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We define the Cabibbo–Kobayashi–Maskawa matrix and briefly discuss its present deter-
mination. We recall the formalism for heavy-meson mixing and CP violation in meson
decays. Finally we extend our discussion of flavour and CP violation beyond the Standard
Model.
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r é s u m é

Nous définissons la matrice de Cabibbo–Kobayashi–Maskawa et nous présentons brièv-
ement la connaissance actuelle de ces paramètres. Nous rappelons ensuite le formalisme du
mélange des mésons neutres ainsi que celui de la violation de CP dans leur désintégration.
Finalement nous discutons la violation de la saveur et de la symétrie de CP au delà du
Modèle Standard.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The Cabibbo–Kobayashi–Maskawa matrix

In the Standard Model (SM), flavour non-diagonal and CP-violating couplings only appear in the Cabibbo–Kobayashi–
Maskawa (CKM) matrix V [1] entering the charged current weak interactions

Lcc = g2√
2

ūi
LγμV ijd

j
L W μ + H.c. (1)

where ui
L , (di

L ) are the left-handed components of the up-type (down-type) quark fields ui = (u, c, t) (d j = (d, s,b)), W is
the W boson field and g2 is the SU(2) coupling constant.

V is related as V = U L D†
L to the matrices U L,R , DL,R relating weak interaction eigenstates to mass eigenstates through

a unitary transformation in flavour space. A generic 3 × 3 unitary matrix can be represented using 3 Euler angles and
6 phases, but 5 of the latter can be removed by re-phasing the quark fields. Therefore V can be parameterized by 3

* Corresponding author.
E-mail addresses: ciuchini@roma3.infn.it (M. Ciuchini), luca.silvestrini@roma1.infn.it (L. Silvestrini).
1631-0705/$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crhy.2011.11.001

http://dx.doi.org/10.1016/j.crhy.2011.11.001
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:ciuchini@roma3.infn.it
mailto:luca.silvestrini@roma1.infn.it
http://dx.doi.org/10.1016/j.crhy.2011.11.001


116 M. Ciuchini, L. Silvestrini / C. R. Physique 13 (2012) 115–120
Fig. 1. The unitarity triangle.

angles θ12, θ23, θ13 ∈ [0,π/2] and 1 phase δ ∈ [−π,π). Notice that the choice of the parameters is not unique. In the
parameterization used by the PDG [2], the CKM matrix reads

V ≡
( V ud V us V ub

V cd V cs V cb
Vtd Vts Vtb

)
=

⎛
⎝ c12c13 s12c13 s13 e−iδ

−s12c23 − c12s13s23 eiδ c12c23 − s12s13s23 eiδ c13s23

s12s23 − c12s13c23 eiδ −c12s23 − s12s13c23 eiδ c13c23

⎞
⎠ (2)

where si j = sin θi j and ci j = cos θi j .
The CP-violating phase δ is not a physical parameter as it depends on the phase conventions of the quark fields. An

invariant condition for CP violation in the SM is given by [3]

J
(
m2

u − m2
c

)(
m2

c − m2
t

)(
m2

t − m2
u

)(
m2

d − m2
s

)(
m2

s − m2
b

)(
m2

b − m2
d

) �= 0 (3)

where the Jarlskog invariant J = | Im(V ij Vkl V ∗
il V ∗

kj)| (for all i �= k and j �= l) is independent of the convention chosen for

the CKM matrix. In terms of the parameters used in Eq. (2), J = s12s13s23c12c2
13c23 sin δ. Therefore CP violation in the SM

requires δ �= 0,π , non-degenerate masses in the up and down sectors and non-trivial mixing angles θi j �= 0,π/2.
The unitarity of V implies 9 conditions involving products of rows (or columns) of the form

∑
k V ik V ∗

jk = δi j . The off-
diagonal relations are called triangular as they define triangles in the complex plane. Remarkably, the area of all these
triangles is a constant equal to J/2 and thus a measure of CP violation in the SM. One of them, of particular phenomeno-
logical interest, is referred to as the Unitarity Triangle (UT):

V ud V ∗
ub + V cd V ∗

cb + Vtd V ∗
tb = 0 (4)

The UT can be rewritten in the normalized form

Rte−iβ + Rueiγ = 1 (5)

with

Rt =
∣∣∣∣ Vtd V ∗

tb

V cd V ∗
cb

∣∣∣∣, Ru =
∣∣∣∣ V ud V ∗

ub

V cd V ∗
cb

∣∣∣∣, β = arg

(
− V cd V ∗

cb

Vtd V ∗
tb

)
, γ = arg

(
− V ud V ∗

ub

V cd V ∗
cb

)
(6)

being two sides and two angles as sketched in Fig. 1. The third side is the unity vector, while the third angle is α =
π −β −γ = arg(−Vtd V ∗

tb/(V ud V ∗
ub)).1 Similarly, it is useful to define the angle βs = arg(−Vts V ∗

tb/(V cs V ∗
cb)) from the triangle

V us V ∗
ub + V cs V ∗

cb + Vts V ∗
tb = 0, as the phase of the Bs–B̄s mixing amplitude is −2βs in the phase convention of Eq. (2). The

UT sides and angles are observables and we discuss below their present determination from K - and B-meson physics.
Given the definition in Eq. (5), all the information related to the UT is encoded in one complex number

ρ̄ + iη̄ = Rueiγ (7)

corresponding to the coordinates (ρ̄, η̄) in the complex plane of the only non-trivial apex of the UT.
It is worth mentioning another popular CKM parameterization introduced by Wolfenstein [4] which allows one to write

an expansion of the CKM matrix in terms of a small parameter λ:

V =
⎛
⎜⎝

1 − λ2

2 λ Aλ3(ρ − i η)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ − i η) −Aλ2 1

⎞
⎟⎠ + O

(
λ4) (8)

This parameterization makes explicit the hierarchy of CKM matrix elements, showing that quark flavour-changing transitions
are suppressed in the SM. The exact relations between the PDG and the Wolfenstein parameterizations are

1 The UT angles are also denoted as φ1 = β , φ2 = α and φ3 = γ in the literature.
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Fig. 2. Determination of ρ̄ and η̄ selected from constraints on |V ub/V cb|, �md , �ms , εK , α, β , γ , 2β + γ and BR(B → τν). 68% and 95% total probability
contours are shown, together with 95% probability regions from the individual constraints.

Table 1
Summary of different measurements and corresponding SM predictions. In the last column the pull is explicitly indicated.

Observable Prediction Measurement Pull (σ )

γ [◦] 69.6 ± 3.1 74 ± 11 −0.4
α [◦] 85.4 ± 3.7 91.4 ± 6.1 −0.8
sin 2β 0.771 ± 0.036 0.654 ± 0.026 +2.6
|V ub | [10−3] 3.55 ± 0.14 3.76 ± 0.20 −0.9
|V cb| [10−3] 42.69 ± 0.99 40.83 ± 0.45 +1.6
εK [10−3] 1.92 ± 0.18 2.23 ± 0.010 −1.7
BR(B → τν) [10−4] 0.805 ± 0.071 1.72 ± 0.28 −3.2

λ = sin θ12, A = sin θ23

sin2 θ12
, ρ = sin θ13 cos δ

sin θ12 sin θ23
, η = sin θ13 sin δ

sin θ12 sin θ23
(9)

Notice that λ ∼ 0.22 (the sine of the Cabibbo angle θ12) is indeed a good expansion parameter. The relation between the UT
apex coordinates and the Wolfenstein parameters is

ρ + iη =
√

1 − A2λ4

1 − λ2

ρ̄ + iη̄

1 − A2λ4(ρ̄ + i η̄)



(
1 + λ2

2

)
(ρ̄ + iη̄) + O

(
λ4) (10)

showing that ρ̄ = ρ and η̄ = η at the lowest order in λ.
The CKM matrix elements |V ud| and |V us| can be measured from super-allowed β decays [5] and semileptonic/leptonic

kaon decays [6], respectively, determining accurately the sine of the Cabibbo angle. The other CKM parameters are de-
termined through a fit to the UT in Eq. (5), as shown in Fig. 2, using the latest determinations of the theoretical and
experimental parameters [7]. The basic constraints are |V ub/V cb| from semileptonic B decays, �md and �ms from Bd,s
oscillations, εK from K 0–K̄ 0 mixing, α from charmless hadronic B decays, γ and 2β + γ from charm hadronic B decays,
sin 2β from B0 → J/ψ K 0 decays and the BR(B → τν) [8].

The consistency between the different constraints clearly establishes the CKM matrix as the dominant source of flavour
mixing and CP violation, described by a single parameter η̄. The CKM picture can be quantitatively tested comparing the
direct measurement of a flavour observable entering the UT fit with the SM prediction obtained from the UT fit without
using the constraint being tested.

Table 1 contains a set of flavour observables: for each of them, the SM prediction, the measurement, and the pull (the
difference of prediction and measurement in unit of σ ) are shown. At present, the main tensions in the UT fit come from
BR(B → τν), which is found to deviate from the measurement by ∼ 3.2σ , and sin 2β , which is larger than the experimental
value by ∼ 2.6σ . It is interesting to note that the former prefers large values of |V ub/V cb|, while the latter wants |V ub/V cb|
to be small. Any change of the measured value of |V ub| and |V cb| will not improve the situation.

For massless neutrinos, the SM lepton sector is flavour diagonal and CP conserving. Once the SM is trivially extended to
include right-handed neutrinos and account for neutrino masses, the formalism for lepton flavour and CP violation becomes
similar to the one used for quarks. The lepton mixing matrix, called the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) ma-
trix [9], is parameterized much as the CKM matrix. The only difference is that the possibility of having Majorana mass terms
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for neutrinos allows for two additional CP-violating phases. In spite of these formal similarities, the flavour phenomenol-
ogy of the lepton sector, in particular of neutrinos, is rather different from the quark one and its discussion goes beyond
the scope of this primer. We just recall that, given the smallness of neutrino masses, charged lepton flavour violation is
negligible in the SM.

2. Meson mixing and CP violation

CP violation in B decays appears as a difference between the rates into a given final state and its CP-conjugate, accounted
for by the direct CP asymmetry

ACP = Γ (B̄ → f̄ ) − Γ (B → f )

Γ (B̄ → f̄ ) + Γ (B → f )
= | Ā|2 − |A|2

| Ā|2 + |A|2 (11)

where f is the final state, f̄ is its CP-conjugate and A and Ā are the two decay amplitudes. Charged mesons can only violate
CP in the decay. On the other hand, neutral B mesons are subject to the mixing phenomenon, i.e. the mass eigenstates are
a superposition of the flavour ones. In this case, CP violation can also occur in the mixing itself and in the interference
between mixing and decay, giving additional opportunities to observe it. We briefly summarize in the following the main
formulae related to mixing and CP violation in neutral B decays.

The time evolution of a system of unstable neutral meson–antimeson states such as B–B̄ can be described by a 2 × 2
non-Hermitean matrix Hamiltonian Ĥ

i
d

dt

( |B(t)〉
|B̄(t)〉

)
= Ĥ

( |B(t)〉
|B̄(t)〉

)
=

(
m̂ − i

2
Γ̂

)( |B(t)〉
|B̄(t)〉

)
(12)

Ĥ can be decomposed using the two Hermitean matrices m̂ and Γ̂ representing its dispersive and absorptive part respec-
tively. In particular, assuming CPT invariance, one can write

m̂ =
(

m m12

m∗
12 m

)
, Γ̂ =

(
Γ Γ12

Γ ∗
12 Γ

)
(13)

The eigenstates of Ĥ , denoted as |BL,H 〉, can be written as

|BL,H 〉 = 1√
1 + |q/p|2

(|B〉 ± q/p |B̄〉), q/p = −
√√√√m∗

12 − i
2 Γ ∗

12

m12 − i
2 Γ12

(14)

where L (H) corresponds to the upper (lower) sign. Solving the eigenvalue problem and taking into account that Γ12 � m12
for neutral B mesons, one finds the following mass and width differences:

�m = mH − mL 
 2|m12|, �Γ = ΓH − ΓL 
 �m Re

(
Γ12

m12

)
(15)

These observables, or the corresponding dimensionless variables x = �m/Γ and y = �Γ/2Γ (Γ is the average lifetime),
characterize the mixing. In addition, the absolute value |q/p| is also observable. The deviation of |q/p| from one is a measure
of CP violation in the mixing, as shown by the expression of the semileptonic CP asymmetry

ASL = Γ (B̄ → X�+ν�) − Γ (B → X�−ν̄�)

Γ (B̄ → X�+ν�) − Γ (B → X�−ν̄�)
= 1 − |q/p|4

1 + |q/p|4 (16)

Expanding |q/p| to first order in Γ12/m12, one finds

|q/p| 
 1 − 1

2
Im

Γ12

m12
(17)

Finally, the third manifestation of CP violation in B decays is through the interference between mixing and decay [10].
The key observable in this case is the time-dependent CP asymmetry of a meson state B(t) decaying into a final state f .
Taking a CP-eigenstate final state with the approximation |q/p| 
 1 and �Γ 
 0, the asymmetry is given by

AB→ f
CP (t) = Γ (B(t) → f ) − Γ (B̄(t) → f )

Γ (B(t) → f ) + Γ (B̄(t) → f )

 C B→ f cos(�mt) − S B→ f sin(�m t) (18)

where

C B→ f = 1 − |λB→ f |2
1 + |λ |2 , SM→ f = 2 Im(λB→ f )

1 + |λ |2 , with λB→ f = q/p
Ā

A
(19)
B→ f B→ f



M. Ciuchini, L. Silvestrini / C. R. Physique 13 (2012) 115–120 119
q/p is the B mixing parameter and A ( Ā) is the amplitude for B → f (B̄ → f ). The coefficient C B→ f 
 −ACP, the direct
CP asymmetry defined in Eq. (11). The coefficient S B→ f , instead, is a new measurement of CP violation generated by the
interference of mixing and decay amplitudes.

Time-dependent CP asymmetries for B decays give access to the UT angles. For example, the amplitude for Bd → J/ψ K S

is dominated by a single term with a definite weak phase so that one finds C Bd→ J/ψ K S = 0 and

ABd→ J/ψ K S
CP (t) = −S Bd→ J/ψ K S sin(�mt), S Bd→ J/ψ K S 
 sin 2β (20)

up to doubly Cabibbo-suppressed corrections. In other cases, the decay amplitude is not dominated by a single term and
the extraction of the UT angles is less straightforward, as hadronic amplitudes no longer cancel in λB→ f . Previous formulae
can also be generalized to non-CP-eigenstate final states [11].

3. Flavour and CP violation beyond the Standard Model

The Standard Model (SM) of electroweak and strong interactions is extremely successful in describing all presently avail-
able experimental data. However, its validity can extend at most to energies of the order of the Planck scale, where gravity
comes into play. Let us therefore consider the SM as an effective theory valid up to a scale Λ. We can then write the SM
Lagrangian as

L = C2Λ
2 H† H + λ

(
H† H

)2 + Lgauge + LYukawa +
∞∑

d=5

nd∑
i=1

C i
d

Λ(d−4)
O i

d (21)

where O i
d is a generic gauge-invariant operator of dimension d. Now, it turns out that the Lagrangian truncated at d � 4

has some very important “accidental” symmetries that are violated by O i
d>4. Most notable examples of such symmetries

are given by baryon and lepton number conservation. The agreement of the SM with experimental data would suggest a
very high value of Λ, so that the breaking of SM accidental symmetries gets strongly suppressed by the inverse powers of
Λ in front of the higher-dimensional operators. However, we see from the first term in Eq. (21) that C2Λ controls the scale
of electroweak symmetry breaking. Thus, unless we are willing to accept an extremely small value of C2 (which means an
extremely large amount of fine-tuning, since radiative corrections within the effective theory naturally generate C2 ∼ O(1)),
we are forced to consider values of the New Physics (NP) scale Λ not too far above the electroweak scale. But then the
SM accidental symmetries require that NP has a peculiar structure, so that the coefficients of symmetry-breaking higher-
dimensional operators are strongly suppressed and the phenomenological success of the SM remains unscathed. Turning the
argument around, the coefficients of those higher-dimensional operators that break SM accidental symmetries provide the
most stringent constraints on the NP scale and couplings (or better, on a combination thereof).

Let us now concentrate on two accidental symmetries of the SM: (i) the absence of tree-level Flavour Changing Neutral
Currents (FCNC), and the GIM suppression of loop-mediated FCNC; (ii) The absence of tree-level CP violation in weak
interactions. These accidental symmetries ensure that flavour physics is extremely sensitive to NP. Generically, NP will
generate contributions to higher-dimensional operators mediating FCNC and CP-violating processes at a level that may well
exceed by several orders of magnitude the present experimental bounds (see Ref. [12] for bounds on the coefficients of
these operators). This implies that either NP is well above the TeV scale, or its flavour structure is non-trivial so that the
coefficients of the relevant operators are generated with tiny couplings. In particular, one may define a class of models
denoted by Minimal Flavour Violation (MFV) [13], in which the CKM matrix and quark masses remain the only source of
flavour violation.

As an explicit example consider minimal supersymmetric extensions of the Standard Model (MSSM). Squark and slepton
masses contain new sources of flavour and CP violation, that can be parameterized by the off-diagonal mass terms in the
so-called super-CKM basis, in which quark masses and neutral current couplings are diagonal. Off-diagonal terms in general
connect squarks of different chiralities, while in the SM flavour change only occurs in left-handed currents. This has dramatic
implications in all processes where chirality-flipping amplitudes are enhanced, such as Kaon mixing (or where a chirality
flip is required, such as B → Xsγ ). As a result, for O(1) off-diagonal terms, lower bounds on squark masses from εK are of
the order of 104 TeV, while for squark masses at the TeV scale off-diagonal terms must be of O(10−4).

In Table 2 we report upper bounds on the parameters δd
i j ≡ �d

i j/m2
d̃

, where �d
i j is the flavour-violating off-diagonal entry

appearing in the down-type squark mass matrices and m2
d̃

is the average squark mass. The mass insertions include the
LL/LR/RL/RR types, according to the chirality of the corresponding SM quarks. Detailed bounds on the individual δs have
been derived by considering limits from various FCNC processes as described in Ref. [14].

Viable models can be constructed in several ways: either by allowing squarks of the first two generations to be very
heavy (in order to evade the stringent constraints from Kaon physics) [15], or by requiring squark masses to have definite
quantum numbers under (a subset of) the flavour symmetry group of SM fermion gauge interactions [16].



120 M. Ciuchini, L. Silvestrini / C. R. Physique 13 (2012) 115–120
Table 2
95% probability bounds on |(δd

i j)AB | taken from Ref. [14].

i j\AB LL LR RL RR

12 1.4 × 10−2 9.0 × 10−5 9.0 × 10−5 9.0 × 10−3

13 9.0 × 10−2 1.7 × 10−2 1.7 × 10−2 7.0 × 10−2

23 1.6 × 10−1 4.5 × 10−3 6.0 × 10−3 2.2 × 10−1

Acknowledgements

We acknowledge partial support from ERC Ideas Starting Grant No. 279972 “NPFlavour” and ERC Ideas Advanced Grant
No. 267985 “DaMeSyFla”. M.C. is associated to Dipartimento di Fisica, Università di Roma Tre. L.S. is associated to Diparti-
mento di Fisica, Università di Roma “Sapienza”.

References

[1] N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531;
M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.

[2] K. Nakamura, et al., Particle Data Group, J. Phys. G 37 (2010) 075021.
[3] C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039.
[4] L. Wolfenstein, Phys. Rev. Lett. 51 (1983) 1945.
[5] I.S. Towner, J.C. Hardy, Rept. Prog. Phys. 73 (2010) 046301.
[6] M. Antonelli, et al., Eur. Phys. J. C 69 (2010) 399.
[7] A.J. Bevan, et al., UTfit Collaboration, arXiv:1010.5089 [hep-ph], and online update at http://www.utfit.org.
[8] D. Asner, et al., Heavy Flavor Averaging Group, arXiv:1010.1589 [hep-ex], and online update at http://www.slac.stanford.edu/xorg/hfag.
[9] B. Pontecorvo, Sov. Phys. JETP 6 (1957) 429;

Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28 (1962) 870.
[10] I.I.Y. Bigi, A.I. Sanda, Nucl. Phys. B 193 (1981) 85.
[11] I. Dunietz, J.L. Rosner, Phys. Rev. D 34 (1986) 1404.
[12] M. Bona, et al., UTfit Collaboration, JHEP 0803 (2008) 049.
[13] R.S. Chivukula, H. Georgi, Phys. Lett. B 188 (1987) 99;

L.J. Hall, L. Randall, Phys. Rev. Lett. 65 (1990) 2939;
E. Gabrielli, G.F. Giudice, Nucl. Phys. B 433 (1995) 3;
E. Gabrielli, G.F. Giudice, Nucl. Phys. B 507 (1997) 549, Erratum;
M. Ciuchini, G. Degrassi, P. Gambino, G.F. Giudice, Nucl. Phys. B 534 (1998) 3;
G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B 645 (2002) 155–187.

[14] M. Ciuchini, et al., Nucl. Phys. B 783 (2007) 112–142.
[15] M. Dine, A. Kagan, S. Samuel, Phys. Lett. B 243 (1990) 250–256.
[16] M. Dine, R.G. Leigh, A. Kagan, Phys. Rev. D 48 (1993) 4269–4274;

Y. Nir, N. Seiberg, Phys. Lett. B 309 (1993) 337–343.

http://www.utfit.org
http://www.slac.stanford.edu/xorg/hfag

	Introduction to ﬂavour and CP violation in the Standard Model and beyond
	1 The Cabibbo-Kobayashi-Maskawa matrix
	2 Meson mixing and CP violation
	3 Flavour and CP violation beyond the Standard Model
	Acknowledgements
	References


