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Nanomaterials exhibit novel properties that enable new applications ranging from molec-
ular electronics to energy production. Proactive consideration of the potential impacts on
human health and the environment resulting from nanomaterial production and use re-
quires methods for forecasting risk associated with of these novel materials. However, the
potential variety of nanomaterials is virtually infinite and a case-by-case analysis of the
risks these materials may pose is not possible. The challenge of forecasting risk for a broad
number of materials is further complicated by large degrees of uncertainty concerning pro-
duction amounts, the characteristics and uses of these materials, exposure pathways, and a
scarcity of data concerning the relationship between nanomaterial characteristics and their
effects on organisms and ecosystems. A traditional risk assessment on nanomaterials is
therefore not possible at this time. In its place, an evolving process is needed for analyzing
the risks associated with emerging nanomaterials-related industries.
In this communication, we propose that such a process should include the following six
key features: (1) the ability to generate forecasts and associated levels of uncertainty for
questions of immediate concern; (2) a consideration of all pertinent sources of nanomateri-
als; (3) an inclusive consideration of the impacts of activities stemming from nanomaterial
use and production that extends beyond the boundaries of toxicology and include full
life cycle impacts; (4) the ability to adapt and update risk forecasts as new information
becomes available; (5) feedback to improve information gathering; and (6) feedback to
improve nanomaterial design. Feature #6 implies that the potential risks of nanomateri-
als must ultimately be determined as a function of fundamental, quantifiable properties
of nanomaterials, so that when these properties are observed in a new material, they
can be recognized as indicators of risk. Thus, the required risk assessment process for
nanomaterials addresses needs that span from urgent, short-term questions dealing with
nanomaterials currently in commerce, to longer-term issues that will require basic research
and advances in theory. In the following sections we outline issues surrounding each of
these six features and discuss.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les nanomatériaux ont des propriétés nouvelles qui permettent de nouvelles applications
depuis l’électronique moléculaire jusqu’à la production d’énergie. La prise en compte de
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leur impact potentiel sur la santé humaine et l’environnement nécessite des méthodes pré-
dictives associées à leur emploi. Toutefois la très grande variété de ces nanomatériaux ne
permet pas de traiter la question du risque au cas par cas. La prévision des risques, sur-
tout pour un grand nombre de matériaux, est rendue compliquée par les incertitudes sur
les quantités produites, les caractéristiques de ces matériaux et leur utilisation, les causes
d’exposition, et le manque de données concernant leurs effets sur les organismes et les
écosystèmes. Actuellement, une évaluation du risque associé à l’émergence des nanomaté-
riaux manufacturés est donc impossible par des méthodes traditionnelles.
Une autre méthode, faisant appel à un processus évolutif semble plus appropriée pour
analyser ces risques. Dans cet article, nous proposons qu’une telle méthode devrait in-
clure six ingrédients-clés : (1) la capacité à produire des prévisions associées à des niveaux
d’incertitude pour des questions à court terme ; (2) la capacité à évaluer les sources perti-
nentes de nanomatériaux ; (3) une approche systémique des impacts de l’utilisation et de
la production des nanomatériaux prenant en compte le cycle de vie, au delà des approches
toxicologiques ; (4) la possibilité d’actualiser les prévisions des risques dès que des infor-
mations nouvelles sont connues ; (5) un retour pour améliorer les connaissances ; (6) la
capacité à fournir un retour d’analyse pour diminuer l’impact des nanomatériaux via l’amé-
lioration des procédés fabrication. Ce dernier point implique que le risque potentiel associé
à un nanomatériau doit pouvoir être mis en relation avec ses propriétés, de telle sorte que
telle ou telle de ses caractéristiques est un indicateur de risque. Ainsi le procédé d’éva-
luation des risques nécessite de s’intéresser à des questions à court terme relatives à des
nanomatériaux déjà dans le commerce mais aussi à des problèmes sur le long terme qui
requièrent une recherche de base et des avancées théoriques. Dans l’article nous souligne-
rons et discuterons les besoins associés à chacun des six ingrédients-clés cités ci-dessus.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Immediate concerns versus uncertainty in risk forecasts

There are already hundreds of nano-based products currently on the market with an estimated market size that ranges
from tens to hundreds of billions of dollars per year and is growing at double digits. Worldwide, there are thousands of
nanotechnology-based patents per year and in 2006 roughly one quarter of them were in the area of nanomaterials [1].

The rapidly growing trend of incorporating nanomaterials into commercial products demands short-term decisions re-
garding the possible risks that these materials and uses may present. But what should be the criteria for prioritizing risk?
A consideration of risk must address both hazard and exposure. We broadly define exposure here to refer to the total
concentration of a given nanomaterial in a defined setting since the factors controlling bioavailability and uptake of nanoma-
terials are poorly understood. Indeed the unknowns surrounding nanomaterials include not only the nature of nanomaterials
that may find their way into commerce, the properties of these materials, and even the uses and handling practices for
nanomaterials, but the environmental transport, persistence, and bioactivities including toxicity. These high degrees of un-
certainty strongly impact the reliability of risk forecasts with the goal of preemptively avoiding damages that might occur
in an emerging industry. Thus, decision-making based on these forecasts must take into account not only the forecasted
magnitude of risk, but the degree of uncertainty associated with those forecasts. In addition, risk forecasts must be placed
in relationship to the forecasted benefits and uncertainty associated with these benefits.

One scenario for comparison of benefit and risk is shown in Fig. 1 where the benefits of a new technology are initially
overestimated and risk is under-estimated. Because of the specificity of need identified for a new technology, and the
open-ended nature of anticipating risk, the uncertainty associated with estimating benefits may be smaller initially, while
uncertainty surrounding risk may be large. In the case shown in Fig. 1, additional information yields improved estimates of
both benefit and risk such that as the system moves towards more perfect information, risk and benefit are indistinguishable
within the bounds of the uncertainty.

Similar scenarios might be constructed where the risks clearly outweigh benefits and vice versa. In the case where
benefits are comparable to or greater than risks, the possibility arises that early over estimates of risk due to uncertainty
may stifle the development of what would ultimately be determined to be a beneficial technology. Timely production and
updates of risk information are therefore critical to guiding nanotechnology development at early, sensitive stages in the
trajectory of their development.

Work to date to identify the environmental, health, and safety (EHS) issues surrounding nanomaterials has been heavily
weighted toward identifying possible nanomaterial hazards such as toxicity. Rapid screening for a given biological endpoint
provides critical information on the potential hazard of a given nanomaterial. However, the ability to translate the results of
these tests to actual human or ecosystem hazards has been limited by classic questions of dose-response, appropriateness of
animal models, ability to extrapolate from tests performed with cell lines, and the choice of endpoints (lethality, mutation,
genotoxicity, developmental abnormalities, etc.). Moreover, the conditions of dosing in these tests typically do not account
for environmental transformations of nanomaterials such as aggregation, adsorption, or dissolution. While these limitations,
in addition to a lack of standardized protocols, make the generalization of negative results (i.e. no adverse effect) difficult at
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Fig. 1. Risks, benefits–time relationship.

best, a positive result certainly signals the need for further scrutiny and caution. In addition, while reducing hazard through
green chemistry and engineering approaches is not without merit, the properties of a material that produce the hazard may
be closely related to those that make a given material useful in a specific application. An example is shown after in the case
of TiO2.

In contrast with work addressing hazard, there have been very few studies evaluating the factors controlling environ-
mental exposure despite the fact the risk management strategies for nanomaterials, where needed, are likely to depend
on exposure management. A risk management strategy rooted in a fundamental understanding of the possible pathways of
exposure to nanomaterials leads to a broad array of options for managing risk, that spans protective devices for workers in
nanomaterials fabrication industries, standards for product disposal or recycling, the use of pollution reduction equipment,
changes in human behavior and, in extreme cases, an outright ban on the production of a given nanomaterial. An evaluation
of exposure would therefore appear to be an excellent starting point in predicting the potential for risk posed by a given
nanomaterial.

Indeed, in public testimony before a United States National Research Council committee in 2007 (see, for example,
Ref. [2]) representatives from business, labor, environmental NGOs and consumer organizations all suggested that exposure
should be the primary criteria for prioritizing EHS research on nanomaterials. However, considerable amounts of information
are required to estimate environmental releases and exposure; information that is only partially available. Environmental
releases are likely to depend on both the amounts produced and the number of products incorporating nanomaterials. Un-
fortunately, accurate estimates of amounts of nanomaterials known to be in production are difficult to obtain and may vary
by several orders of magnitude depending on the source of information. Predictions of the production of future nanomateri-
als and markets are plagued by even greater degrees of uncertainty. In the absence of detailed information on nanomaterial
markets and uses, an estimated “reservoir” of nanomaterial production regardless of their final use can be used to obtain
first-order estimates of exposure that employ explicit, easily understood assumptions regarding the quantities of nanomate-
rials that enter the environment integrated over the entire life cycle of production through disposal [2]. Such an approach
is consistent with the practice of regulating materials based on production volumes. Use of these estimates must be accom-
panied by probabilistic approaches to treating the wide ranges for estimated values with consideration given to the type of
probability distribution assumed (e.g., uniform, log normal, etc.). Monte Carlo methods and Bayesian network methods can
be used to formally represent uncertainty in models that link production estimates to environmental releases, transforma-
tions, and persistence.

2. A consideration of all pertinent sources of nanomaterials

While the production of engineered nanomaterials (ENMs) creates an immediate concern, a risk assessment for nano-
materials must take into account the relative magnitude of ENMs as sources compared with other sources of materials that
may be identical or similar to ENMs (Fig. 2). Nature produces a plethora of nanoscale particles in processes ranging from for-
est fires to bacterial metabolism. Human activities may also produce nanoscale particles by precipitation in waste streams,
internal combustion engines, and other “incidental” sources. In some cases the materials produced are identical to ENMs as
in the case of fullerenes produced in engineered, natural, or incidental combustion processes. Incidental carbon nanotubes
(CNTs) and other fullerene-related nanocrystals have been reported to originate from propane stoves, wood fires, burning
tires and other sources [3–5] and fullerene C60 has been found in geologic deposits [6], candle soot, and meteorites [7]. TiO2
nanoparticles, similar to ENMs, have been found downstream of hazard waste sites [8].

An assessment of exposure to nanomaterials must also address possible releases associated with various stages of fab-
rication, transport, processing and disposal; activities that make up what is referred to as the value chain of nanomaterial
production and use. The nanomaterial value chain involves the production of basic building blocks of nanomaterials (often
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Fig. 2. Evaluation of nanomaterial risks to ecosystems and organisms posed by multiple sources.

nanoparticles) and their incorporation in subsequent stages into products of increasing complexity. For example, engineered
nanomaterials such as titanium dioxide might be modified with a tailored surface chemistry to yield suspensions that are
then used to create various products ranging from thin films for self-cleaning windows to catalysts suspensions in water
treatment. At each stage in the value chain, there exists the possibility of nanomaterial release and subsequent exposure to
humans or ecosystems through the production, transport, use and disposal of nanomaterials and nanomaterial-containing
products. Important factors to be identified in evaluating potential nanomaterial exposure at each stage in the value chain
are the format that nanomaterials will be present in as commercial products, the potential for these materials to be released
to the environment, and the transformations that those materials may undergo that may affect their subsequent potential
for exposure. Indeed, due to modifications along the value chain or environmental transformations, the potential contact be-
tween humans and ecosystems outside of the work place will most likely involve nanomaterials that bear little resemblance
to the initial material.

We formulate a framework for describing nanomaterial production and incorporation into products over various stages
of a nanomaterial value chain where at each stage, there is the possibility of leakage into environmental compartments
(Fig. 3). Leakage can be aggregated over environmental compartments or over specific stages of the value chain. The flow of
nanomaterials into various stages of the value chain and to environmental compartments can be generalized. We define the
stage i of the value chain, where i = 1 corresponds to the nanomaterial source. At the source there is only one “product”
(the raw nanomaterial) that is incorporated into any number of intermediate products (indexed as the jth product) in
stage 2. Stage 2 products may then be incorporated into the nano-enabled products in stage 3, etc. At a stage i the amount
of nanomaterial represented in aggregate in product j is designated by Pi, j . Note that the number of products, i.e. the
maximum value of j depends on stage i. With this formalism, the amount of source product is S = P1,1.

The fraction of nanomaterials in products Pi, j that are incorporated into downstream products Pi+1,k are designated
as f i, j,k . Similarly, there are “leakage” terms in the environment, representing the fraction of product Pi, j that enters air,
water, wastewater, etc. represented for example as gi, j,w w for the case of wastewater. Thus, the nanomaterials present in a
product k at stage i of the value chain, Pi,k can be represented as function of materials flowing from the stages i − 1 of the
value chain:

Pi,k =
∑

j

P i−1, j f i−1, j,k (1)

For stage i = 1, k = 1 and P1,1 = S . At stage i = 2, the amount of nanomaterial presented in product k comes only from the
source S and is given by:

P2,k =
1∑

j=1

S f1, j,k = S f1,1,k (2)

For stage i = 3, nanomaterials in product k comes from all intermediate products present at stage i = 2 (indexed by j):

P3,k =
∑

j

P2, j f2, j,k = S
∑

j

f1,1, j f2, j,k (3)

The leakage/discharge to wastewater from stages 1, 2 and 3 is then given as:

Sg1,1,w w + S
∑

f1,1, j g2, j,w w + S
∑∑

f1,1,l f2,l, j g3, j,w w = S ∗ gw w (4)

j j l
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Fig. 3. Simplified flow of nanomaterial through the production process and to the environment (WWTP = wastewater treatment plant).

Conceptually, the description of all flows within this network, i.e. the f i, j,k coefficient between products and gi, j,w w be-
tween products and environment represents a very high demand for information on trends in commercialization, product
use, product degradability, and nanomaterial transformation and transport. However aggregation across the value chain, or
across receiving compartments such as wastewater, reduces the number of unknowns at the cost of loss of detail. For ex-
ample, the amount of nanomaterial entering the wastewater compartment can be expressed as a product of the source of
nanomaterials produced, S , and the sum of products of coefficients representing all of the pertinent intermediate flows that
yield a single constant, gw w in Eq. (4) that captures nanomaterial production and use profiles.

The value of gw w may not be known initially, but may be estimated from measurements of the quantities of nanomate-
rials in wastewater compared to nanomaterial production or estimated based on assumptions of use of these products.

Moreover, assumptions regarding the amount of nanomaterials entering wastewater are made explicitly through the
specification of a value for gw w . This parameter can be used in a sensitivity analysis to explore “what-if” scenarios, may be
calculated from actual measurements of nanomaterials in wastewater inflow if available, or may be estimated from fractions
of other materials (e.g., PCBs) that may have been produced in the past.

3. Inclusive consideration of the impacts of activities stemming from nanomaterial use and production

Greater effort to estimate exposure does not imply that such work should be done at the exclusion of hazard or impacts
assessment. To the contrary, there is a need for rapid screening of nanomaterial hazards to organisms, the elucidation of
mechanisms producing these hazards as well as a broad consideration of possible hazards to the complex ecosystems these
organisms inhabit. Consideration of ecosystem-level impacts has, until now, been largely absent from the assessment of
nanomaterial hazards. Most work on evaluating nanomaterial hazards has been in the realm of the traditional toxicology-
based approach to hazard assessment that seeks to describe effects on individual organisms or populations that can be
traced to origins at the biomolecular, genetic, or cellular level. These effects may range from subtle changes in gene expres-
sion and perturbations in the function of endocrine systems, to morphologic changes in organism development and toxicity.
Much work remains in this area. There is not yet a widely accepted suite of responses such as nanoparticle DNA interactions,
inflammation, or membrane disruption that can be used to reliably predict the effects of nanomaterials. Most nanotoxico-
logical investigations have used pristine material and do not account for transformations that may occur in physiological or
environmental systems. Moreover, the properties of nanomaterials that may affect their biouptake and biodistribution are
largely unknown. A bottom-up approach that builds from the simple to the complex, may not adequately capture effects of
nanomaterials at the level of ecosystems. For example, an evaluation of the toxicity of DDT to humans does not lead one
to an understanding of the effects on reproductive functions of this molecule in predatory birds, nor does an analysis of
the toxicity of CO2 lead to a prediction of global warming. While it is not possible to anticipate all hazards, information
regarding the long-term impact of nanomaterials on ecosystem functions such as carbon or nitrogen cycling, or the possible
shift in populations performing these functions correspond to the more complex impacts that might be considered for new
materials entering ecosystems.

An additional set of hazards to be examined is the potential for “collateral damage”, i.e. environmental impacts that arise
from the production and use of nanomaterials rather than the nanomaterials themselves. In particular, the environmental
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impacts associated with upstream energy usage are likely to contribute significantly to the environmental footprint of nano-
materials production given the high energy inputs currently employed to create order at the nanoscale [9]. We speculate
that these issues may greatly outweigh direct health or environmental impacts associated with an emerging nanomaterials
industry. The first ever published work on nanomaterial risk assessment [10] dealt directly with issues of collateral damage.
One of the important findings reported in this work was that methods for manufacturing nanomaterials tend to become
“greener” with time; substituting, for example, less toxic solvents or implementing more energy-efficient procedures for
fabricating nanomaterials. Subsequent work by other investigators looking at carbon nanotube production [11] has shown
that nanomaterial production may involve the production of non-nanowastes that pose significant hazards.

4. Adaption and updating of risk forecasts as new information becomes available

The quality and nature of data concerning environment, health & safety for nanoparticles is growing rapidly, and a risk
forecasting process allow for improvements in forecasts over time. Short-term needs for screening of specific nanomaterials
entering the market place are generating a growing data base of nanomaterial interactions. In addition to answering urgent
questions regarding the safety of nanomaterials entering the market place, these data will contribute to longer-term efforts
to map nanomaterial properties into the risks in the general case. However to make this step from the analysis of specific
nanomaterials to the general case of evaluating a new hypothetical material, a robust risk prediction model is needed that
can be easily updated with the growing knowledge base.

Such a model must relate the physical–chemical properties of ENMs to biological activity, ecosystem impacts, and the
factors controlling exposure. These relationships are subtly more general than those referred to as quantitative structure ac-
tivity relationships (QSARs) [12] in that second-order nanomaterial properties of interest here may include novel properties
such as redox reactivity or adsorptive capacity that derive from (and are therefore correlated with) structure parameters
such as shape, electronic structure, crystal structure, surface defects, size, and surface functionality. However, the term QSAR
is used here in the more general sense.

A QSAR for ENMs can be expressed mathematically as a mapping, f , of ENMs properties to biological activity or response:

BR = f (x1, x2, . . .) (5)

where BR is a biological response (e.g. the half maximal inhibitory concentration: IC50, the effective dose producing a
therapeutic response in 50% of the people: ED50, the amount of a substance required to kill half a given population: LD50)

and x1, x2, . . . are mathematical descriptors of ENM properties. In its simplest form, the mapping function f may result
from a multivariate regression. However, regression techniques are limited in that they are fundamentally interpolative
relationships. Most applications require the use of more sophisticated nonlinear models for pattern recognition such as
linear discriminant analysis, K -nearest neighbor classifiers, neural networks, and support vector machines. Even these latter
techniques are largely limited in their ability to extrapolate beyond the data sets used to produce or “train” the model.

Another model is the Bayesian probability network. It can be thought of as a graphical model with a series of nodes
linked by arrows. The arrows indicate causal linkages among the nodes, and the nodes denote important system attributes.
Each node is characterized by probabilities or probabilistic mathematical expressions that represent knowledge about these
system attributes. The mathematical expressions may be: (1) mechanistic descriptions such as chemical reaction kinetics;
(2) empirical relationships such as linear regression models; or (3) relationships derived from expert judgment, depending
on how much information we have about the relationships characterizing a particular node. The possible outcomes at
each node are expressed probabilistically; thus a Bayes net (BN) is a set of conditional probabilities describing a set of
likely system responses with conditionality indicated by the arrows. The ability to incorporate mechanistic, empirical, and
judgmental information makes the BN approach extremely flexible and facilitates an extension to non-traditional model
endpoints of public concern.

In our case, BNs present four advantages:

– An enormous advantage of using Bayesian methods is this ability to work with uncertainty and the flexibility in data
sources. Where information is lacking, relationships may simply take the form of “judgment” or heuristics. As more
data become available, probability distributions may be constructed, and ultimately mechanistic models confirmed and
integrated as submodels.

– A second important advantage is their ability to explicitly include mechanistic relationships that aid in predicting be-
yond the available data sets.

– Compared with neural nets, BNs offer better accuracy, are less sensitive to small data set size and are therefore more
suited for frontier of knowledge that change rapidly and need frequent model reconstructions [13]. They can be updated
with new knowledge in a manner that propagates this new information throughout the BN, resulting in a revised and
improved model.

– Because BNs characterize sets of conditional probabilities, a particular utility of Bayes nets is their ability to propagate
uncertainty.

Creating a Bayesian network begins with defining the variables that affect a system, and linking them together with one-
way causal arrows to indicate which variables are the parents and which are children [14]. In this influence diagram, each
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Fig. 4. Bayes net structure of the fullerol aggregation system.

variable has a finite set of mutually exclusive states; for example, the size of a nanoparticle might fall into a state of “less
than 20 nm in diameter” or “more than 20 nm in diameter”. After all the important variable nodes are documented, they
can be simplified or combined into dimensionless variables based on factors such as which nodes are most influential
and which nodes can be most readily measured or tracked. Causal relationships can be quantitatively defined in terms of
their strength, yielding conditional probability relationships between parent variables with shared children. The probabilities
propagate through the network, generating the resultant probability of a variable being in a particular state given the states
of its parent and grandparent variables. Data or expert opinion can generate the initial probabilities, and as more data
become available, these values are updated and refined or replaced with mechanistic relationships that are themselves
functions of variables that are added to the network.

Causal relationships are not completely opaque to us. For example, we have been actively exploring the role of nanopar-
ticle characteristics such as size, charge, and interactions with macromolecules in determining nanomaterial transport and
transformation for over a decade [15–35]. In many cases the role of ionic strength and macromolecules in modifying the
physical and chemical properties of nanoparticles has been well-established in the colloid science literature. Much is known
about the role of London–van der Waals and electrical double-layer forces (the classic Derjaguin, Landau, Verwey and Over-
beek or DLVO model [36,37]), steric interactions, hydration forces, and solvation forces as these phenomena affect particle
surface chemistry. In many cases, mechanisms are understood and an “expert system” or statistical approach to describing
such relationships is not needed.

However, it may not always be possible to simply apply the predictive relationships determined from colloid science
or previous particle-toxicity studies directly to nanomaterials. For example, as particle size decreases to the nanorange,
electrostatic forces and steric interactions affecting particle stability may be important at scales that are larger than some
dimensions of the nanoparticles. In these cases, the direct use of data or heuristics may be required to describe probabil-
ities. As our understanding of the system increases over time, the system can be updated, replacing for example heuristics with new
mechanism-based models.

Bayes nets are also particularly useful for adaptive implementation because of the natural way in which they can be
updated as new information becomes available, via Bayes theorem. Let us assume the value of a node is a vector θ , and
π(θ) is the probability of θ . An additional information is then added: The value of a vector parameter y influences the value
of θ so that its probability should rather be defined as π(θ |y), i.e. the probability of θ , after observing the new data, y (the
posterior probability of θ). This new information can be introduced through a likelihood function f (y|θ) which incorporates
the statistical relationships as well as the mechanistic or process relationships among the predictor and response variables.
Bayes theorem gives the relationship between these π(θ),π(θ |y) and f (y|θ)

π(θ/y) = π(θ) f (y/θ)∫
�

π(θ) f (y/θ)dθ
(6)

A highly simplified example of a BN is shown in Fig. 4. Though this does not show every variable that affects aggregate
size, it shows a subset that illustrates the flexibility in data collection and the interactive process between modeling and
laboratory experimentation for the case of the fullerol nanoparticle (hydroxylated C60). Experiments are carried out to
elucidate the relationship between macromolecules of naturally occurring organic matter (NOM), in our case, tannic acid
and ionic strength (NaCl concentration) and the resulting aggregate size of fullerol molecules. Because pH was held constant
at 7.2, it is grayed out in this example, but is left in the network as an influential factor. Note that other factors describing
the nanomaterial itself are excluded from this simplified diagram since the material is held “constant” for this example.

The probability distribution of the aggregate size of fullerol is π(θ). The vector y has two components:

– y1 = 0 or 1: Natural organic matter is collected as a binary variable with states of “yes” for the presence of a set
concentration of NOM or “no” for its absence;

– y2 is the NaCl concentration which is varied in a range from 0 M to 0.3 M; These values are separated into bins that
represent ranges of values.
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Table 1
Conditional probability table for aggregate size (example provided by C. Hendren and Eric Money, Duke University).

For each box: What is the
probability that the aggregate
size in this size bin for the
given set of conditions?

Size

0 < x < 300 300 < x < 600 600 < x < 900 900 < x < 1200

Tannic acid

NaCl concentration Yes No Yes No Yes No Yes No

0.00–0.10 0.875 0.3 0.125 0.6 0 0.08 0 0.025
0.10–0.20 1 0 0 0.25 0 0.4 0 0.35
0.20–0.40 0.3 0 0.7 0 0 0 0 1

The aggregate size was measured at a given time by dynamic light scattering and these values are also binned. The
choices of how to bin each variable are important ones, because a balance must be struck between how much nuance
is captured in the data (more detail with more bins) with how cumbersome the conditional probability tables are (more
so with more bins). Relevant values and appropriate variable types are gathered from the experts that help develop the
structure.

Our goal is to predict from a limited number of measurements the probability that, given the states of the parent
variables, the child variable (size) is within a given state (size range). The conditional probability table generated from this
data set, when binned with three ranges of salt concentration and four ranges of aggregate size values, illustrated in Table 1.

Looking at the upper left hand cell, this number is telling us, based on our sample data, that there is an 87.5% chance of
measuring an aggregate less than 300 nm in size, given a NaCl concentration <0.10 M and given the presence of the NOM
proxy tannic acid. Using a limited set of experimental data, these probabilities can be calculated in software programs de-
signed for creating and updating BNs; for this project we are using the software package Hugin, which graphically illustrates
the BN structure as well as the probability distributions for all variables. Based on uncertainty and data availability, choices
will be made as to whether the conditional probabilities are calculated via the Maximum Likelihood Method (i.e. estimating
the most likely distribution probability compatible with experiment) or the Bayesian Estimation method (trying to fit an
f (y|θ) function). As more data become available, the prior values can be updated. For nodes such as pH, which we know is
important but for which we do not have data, there are multiple options. Laboratory experiments can be carried out. We can
also elicit the conditional probabilities from experts by asking for a low pH and a given NOM and NaCl concentration state,
which size bin would be expected. Although this example only considers one variable, aggregate size, as being described as
a conditional probability (natural organic matter and salt concentration as treated as independent marginal probabilities),
much more complex relationships can be represented using Bayesian networks with successive “generations” of variables
that are interrelated by their conditional probabilities.

5. Feedback to improve nanomaterial design

The “green chemistry” prospects for nanomaterials are promising [38]. Products of nanochemistry and manipulation at
the nanoscale will lead to the substitution of dangerous materials by nanomaterials and processes shown to pose less risk.
Nanotechnology-inspired production will likely lead to more efficient use of materials and energy and an associated lower
environmental footprint. However, the path forward with a green chemistry approach to reduce hazard is far from clear.
The novel properties of nanomaterials that make them useful in a specific application are often the same properties that
produce the hazard. For example just as a sharp knife makes it useful for cutting but may also injure, it is the capacity for
reactive oxygen species (ROS) generation by nanoscale TiO2 that makes it useful for degrading contaminants in water and
causes concern over potential environmental impacts.

The possibility of designing nanomaterials to reduce hazard has been suggested as a means to ensure that nanostruc-
tured materials are “safe by design”. However, it is impossible to anticipate every possible impact of a technology and
therefore impossible to demonstrate that a technology is entirely “safe”. At best, attempts to reduce hazard associated with
a nanomaterial can only reduce risk and make them “safer by design”. Moreover, success in “designing-out” hazard from
non-nanomaterials (as opposed to designing materials to limit exposure) has been limited.

This approach implicitly assumes the ability to predict biological effects based on nanomaterial properties, a task that
at best will yield long-term benefits but leave short-term demands for informed decision making in this field unsatisfied.
The development of statistical relationships ranging from simple correlations to expert systems requires large data sets,
produced, for example, using high throughput platforms. Even using such advanced discovery-based approaches, an already
large space for exploration becomes even more vast when interactions with the wide range of environmental and physio-
logical components that modify nanomaterials in actual systems are also taken into account. Also, the ability to predict to
cases far outside the data set is likely to be limited at best. The de facto consequence of relying entirely on an uncertain
future ability to understand the factors that control hazard as our first line of defense in managing risk, is to forego the goal
of preventive action as the system develops while awaiting further information.

A more adaptive approach that is suited early-on to informing decisions in a precautionary fashion, while later moving to
quantitative risk assessment, is one focused on managing risk through exposure. Due to the large number of possibilities for
taking action early in the trajectory of a technology, managing exposure as the basis for risk management of an emerging



M.R. Wiesner, J.-Y. Bottero / C. R. Physique 12 (2011) 659–668 667
technology such as nanotechnologies will likely prove to be more robust and successful. Exposure assessments based on
quantities likely to be produced, project routes of exposure and persistence provide an immediate basis for identifying pos-
sible problems. Long-term, green chemistry approaches to designing nanoscale objects with limited environmental mobility,
limited persistence, or limited bioavailability provide a wide range of options for mitigating risk by managing exposure.
Mitigating exposure will be necessary to obtain the maximum benefits from nanotechnology, particularly those employing
nanomaterials whose benefits are derived from the same properties that impart an inherent hazard. Important questions
to be answered in evaluating nanomaterial risk are therefore related to the format that nanomaterials will be present in
as commercial products, the potential for these materials to be released to the environment, and the transformations that
those materials may undergo that affect their transport and potential for exposure.

6. Concluding remarks: Implementation issues

In a world of limited resources, one is tempted to choose between hazard assessment or exposure assessment as the
basis for prioritizing research that will produce the required information to make informed early-stage forecasts of possible
nanomaterials risks. However, both are clearly needed.

Similarly, one is tempted to trade-off short term needs for long-term advances in the fundamental science that will
allow for truly predictive capability. Dilemmas such as these are partially resolved in cases where fundamental principles
inform the development of simple, rapid measurements that can be applied to a broad number of nanomaterials (and their
transformed variations) when these tests have relevance to both hazard and exposure. An example of such a measurement
for conventional organic compounds is octanol water partition coefficient (Kow). The Kow informs transport and fate (e.g.
effects on retarded transport in ground water) as well as biodistribution/bioavailability for organic compounds (e.g. bio-
concentration factor correlated with Kow). Analogous measurements such as nanoparticle affinity for reference surfaces, or
macromolecule/nanoparticles interactions might be developed along with standard protocols to inform elements of both
hazard and exposure while building a foundation for long-term research that will allow for theory-based guidance on nano-
material risks.
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