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In this article I present the motivation for introducing the invariant functions of mass
matrices, based on my own work, and give some examples. Since their introduction in
1985, in the framework of the Standard Electroweak Model, they have been used by many

Key Wordsf authors. Some authors have gone further along this path and have studied the extensions
CP violation .

Mixing matrix of this concept to frameworks beyond the Standard Model.
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Mots-clés : RESUME
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Matrice de mélange Cet article présente une formulation basée sur des invariants construits a partir des
Invariants matrices de masses, selon I'approche développée par l'auteur, et fournit des exemples

d’applications. Depuis leur introduction en 1985 dans le cadre du Modéle Standard des
Interactions Electro-faibles, ces invariants ont été utilisés par de nombreux auteurs, dont
certains ont étendu I'approche a un cadre plus large que le Modéle Standard.
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1. Introduction

Since many decades the “flavor puzzle” has been on the minds of many physicists. However, through the course of his-
tory, the language has changed and the emphasis has shifted. Nonetheless, the basic issues keep on returning as rephrased
questions.

In 1983 I had the privilege of attending the annual meeting of the Norwegian Physical Society. One of the plenary
speakers was the great Dutch physicist Hendrik Casimir (1909-2000). His name is familiar to most physicists from the
“Casimir effect”. In group theory and particle physics the “Casimir invariants” play a central role. Casimir, as a young man,
had been at centers of “action” in theoretical physics, such as with Niels Bohr in Copenhagen, and with Wolfgang Pauli, as
his assistant, in Ziirich. Later on, in 1946, he had left physics and gone to industry. Therefore, it was particularly interesting
to hear what this powerful voice from the past had to say. The most surprising statement he made was that the greatest
puzzle in physics is why the ratio of masses of the proton and the electron is 1836! Casimir was thus telling us that already
in the “old days”, i.e., before the second world war, physicists had been concerned with what we now call the flavor problem,
albeit in a much simplified version. Richard Feynman (1918-1988) was also puzzled by the flavor problem. He considered
the question “why the muon weighs” to be one of the most important ones in physics. By now, every particle physicist has
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heard of the famous statement “who ordered that?” by Isidor Rabi (1898-1988) when the muon was discovered. The flavor
problem has always been considered to be “super-important”. However, in spite of a huge amount of collected knowledge
about this matter, the basic questions have not yet been answered.

2. Models of mass matrices

The question of quark masses and mixings plays a leading role in the flavor puzzle. During several decades theorists
have been inventing models for mass matrices hoping to gain an insight into the “underlying principles”. The advent of
grand unified theories, especially the Georgi-Glashow model, made it plausible that there may be a connection between
the lepton and quark masses. Since then many models have been proposed. In order to make the mass matrices as simple
and predictive as possible, many authors have tried to put in as many zeros as possible into them. These zeros give what
is called the “texture” of the mass matrices. These textures have been studied and even tabulated. However, it is always
good to have some measure of reliability of a proposed model. In the case of textures an obvious question is: what is the
significance of these zeros? I shall return to this question at the end of this article.

In discussing the question of mass matrices it is quite appropriate to remind ourselves of the lesson from special rel-
ativity. Consider, for example, the collision of two particles A and B. In the rest frame of B, the momentum of B is zero
while that of A is nonzero. By going to the rest frame of A, the zero in the momentum of B evaporates and moves to the
momentum of A. Furthermore, in their center of mass system both zeros evaporate. Obviously, there is nothing special about
a zero in this case. It has no deeper “meaning”. The meaningful quantities are kinematical invariants such as s = (p4 + p3)?,
where the p’s stand for four-momenta. The masses are, of course, frame-independent quantities, M2 = p/zq, etc. Similarly, in
the case of quark and lepton masses and mixings there are frame-dependent and frame-independent quantities, but now in
the flavor space. Only frame-independent results can be trusted.

In the case of special relativity we have learned what is meant by (inertial) frames and know the transformation rules.
But what are the frames in flavor physics? The answer is that these frames depend on the model used and the invariants
within it. Let us now turn to the case of quarks in the Standard Model.

3. The invariants in the Standard Model

In this short article, all I wish to remind the reader about the Standard Model with n families of quarks and leptons, is
that the Higgs sector produces what is called mass matrices for the up-type and down-type quarks as well as for leptons.
These are all n-by-n matrices. For the neutrinos there is an additional “complication” because the right-handed neutrinos
are gauge-singlets and therefore can couple to themselves. Thus, there could be additional (Majorana) mass terms in the
theory. However, within the framework of the Standard Model, these terms are not considered to be “nice”, because one
would like all masses to originate from the phenomenon of spontaneous symmetry breaking.

Let us consider the case of the quarks and denote the mass matrices generated for the up-type and down-type quarks
by M, and My respectively. In the Standard Model with n families these are general n-by-n matrices that need not even be
Hermitian.

The crucial observation that leads to the concept of invariant functions of mass matrices is that these matrices are not
uniquely defined but are frame-dependent in the sense that given any such pair M, and Mg, one can obtain an infinite
number of other equivalent pairs by unitary rotations in the flavor space. The measurable quantities must be “invariant
functions” under such rotations. These invariants were first introduced in [1] and studied in more detail in [2]. Actually,
what enters, in the Standard Model, is the pair!

Su=MyM),  Sg=MqM) (1)

In the “frame” X these matrices are replaced by XS, X" and XSyX', where X is unitary. Thus the invariant functions of
mass matrices, f(Sy, Sq), satisfy the condition

f(Su, Sa) = F(XSuXT, XSaXT) )

Trivial examples of such invariant functions are traces over chains of powers of the mass matrices, i.e., tr(SLSéS{j SQ ... As
is well known, one needs to diagonalize the mass matrices in order to identify the physical states. Let us consider the case
that nature seems to have chosen, i.e., n = 3. First we note that there are two “extreme frames”, one in which the up-type
quark mass matrix is diagonal, i.e.,

1 We know from theory of matrices that an arbitrary n-by-n matrix M may be diagonalized through the operation V; M VJ,L where the two V’s are unitary
matrices and the index L (R) tells us that the unitary matrix in question multiplies M from the left (right). Evidently VgM" VZ is also diagonal. Moreover,
the matrices VLMMTVI and VMM V}; are both diagonal with non-negative eigenvalues which we identify with the squares of the appropriate quark
masses. However, due to the fact that there are no right-handed currents (in the Standard Model) the matrix Vg may be absorbed into the definition of
the right-handed quarks and thus “disappears”, while the V;’s from the up and the down quark sectors build up the quark mixing matrix. As this matter
is discussed in many textbooks we abstain from giving more details here.
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m: 0 0 mi 0 0
Su=| 0 m o], Sq=v| o m2 o |vi (3)
0 0 m 0 0 m

where the m’s refer to the quark masses and V is the quark mixing matrix. The other extreme frame is one in which the
down-type quark mass matrix is diagonal, i.e.,

mi 0 0 m: 0 0
Sa=l 0 m2 o |, sy=vifo m o |v (4)
0 0 m 0 0 m

These constructions are analogs of going from one extreme kinematical frame, where particle B is at rest to the other when
the particle A is at rest.

The reader wonders why the invariant functions of mass matrices were introduced to begin with. The original reason was
that in 1980s one was looking for a measure of CP violation in the Standard Model. The question asked was: could CP be
maximally violated in the quark sector of the Standard Model? After all parity is maximally violated in interactions mediated
by the W-bosons. As is often the case, there were conflicting opinions on what was meant by maximal CP violation. Some
authors were advocating that CP is maximally violated if the CP phase in the quark mixing matrix is 90 degrees. However,
such a definition makes no sense because there is no such unique CP phase. This phase is convention-dependent: your CP
phase is in general a function of my CP phase and mixing angles. The point raised by the present author was that such a
measure can only make sense if it is frame-independent, i.e., it has to be an invariant function of the quark mass matrices.

4. The invariant function for CP violation with three families

In spite of the fact that, as mentioned above, there is no unique definition of the CP phase in the Standard Model with
three families, one may show that there exists a unique quantity (up to an overall constant) related to CP violation [1]. This
quantity is the determinant of the commutator of the quark mass matrices, det[S,, Sq4],

det[Sy, Sq] =2i].v(Sy).v(Sq) (5)

where ] is an invariant whose magnitude equals twice the area of any of the six by now well-known unitarity triangles [3].
The quantities v(S,) and v(S4) are (Vandermonde determinants) given by

V(Sy) = (my —mZ)(m? —mZ)(mf —m}) ©6)
v(Sq) = (m§ — m2)(mZ —mZ) (m} — m3) 7

Looking into literature, one sees that the determinant in Eq. (5) appears, albeit sometimes in disguise, in every computation
involving CP violation, in the three-family version of the Standard Model. It appears, in all its glory, when all the six
quarks enter in the calculation on equal footing but otherwise in a well-defined truncated form, where some factors in the
determinant are missing due to assumptions made [2]. Examples of the first kind are the renormalization of the #-parameter
of QCD by the electroweak interactions and the calculation of the baryon asymmetry of the universe in the Standard Model.
In the case QCD all the six quarks are “running” in the loops in an equivalent manner. An example of the second kind is the
computation of the electric dipole moment of the neutron in the quark model where one computes the contribution of the
up and down quarks. Consider the contribution of the down quark. Since in such a computation, the down quark appears in
the external legs of the relevant Feynman diagrams, it is tacitly assumed that we know the identity of this quark. In other
words, mg # mg and my # my. Of course, if say my were equal to mg there would have been no way to distinguish the d and
the s quarks. Therefore, in the calculation of the electric dipole moment of d quark, the factors (m§ — m?) and (mg — mg)
do not appear but all the other factors in the determinant are present.

It should also be mentioned that the absolute values of the elements of the quark mixing matrix are measurable quan-
tities and thus can be expressed as invariant functions. These functions were constructed in [2] (see also [4]).

The above commutator is the simplest in a family of commutators of functions of mass matrices (see the first paper
in [1]),

C(f. &) =[f(Suw),&(Sa)] (8)

f and g being functions that are diagonalized with the same unitary matrices that diagonalize S, and Sy respectively. The
determinants of these commutators, which are also invariant functions, are given by

det(f, gl =2i].v(f).v(g) 9)
where v(f) =v(f(Sy)), and v(g) =v(g(S4)). More explicitly

V(f)zzéijkfjsz:(fl — (2= (3= f1) (10)

i,j,k
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The f; denote the three eigenvalues of the matrix f(S,) and the quantities related to the down-type quarks are defined
similarly. An essential point is that Eq. (9) holds irrespectively of whether f and g are Hermitian or not. This property
makes the above formalism applicable to neutrino oscillations.

5. Other applications

The space allocated to this paper allows me only to quote a few other results. Similar invariants enter when one studies
CP violation in the neutrino sector of the Standard Model [5]. For this case, the neutrino Majorana mass matrix is largely
irrelevant and we may introduce for the leptons the analogs of the pair in Eq. (1)

Sy=M,M},  S;=MM/

and the commutators

At = [e:tZi§5U, s1] (11)

where £ is a kinematical parameter (related to oscillation length). The determinants of these commutators are invariant
functions of lepton mass matrices related to CP violation in the leptonic sector. Using Eq. (9) we have

det A* =2iJ,.v(S)).v(e*2E5v) (12)

Here J, is the leptonic analog of the CP invariant of the quark mixing matrix. Thus J, is simply twice the area of any of
the six leptonic unitarity triangles. The two v’s are Vandermonde determinants. Because of lack of space, I don’t give the
details here. It is indeed (at least intellectually) gratifying that such invariants can be constructed. One can also construct
the corresponding invariants for the case of neutrino oscillations in matter (see [5]).

It is now appropriate to return to the question of textures that was briefly mentioned in Section 2. Indeed theorists love
zeros in mass matrices as they make life simpler for them. However, as we have seen such zeros are not invariants! They
will in general evaporate by going to a different frame. Therefore, they don’t mean anything. Also the so called the quark-
lepton complementarity relations suffer from not being relations among invariants and are thus ill-defined. Some aspects of
this matter are discussed in [6].

6. Outlook

The issue of masses and mixings remains an unsolved problem that deserves our attention. However, we should always
keep in mind that important results should be frame-independent. So, if you have an important message about masses and
mixing to transmit, you should be able to formulate it in an invariant form.
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