effect down
to level not higher than 2.5 fT/

√
Hz. Our cylindrical cell was made out of aluminosilicate glass (GE180) with a diameter

of 60 mm and a length of 60 mm. The spin-relaxation time (longitudinal wall relaxation time T1) of 3He was measured
to be T1 ≈ 127 h. The cell was filled outside the magnetic shielded room with a mixture of polarized 3He and 129Xe
(≈ 2 mbar, ≈ 8 mbar) and N2 (≈ 35 mbar) to suppress xenon relaxation due to the van der Waals molecular coupling. After
transportation into the inner shield the cell was installed directly beneath the selected SQUIDs of the Dewar. Two cylindrical
glass tubes with a length of 1 m and an inner diameter of 60 mm were placed on a separate support with their axis along
the axis of the cylindrical 3He/129Xe sample cell. At their open ends towards the polarized sample cell a test mass (Pb-glass)
was installed. This is sketched in Fig. 13. The tubes and with it the test mass could be moved horizontally from “close”
position to “far away”-position. At the “close”-position we had a minimum distance of 3 mm between the Pb-glass samples
and the polarized gases. The glass tubes were installed in such a way that it was possible to move them without opening the
door of the magnetic shielded room, i.e., without interruption of the 3He/129Xe spin precession. Pb-glass cylinders (density
3.9 g/cm3) of diameter 57 mm and length 81 mm were used, since non-conducting materials prevented us from additional
noises sources. If axion–fermion interaction exists then it will cause a shift in the weighted precession frequencies difference
±νSP where the sign depend on direction of the normal vector to the surface of the Pb-glass sample relative to the direction
of the holding magnetic field. Therefore, to look for an effect with the right signature, the measurement procedure was as
follows: first, we measured the precession signals where only left Pb-glass sample was installed with the first time interval
(10 800 sec) measured at “close”-position and then we continue measurement during second time interval (∼30 000 sec)
when the Pb-glass sample was at “far away”-position. Second, we repeated the same procedure, now with right Pb-glass
sample. To extract the precession frequencies we divided the data into sequential time intervals of (∼1–3 sec) and for each
time interval (j) we applied the fit: A(t) = AHe · sin(ωHe · t)+ BHe · cos(ωHe · t)+ AXe · sin(ωXe · t)+ BXe · cos(ωXe · t)+ clin · t + c.
Phases can be found as Φ

j
i = arctan(A j

i /B j
i ) + 2π · n j

i where n j
i are the number of precession periods since the beginning

of the measurement for i = He, Xe. In order to cancel the influence of ambient magnetic fields we build the weighted
phase difference of the co-located precessing spin samples: �φ = φHe − γHe/γXe · φXe with γHe(Xe) being the respective
gyromagnetic ratios. It was found and discussed in detail in [177] the weighted phase difference has the following temporal
dependence:

f (t) = φ0 + alin · t + aHe · e−t/T 2,He + aXe · e−t/T 2,Xe

where T 2, He(Xe) are the respective transverse relaxation times for 3He and 129Xe. In our analysis, we used a polynomial
fit with sufficiently high order to describe f (t) and the effect was sought as difference between the linear terms of the
polynomial for measurements with mass sample (“close”-position) and without (“far away”-position):

vSP,left(right) = 1/2π(alin,with sample − alin,without sample)

Finally, we obtained the effect by combining the “left” and “right” Pb-glass measurements: δv = 1/2 (vSP,left − vSP,right).
Results for vSP,left(right) and δv are given in Table 2. One can see that the “left” and “right” results in a frequency offset of
the same sign and size. This is obviously a false effect since for a pseudo-scalar coupling the sign should change.

The reasons are induced magnetic field gradients (paramagnetism) across the cell by the Pb-glass sample in its “close”-
position. With the weighted phase difference of the co-located sample spins, the Zeeman-term should drop out to first
order. Taking into account the barometric formula the center of gravity of the 3He and 129Xe gas is shifted by 0.15 μm.
This results in a field change of 0.3 fT at an induced field gradient of 20 pT/cm. With that one can explain the observed
frequency offset. However, in the combination δν of the two measurements this effect drops out and we are left with a
possible frequency shift, due to a pseudo-scalar short-range interaction. It is true, that only two measurements are not
enough to check all the systematic and to finally obtain a statistically confirmed confidence level. But our result can be
considered as a demonstration of the sensitivity one obtains by using co-located 3He/129Xe sample spins. In Table 2 we
show correlated and uncorrelated errors obtained from the polynomial fit. Obviously the correlated error is much bigger
than the uncorrelated one. This is understood from the fitting procedure of f (t). The σcorr errors are calculated as square
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Fig. 14. Exclusion plot for a new spin-dependent force [163,52,51,50,185,56].

Fig. 14. Figure d’exclusion pour une nouvelle force dépendante du spin [163,52,51,50,185,56].

root of the diagonal elements of the covariance matrix of the polynomial least squares model with the proper statistical
weights. This error for δv can be used to set our sensitivity level for the dimensionless product gS gP in the exclusion plot
shown in Fig. 14 (thick black curve). This result follows from V̄Σ/h < σcorr , where V̄Σ is sum of potentials (7) over the
volume of the Pb-glass sample averaged over the 3He/129Xe cell volume. Also shown (second thick curve in Fig. 14) is the
exclusion level which we can achieve for longer measurement periods (10 weeks) using as unpolarized matter BGO crystals
(almost twice more dense) and furthermore using a much smaller minimum gap between the polarized (3He/129Xe) and
unpolarized sample (BGO). The obtained statistical sensitivity level shown in Table 2 also demonstrates that further progress
can be achieved by suppression of the correlated error. Ways to do that are discussed in the appendix of Ref. [177].

10. Constraints for short-range forces from neutron experiments (Konstantin Protasov)

The constraints obtained in Ref. [12] come from the analysis of quite old experimental data on neutron–nucleus and
neutron–atom scattering. Two main approaches were used to obtain these limits.

First, at very low energies, neutron–nucleus scattering amplitude, in the first approximation, can be considered as con-
stant independent on the transferred momentum, called the neutron–nucleus scattering length. However, this constant
depends on nucleus and this dependence was studied experimentally and can be described within quite simple random
square well model. An additional hypothetical interaction is directly proportional to the number of nucleons in nucleus A.
This dependence is not seen in the experimental data and thus the data can be used to establish an upper limit for the
strength of this hypothetical interaction. In the second approximation, an interaction between a neutron and an atom has an
angular dependence following from the interaction between the distribution of charges in a neutron and charges of electrons
and a nucleus. This interaction is proportional to the so-called electron–neutron scattering length. There are different ways
to measure this scattering length and these independent measurements could be used to constraint any other additional
interaction depending on the transferred momentum. The problem comes from the fact that the measurements of this scat-
tering length done by different experimental groups contradict to each other. This discrepancy shows that the experimental
errors are underestimated and should be increased. Nevertheless, even in this case, this approach allows establishing very
competitive constraints on the hypothetical interaction.

11. Constraints for spin-dependent interactions from neutron-EDM experiments (Guillaume Pignol)

Constraints for spin-dependent interactions from could also be derived from neutron-EDM experiments using ultra-cold
neutrons (see Fig. 3).
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12. Neutron diffraction constraint on spin-dependent short-range interaction (Valery Fedorov, I.A. Kuznetsov, and
V.V. Voronin)

Over the last years, a possibility to look for new hypothetic particles which results in a new short range Yukawa-type
potential of fermion–fermion interaction is actively discussed. The spin-dependent short-range interactions may be induced
by light, pseudo-scalar bosons such as the axion invented to solve the strong CP problem [49]. This interaction is usually
parameterized as [49]:

V SP(r) = h̄2 gS gP

8πm

(
r

r
· σ

)(
1

rλ
+ 1

r2

)
e−r/λ (12)

where gS and gP are dimensionless parameters of the scalar and pseudo-scalar coupling constants between the neutron
and exchanged boson. λ = h̄/mAc is typical parameter of the range of forces (Compton wavelength of axion). There are
proposals to search this new type of interaction using gravitationally bound quantum states of a free neutron [58] and using
a spin precession of the trapped ultra-cold neutrons in vicinity of bulk matter [181]. Both of these methods have a suitable
sensitivity for the range of λ > 10−3 cm, but their sensitivity is extremely decreased for the range λ < 10−4 cm.

Here we consider a possibility to use neutron diffraction in the perfect non-centrosymmetric crystal to search a new
type of short range interaction for the 10−10 < λ < 10−5 cm.

Neutron diffraction in a non-centrosymmetric crystal was widely discussed within the framework of the project to search
for the neutron electric dipole moment (nEDM) by the diffraction method [182,183]. A series of experiments on neutron
diffraction and optics was carried out at WWR-M reactor (PNPI, Gatchina) [184] and at ILL reactor [185] to study the
polarization phenomena in the non-centrosymmetric quartz crystals.

Any crystal potential (nuclear, electric, new short range potential, . . .) can be presented as sum of the potentials of
different atoms placed into the crystal cell. For the periodic crystal structure it is convenient to present such potential as
Fourier series over the reciprocal lattice vectors g

V (r) =
∑

a

Va(r − ra) =
∑

g

V geigr = V 0 +
∑

g

2v g cos(gr + φg) (13)

where Va(r − ra) is the potential of single atom, ra is the atom position, V g = v g exp(iφg), g = 2π/d, d is the inter-planar
distance. Here we take into account V g = V ∗−g , because we consider the real value potentials.

g-harmonics of potentials can be found from the equation

V g =
∫

v=1

d3r e−igr V (r) (14)

In the case of nuclear potential

V g = −2π h̄2

mV c
F g (15)

here m is the neutron mass, V c is volume of crystal unit cell, F g is the structure amplitude

F g =
∑

i

e−W ig f i(g)e−igri (16)

Here we sum over the atoms of unit cell, f (g) is the scattering amplitude of i atom, W ig is the Debye–Waller temperature
factor.

For the case of a non-centrosymmetric crystal the different potentials can be shifted to each others, by the other words,
the phases φg of different crystal potentials can be not equal. For the case of electric potential this shift results in a large
electric field affected the neutron in non-centrosymmetric crystal [184–186]. Let’s consider the monopole–dipole interaction
(12). Direct calculation of g-harmonic of V SP(r) from (14) gives

V̂ SP
g = −i F SP

g eiΦSP
g

h̄2 gs gp

2mV c

gλ2

1 + g2λ2
(σng) (17)

where ng ≡ g/g , F SP
g and ΦSP

g are the amplitude and phase of structure factor f SP
g of the crystallographic plane. f SP

g is
determined by the following sum

f SP
g =

∑
i

Ai · eigri (18)

here Ai and ri is the mass and position of a corresponding atom in elementary cell.
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Fig. 15. Constraints on a value of coupling constants product gs gp . Curve (1) is the constraint from the crystal-diffraction nEDM experiment [185] (this
work) and (2) is possible improvement of this method, (3) is gravitational level experiment [58], (4) is the UCN depolarization [61], (5) is proposal [181],
(6) and (7) are the predictions of axion model with θ ∼ 1 and θ ∼ 10−10 correspondingly [61,187].

Fig. 15. Contraintes sur le produit des constantes de couplages gs gp . La courbe (1) indique la contrainte à partir de l’expérience de crystal-diffraction
nEDM [185] (cette étude) et (2) indique l’amélioration possible de cette méthode. La ligne (3) concerne l’expérience des niveaux gravitationnels, (4) la
dépolarisation des UCNs [61], (5) est la proposition [181], (6) et (7) sont les prédictions du modèle axion avec θ ∼ 1 et θ ∼ 10−10 respectivement [61,187].

Therefore, the monopole–dipole interaction affecting the neutron in the crystal will be

V̂ SP = 〈
ψ(r)

∣∣V SP(r)
∣∣ψ(r)

〉 = U N
g

�g

∣∣V̂ SP
g

∣∣ sinΦSP
g

= U N
g

�g
F SP

g
h̄2 gs gp

2mV c

gλ2

1 + g2λ2
(σng) sinΦSP

g ≡ V SP(σng) (19)

here kg = k + g , Ek = h̄2k2/2m, Ekg = h̄2k2
g/2m, V N

g = h̄2U N
g /2m, �g = (k2

g − k2)/2 is the parameter of deviation from the
exact Bragg condition.

We should note that for centrosymmetric crystal ΦSP
g ≡ 0 and in this case the mean potential affecting the neutron will

be zero. One can see also from (19) that this “pseudomagnetic” potential is proportional to the parameter �B ≡ U g/�g

determined by the deviation from the Bragg condition. That allows controlling the value and sign of the potential selecting
the neutrons with slightly different energies from the Bragg one.

Interaction with such a potential will lead to the neutron spin rotation around the reciprocal lattice vector g by the angle

ϕSP = 2V SP

h̄
τ (20)

where τ is the time of neutron travel through the crystal.
Let’s consider [110] plane of non-centrosymmetric quartz crystal and �B = 0.5. For [110] plane g = 2.56 · 108 cm−1,

F SP
g = 51, sin(ΦSP

g ) = 0.41, V c = 113 Å3. The angle of spin rotation due to considered potential will be

ϕSP = 0.36 · 1024[cm−3] · gS gP

g2 + 1/λ2
L (21)

where L is the crystal length. For the cold neutron beam at high flux reactor the measurement accuracy σ(ϕSP) ∼ 2 · 10−6

can be reached for 100 day of the statistics accumulation [186]. That allows giving the constraint for monopole–dipole
interaction

gS gP < 10−31[cm2] · (g2 + 1/λ2) (22)

for the L = 50 cm.
Recently the test experiment for the search for neutron EDM by crystal-diffraction method was carried out [185]. This

result already allows to give the direct constraint on a value of gs gp better than any other method for the λ < 10−5 cm, see
Fig. 15, curve (1).

The comparison of different constraints on gS gP is shown in Fig. 15.
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One should note that both neutron EDM interaction with crystal electric field and the spin-dependent short-range in-
teraction lead to a neutron spin rotation about reciprocal lattice vector g. Therefore, the considered short-range interaction
can give a false effect for the neutron EDM experiment and vice versa. However, these two interactions will be differ-
ent for different crystallographic planes, so in the case of nonzero effect they can be separated using different planes for
measurement.

We can conclude from the above consideration that crystal-diffraction experiment can give the direct constraint on
amplitude of T-odd monopole–dipole interaction of neutron with the matter. It is shown that the product of scalar to
pseudo-scalar coupling constant gs gp < 10−12 for the 10−8 < λ < 10−5 cm. This value can be improved on about 103 times
for the full scale setup for the neutron EDM search by crystal-diffraction method, which is under construction now.

This work is supported by RFBR (grant No 09-02-00446).

13. Conclusion

We presented recent advances in experiments constraining spin-dependent and spin-independent extra short-range
forces. Over a few recent years, large progress has been achieved using most of the experimental techniques presented
here. In particular, the experimental constraints have been improved, in respective characteristic energy ranges, in measure-
ments of gravity at short distances, in measurements of forces on top of Casimir forces, in precision atomic and neutron
experiments. Most of these results are presented at our GRANIT-2010 workshop for the first time. They are summarized in
Figs. 1 and 3. Even stronger improvements are expected in near future.

The works included in this review were supported by grants, BLANC ANR-05-BLAN-0098-01 (France), and NSF PHY-
0855610 (USA).
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