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We review our experiments on the electronic transport properties of atomic contacts
between metallic electrodes, in particular superconducting ones. Despite ignorance of the
exact atomic configuration, these ultimate quantum point contacts can be manipulated
and well characterized in-situ. They allow performing fundamental tests of the scattering
theory of quantum transport. In particular, we discuss the case of the Josephson effect.
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r é s u m é

Nous décrivons un ensemble d’expériences de transport électronique que notre groupe a
réalisées sur des contacts atomiques entre des électrodes métalliques, en particulier dans
l’état supraconducteur. Bien que leur configuration atomique exacte ne soit pas connue, ces
contacts ponctuels quantiques peuvent être manipulés et caractérisés in-situ, et permettent
de mener à bien des tests fondamentaux de la théorie en diffusion du transport quantique.
Nous discutons en particulier le cas de l’effet Josephson.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For significant quantum effects to appear in the transport properties of a conductor, they must be shorter than the dis-
tance over which an electron propagates without losing its quantum coherence, which for usual metals at low temperatures
(< 1 K) is on the order of microns. The exploration of this quantum transport regime started in the early 1980s with the
observation of Aharonov–Bohm interferences in submicron metallic rings [1]. A very powerful point of view, put forward
by R. Landauer [2,3], describes a transport experiment across a coherent conductor as the scattering of the quantum elec-
tronic waves injected by the contact probes. In other words, the conductor is viewed as an electronic waveguide, whose
modes, called “conduction channels”, are each characterized by a transmission probability. For example, the total conduc-
tance is given by the famous Landauer formula: G = G0

∑N
1 τi , where N is the number of channels, the τi are the individual

transmission probabilities, and G0 = 2e2/h ∼ 77 μS the conductance quantum. In fact, in systems with non-interacting quasi-
particles all transport quantities can be expressed in terms of the transmission probability set {τi}, which is viewed in this
framework as the “Personal Identity Number” (PIN code) of the conductor [4]. For most systems, the number of conduction
channels is very large, and the description of transport can only be based on a distribution function for the transmission
eigenvalues. However, the number of channels can be significantly reduced if the lateral dimensions of a conductor become
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comparable to the Fermi wavelength of the electrons. This was demonstrated in 1988 using constrictions tailored in the
two-dimensional electron gas of a semiconductor heterostructure, with a width adjustable on the scale of the Fermi wave-
length (∼ 50 nm) by means of an electrostatic gate [5,6]. In these “quantum point contacts”, as the constriction width is
continuously decreased, a descending staircase conductance curve is observed, beautifully illustrating the closing of the
channels one after another. Since then much activity has been devoted worldwide to the investigation of transport through
a broad range of coherent conductors (diffusive and ballistic conductors, quantum dots, nanowires, individual molecules like
carbon nanotubes) connected to reservoirs in the normal or in the superconducting state [4].

Among the various systems investigated, atomic-size contacts [7] between three-dimensional metallic electrodes play an
important role. These contacts have been accessible since the early years of STM [8], and more stable ones were achieved
at the beginning of the 1990s by the group of Jan van Ruitenbeek at Leiden using the break–junction technique [9,10].
Since their characteristic transverse dimensions are of the order of the Fermi wavelength (typically 0.2 nm), atomic con-
tacts accommodate only a small number of channels and behave as quantum point contacts even at room temperature.
An interesting difference with respect to quantum point contacts in 2D electron systems is that superconductivity can be
built-in with the proper choice of material. The discovery by our group in 1997 that the PIN code could be accurately mea-
sured for every contact [11] paved the way to a new generation of quantum transport experiments in which the measured
transport quantities could be compared to the theoretical predictions with no adjustable parameters. As an example, we
describe here our experiments on the supercurrent flowing through atomic-size contacts. They probe the main concepts of
the “mesoscopic” theory of the Josephson effect, i.e. the theory in terms of the transmission probability of the channels, that
we sketch in Section 3. Before discussing previous and on-going experiments in Sections 4 and 5 respectively, we describe
the microfabrication technique that has made possible the experiments and the procedure we use to determine the PIN
code of atomic-size contacts in Section 2.

2. Production and characterization of atomic contacts

2.1. Microfabricated break junctions

In order to produce atomic contacts we developed the microfabricated break–junction (MBJ) technique [12]. Using elec-
tron beam lithography and reactive ion etching, a metallic bridge clamped to an elastic substrate is suspended over a few
microns between two anchors (see top-left panel of Fig. 1). The bridge has a constriction at the center with a diameter
of approximately 100 nm. Using the mechanism shown in the top-right panel of Fig. 1 the substrate is first bent until the
bridge breaks at the constriction. This is performed under cryogenic vacuum so that there is no contamination of the two
resulting electrodes which are then gently brought back into contact. Afterward, the contact can be repeatedly made and
broken at will.

The bottom panel of Fig. 1 displays a typical conductance evolution observed while opening an aluminum MBJ. The
conductance evolves through a series of slanted plateaus and sharp steps. The conductance on the last plateau before full
opening and the height of the previous steps is of the order of the conductance quantum G0. Although similar staircase
patterns are observed every time the experiment is performed, the horizontal extension (of the order of a fraction of
nanometer) and the vertical position of the plateaus are not always the same for subsequent compression–extension cycles.
These general features have been observed by many groups for a variety of metals under different experimental conditions
(temperature, technique used to produce atomic size contacts, rate of compression and extension). The typical conductance
on the last plateau, the typical lengths of the plateaus, and the behavior within the plateaus are characteristic of each
material [7].

The succession of plateaus and conductance jumps is directly related to the dynamics of the atomic configuration of the
contact. Combined STM-AFM experiments that measure the force between the tip and the surface simultaneously with the
conductance have directly shown that on a plateau the atomic configuration is only elastically deformed while a conductance
jump results from an abrupt reconfiguration of the atoms at the contact accompanied by stress relief [13,14]. Molecular
dynamics simulations [15–17] confirm this interpretation of the staircase pattern. These were the first clues that the smallest
contacts are indeed made of a single atom. In the case of gold, one-atom contacts and atomic chains [18] have even been
observed directly with high resolution Transmission Electron Microscopes [19–21].

As compared to other techniques, microfabricated break junctions present several major advantages essential to the
realization of the experiments presented here. First, atomic-size contacts fabricated this way are extremely stable and can
be maintained in the same configuration for weeks. Second, with a given suspended bridge many different contacts can
be created in-situ, allowing exploration of the physics of interest for a broad range of transmission coefficients. Finally, the
flexibility offered by microfabrication techniques makes possible embedding the contacts into on-chip circuits.

2.2. Determination of the PIN code

Our first major result was devising a method to determine not only the number of channels accommodated by a contact
but also its PIN code with good accuracy [11,22]. This was achieved by measuring the current–voltage characteristic I(V )
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Fig. 1. Principle of the microfabricated break–junction technique. Top left: A thin microfabricated aluminum bridge is broken by bending the substrate on
which it is fabricated. Top right: Example of a bending mechanism allowing microwave measurements. The ensemble is placed in cryogenic vacuum and
cooled below 100 mK. A rod, driven by a room temperature dc motor, pushes the free end of the sample which is firmly clamped on the opposite side
against two microwave SMA launchers. Typically, a vertical displacement �z = 1 μm of the pushing rod results in a 10–100 pm change of the distance
between the electrodes of the bridge. Bottom: Conductance of a bridge, in units of the conductance quantum, as a function of displacement when pulling
the electrodes apart. The origin of the displacement was set arbitrarily at the point where the bridge actually breaks and the conductance starts decreasing
exponentially signaling the tunnel regime. Measurements were performed at 50 mK under a magnetic field of 200 mT to suppress superconductivity in the
aluminum films.

Fig. 2. I(V ) characteristics of an atomic contact. Open symbols: experimental data. Continuous line: best fit resulting from the sum of three single channel
characteristics (dashed lines) calculated using the theory of MAR and the transmission values indicated on the right edge.

of the contact in the superconducting state (see Fig. 2).2 At exactly zero voltage a finite current, i.e. a supercurrent, can
flow. Above some bias current, the system switches to a finite voltage state, i.e. the current becomes dissipative. The voltage
and transmission dependence of the dissipative current through a weak link was explained for the first time in the early
1980s in terms of Multiple Andreev Reflections (MAR) [23,24]. A full quantum theory of MAR for a single channel of

2 Current-noise measurements in the normal state can also be used to determine the PIN code, but only for contacts containing no more than two
channels [7].
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arbitrary transmission was achieved in the mid 90s [25–27]. Three numerically calculated current–voltage characteristics
resulting from these MAR processes are shown in Fig. 2. These elementary curves are highly non-linear below twice the
superconducting gap � and present current steps at voltages 2�/en, with n an integer, which mark the onset of MAR
of different orders. The n-th order process involves the transfer of n electrons, and in a given channel its intensity varies
as the n-th power of the transmission. Consequently, the I(V ) characteristic depends on all powers of every transmission
coefficient and carries sufficient information to reconstruct the PIN code. The determination of the PIN code of any atomic-
size contact is achieved by decomposing the measured total current into a series of such elementary characteristics, each
of them corresponding to a well defined transmission probability. The individual transmission probabilities of the channels
are adjusted so as to get the best fit of the measured current–voltage characteristic [28]. This automatically yields the
number of channels having a non-negligible transmission. The uncertainty on the transmissions obtained by this fitting
procedure depends on the uncertainty in the measurement of both voltage and current, on the transmission of the channels
participating in the contact, and on the environmental impedance. Typically, for channels with a large transmission the
relative uncertainty achieved on τi is of the order of 0.1%.3 For channels having low transmissions (τ < 0.05), the procedure
fails to disentangle the contributions of the different channels, and yields a larger error bar (see Chapter 1 of [22] for details).

Using this method we showed that for one-atom contacts the number of conduction channels is directly related to the
number of valence orbitals of the metal [29]. For aluminum and lead, which have p-electrons at the Fermi level, three
channels were found to contribute to the conductance of the smallest contacts. For Niobium, a transition metal with s- and
d-electrons, five conduction channels were found. In the case of gold, with one s-electron, and for which superconductiv-
ity was induced through the proximity effect by intimate contact with a thick aluminum layer, we found that only one
conduction channel contributes to the conductance on the lowest conductance plateau [30].

3. Mesoscopic theory of the Josephson effect

In 1962, Josephson predicted that a dc current could flow at zero bias voltage between two superconducting electrodes
coupled by a tunnel barrier [31]. This supercurrent results from the coherent transfer of Cooper pairs and is driven by the
phase difference δ = δL − δR between the superconducting order parameters of the two electrodes. The phase difference is
related to the voltage difference V between the electrodes by the Josephson relation δ̇ = 2π V /φ0, with φ0 = h/2e the flux
quantum.4 Since its prediction, the Josephson current has been observed in a great variety of systems involving supercon-
ducting electrodes connected by a “weak link”. A weak link can be an insulating layer, as originally proposed by Josephson,
or any quantum coherent conductor, such as a short normal (diffusive or ballistic) metallic wire, a point contact, a carbon
nanotube, or a graphene layer [32]. A great deal of theoretical activity has been devoted to relate the maximum (or critical)
supercurrent I0 of a weak link to its normal state properties. A unifying theoretical description providing this relation for
an arbitrary structure in terms of its transmission PIN emerged in the 1990s and is based on the concept of Andreev bound
states [33,34].

Due to the existence of a gap in the quasiparticle density of states in a superconductor, an electron impinging from a
normal metal into a superconducting electrode with an energy |E| < � cannot enter it as such, and should in principle be
reflected back. However, if there is no barrier at the interface it will be “Andreev reflected” as a hole at the same energy
and moving in the opposite direction, adding a Cooper pair to the superconductor [35].

3.1. Andreev bound states

The formation of Andreev bound states is illustrated for a single channel in Fig. 3 [36].
In a perfectly transmitting channel, a right-moving electron is Andreev reflected at the interface with the right supercon-

ducting electrode into a left-moving hole, and acquires an energy dependent phase shift arccos(E/�) + δR where δR is the
phase of the local superconducting order parameter. In turn, this left-moving hole is Andreev reflected as a right-moving
electron at the left electrode, removing a Cooper pair from it. These successive reflections interfere constructively, like in
a Fabry–Pérot interferometer, when the global phase shift acquired along one round-trip is an integer multiple of 2π . Of
course, a similar process occurs for left-moving electrons reflected as right-moving holes, and eventually two resonant quasi-
particle states |←〉 and |→〉 appear in the channel region. Their phase-dependent energies lie within the superconducting
energy gap and are symmetric with respect to the Fermi level.

If the channel is not perfectly transmitting (τ < 1), a right-moving electron can also be simply reflected as a left-moving
electron. The existence of a finite reflection probability thus couples the two reflectionless states. The two resulting states,
denoted {|−〉, |+〉}, are called the “Andreev states”, and have energies ∓E A shown in Fig. 4, where:

E A(δ, τ ) = �

√
1 − τ sin2

(
δ

2

)
(1)

3 For sufficiently low environment impedance to avoid significant Coulomb blockade effects.
4 From the circuit point of view, these properties make the Josephson element to behave as a non-linear inductor. Together with the junction intrinsic

capacitance it thus form an anharmonic resonator. The oscillation mode is known as the “plasma resonance”.
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Fig. 3. Schematic representation of the microscopic processes leading to the formation of two Andreev bound states in a short channel connecting two
superconducting electrodes with different phases δL and δR . The wiggly lines represent an Andreev reflection in which an electron (hole) is reflected as a
hole (electron) acquiring the local superconducting phase. The upper (lower) loop corresponds to the transfer of Cooper pairs to the right (left). When the
transmission probability of the channel is below unity, in addition to the Andreev reflection processes, normal reflection processes (dashed lines) connects
electron (hole) states traveling in opposite directions.

Fig. 4. Left: Energy of Andreev states |−〉 and |+〉 in a single channel of transmission τ = 0.96 (solid curves) as a function of the superconducting phase
difference δ across it. The dashed curves represent those in a reflectionless channel |←〉 and |→〉. Right: Supercurrent carried by the upper |+〉 and lower
|−〉 Andreev states calculated for � = 200 μeV (full lines). The dashed curves are the currents for the reflectionless channel.

Let us point out that in the tunnel limit τ → 0, this expression correctly yields the cos(δ) dependence of the coupling
energy predicted by Josephson for a tunnel junction. The transition frequency between the two Andreev states reaches its
minimum (2�/h)

√
1 − τ at δ = π .

Because the number of transferred pairs and the phase difference are conjugated variables, these states carry supercur-
rents given by:

I±(δ, τ ) = 2π

φ0

∂ E±(δ)

∂δ
= ∓e�

2h̄

τ sin δ√
1 − τ sin2( δ

2 )

(2)

and shown in the right panel of Fig. 4. Since at a given phase the two Andreev bound states carry the same current but
in opposite directions, the net supercurrent results from the imbalance of their populations. At zero temperature, only the
lower energy state is occupied and the maximum (or critical) supercurrent is given by

I0(τ ) = e�

h̄
(1 − √

1 − τ )

which is not simply proportional to τ and thus neither to the normal state conductance. In aluminum, where the supercon-
ducting gap � is typically of the order of 200 μeV, this current reaches at most 	 50 nA for a single perfectly transmitting
channel, and the transition frequency is in the microwave range.

3.2. Excitation spectrum

It is important to note that the pair of Andreev bound states leads locally to an excitation spectrum (Fig. 5) containing,
at an energy E A � � above the ground state, a discrete spin-degenerate doublet [37]. There are four possible occupation
configurations for the system. In the global ground state configuration, the total energy contains a phase dependent term
−E A(δ, τ ) arising from the lowest lying localized Andreev state, which is occupied by a spin–singlet pair of electrons and
gives rise to a supercurrent I− = −ϕ−1

0 ∂ E A/∂δ, with ϕ0 = h̄/2e. Then, there are two “odd” configurations (spin 1/2) with
a single excitation of the doublet at E A , corresponding to a quasiparticle trapped in the one-channel constriction. In this
case the global energy is zero, phase independent, and the total supercurrent is zero. Finally, there is another spin–singlet
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Fig. 5. (a) Short one-channel constriction between two superconducting electrodes (phase difference δ = δL − δR ). (b) Excitation spectrum: besides the usual
continuum of excited states above the energy gap �, that extends all across the structure, there is at the constriction a discrete Andreev spin-degenerate
doublet with energy E A(δ) above the ground state, where quasiparticles can get trapped. (c) Four possible configurations of the Andreev doublet at
the constriction: in the global ground configuration, labeled |0〉, the doublet is empty (it corresponds to just the ground Andreev state |−〉 of Fig. 4
being occupied); in the two odd configurations, each with definite spin ±1/2 and labeled |1↑〉 and |1↓〉, one quasiparticle is added to the contact (they
correspond to the Andreev states of Fig. 4 being both occupied or both empty) [37]; the last configuration is a spin–singlet double excitation, labeled |2〉
(it corresponds to just the excited Andreev state |+〉 of Fig. 4 being occupied). (d) Total energy of the four configurations vs phase. The energy of the
ground configuration |0〉 is that of the lowest Andreev level −E A . The two odd configurations, |1↑〉 and |1↓〉, have zero energy. The double excitation
configuration |2〉, has the energy of the excited Andreev state +E A .

configuration with a double excitation which carries a supercurrent I+ = +ϕ−1
0 ∂ E A/∂δ exactly opposite to the one in the

ground configuration. Hence the supercurrent through the constriction is a probe of the excitation configuration of the
system.

3.3. Voltage bias and Andreev states

When the structure is voltage-biased at V � �/e, the phase varies linearly with time at a speed δ̇ = 2π V /φ0. When the
latter is low enough, one can assume that the Andreev levels move adiabatically within the superconducting gap �. As the
motion is periodic, there is no energy transfer to the system on average and a purely ac current flows. This corresponds to
the second striking prediction of Josephson, the ac Josephson effect. For larger voltages, and therefore larger speeds, non-
adiabatic transitions (Landau–Zener type) arise between the Andreev levels, giving rise to the onset of the dissipative MAR
current discussed in Section 2.2 [26]. The onset of this dissipative current depends on the channel transmission.

4. Probing the Josephson effect in atomic contacts

For an arbitrary quantum coherent conductor the phase-driven supercurrent is governed by the occupation numbers of
the Andreev states in all channels. At very low temperature, when only the lower energy Andreev state of each channel is
occupied, the current–phase relation is:

I
(
δ, {τi}

) = e�

2h̄

N∑
i=1

τi sin(δ)√
1 − τi sin2( δ

2 )

(3)

This is one of the fundamental predictions of the mesoscopic theory of the Josephson effect that we have probed in our
experiments with atomic contacts.

In a first series of experiments carried out on current-biased contacts [38], we measured the average supercurrent I S

at which the system switches to the dissipative branch. In this case, the phase is not an externally tunable parameter,
but a dynamical variable moving in a potential landscape fixed by the total Josephson coupling energy and submitted to
random fluctuations imposed by the biasing circuit. As a consequence the switching current is always smaller than the
critical current I0. However, because we embedded the contact in a properly designed on-chip circuit, dissipation and
thus fluctuations were under control. Most of the experimental results could be well understood by considering just the
contribution of the ground Andreev state of each channel, but evidence for non-adiabatic transitions between Andreev
states was observed for nearly ballistic contacts.

However, these experiments were actually only an indirect test of the prediction of Eq. (3), since the phase was not an
external parameter that could be swept over its entire range. A thorough test of the theory actually requires measuring, for
a given atomic contact, both its current–phase relation and its I(V ) characteristic (to determine its PIN code). These two
measurements require contradictory biasing conditions. For the former, the atomic contact must be phase-biased, which
requires inserting it in a small superconducting loop threaded by a magnetic flux. For the latter, one needs to voltage-bias
the same atomic contact, which cannot be achieved if it is shunted by the superconducting loop. Obviously, one needs a
superconducting reversible switch in order to toggle between the two biasing conditions without disturbing the atomic
contact.
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Fig. 6. Left: An aluminum atomic contact in parallel with a Josephson junction having a large critical current I0 = 310 nA forms an atomic-SQUID. An
on-chip capacitor Ce 	 20 pF lowers the plasma frequency of the junction to 1.1 GHz and the associated resistance r ∼ 0.5 	 damps the dynamics of
the phase. The SQUID is biased through a resistor R = 200 	 by a current IB, and the voltage V J across it is monitored to detect switching. Right: SEM
micrographs of sample #1 at different scales. In the upper-right panel, the brighter pads are gold electrodes, while the darker part constituting the loop
is made out of aluminum. The whole structure is deposited on top of a polyimide layer on a metallic substrate. The gold electrodes form the shunting
capacitor Ce through the metallic substrate, and also act as quasiparticle traps (see [40,41] for details). The junction (lower-left panel) is fabricated using
the technique of double-angle evaporation through a suspended mask. This also leads on the suspended bridge side to an extraneous metallic bridge, as
seen on the bottom-right panel.

4.1. Measurement of the current–phase relation

In the setup presented in Fig. 6 a Josephson junction acts as such a switch [39–41]. The atomic contact and the Josephson
junction are embedded in a small superconducting loop, forming a device that was coined the “atomic-SQUID”. This ancillary
junction not only allows both biasing configurations but is also used to measure the loop current. The critical current of the
Josephson junction is chosen to be much larger than the one of a typical aluminum one-atom contact (� 50 nA) so that the
SQUID essentially behaves like a slightly perturbed Josephson junction.

The I(V ) characteristic of the atomic contact, denoted IAC(V ), is obtained from that of the SQUID IAS(V ). In principle, in
the region below the superconducting gap |eV | � 2�, the DC current flowing through the junction is expected to be zero.
In practice however, a sizable current is observed experimentally in this region in the characteristic I JJ(V ) of the junction
alone, which can be measured when the metallic bridge forming the atomic contact is fully open. Assuming that I JJ(V ) is
not affected by the contact, IAC(V ) is then obtained by the subtraction:

IAC(V ) = IAS(V ) − IJJ(V ) (4)

which is then fitted using the MAR theory to obtain the transmissions.
The superconducting loop allows imposing a phase difference across the atomic contact by applying an external magnetic

flux φext. If the loop is sufficiently small so that the screening flux can be neglected,5 the phase differences γ (across the
tunnel junction) and δ (across the atomic-size contact) are linked through:

δ = γ + 2π
φext

φ0
≡ γ + ϕ (5)

where ϕ is the reduced flux threading the loop [42].
At zero temperature, the large Josephson junction would switch out of its zero-voltage state at a phase difference γ = π

2 ,
when it carries exactly its critical current I0. Assuming that the contributions of the junction and of the atomic contact can
be separated, the critical current I0

AS of the SQUID is the sum of the critical current I0 of the junction and of the flux-
dependent critical current IAC(δ) of the atomic contact:

I0
AS(ϕ) = I0 + IAC

(
π

2
+ ϕ

)
(6)

Measuring the flux dependence of the critical current of the SQUID would thus be a direct way to probe the current–phase
relation of the atomic contact. However, as mentioned before, in practice the critical current of a small Josephson device is
not accessible. Due to fluctuations the system switches stochastically to a dissipative state before reaching this maximum
current, and one simply measures the mean switching current of the SQUID.

The mean switching current is determined accurately from the switching probability P . This is measured using a train of
bias current pulses of a given height and counting the number of pulses for which a voltage appears across the SQUID. We

5 The geometric inductance LL of the loop, typically 10 pH is chosen to be negligible as compared to the inductance of both the Josephson junction
L J 	 1 nH and the atomic contact LAC 	 10 nH. In this way, the phase-drop takes place essentially across these two last elements.
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Fig. 7. (a) Left: Switching probability P for an atomic SQUID obtained with sample #1 as a function of the reduced bias current s, for two values of the
external flux. Right: switching probability (color-coded) as a function of both the reduced bias current and flux. The two vertical lines correspond to the two
curves plotted in the left panel. The full black line corresponds to the modulation curve s∗(ϕ) calculated using the full PIN of the contact, taking into account
the contribution of just the Andreev ground state in each channel. The PIN code of the atomic contact was {0.969,0.137}. (b) Left: Switching probability P
for an atomic-SQUID obtained with sample #2 as a function of the reduced bias current s, for two values of the external flux. The upper curve is similar
to those obtained in sample #1 but the lower curve presents a clear intermediate plateau. The PIN code of the atomic contact was {0.994,0.097,0.096}.
Right: switching probability (color-coded) as a function of both the reduced bias current and flux. The two vertical lines correspond to the two curves
plotted in the left panel. The full line corresponds to the modulation curve s∗(ϕ) calculated taking into account the contribution of the Andreev ground
state of all the channels. The dashed line corresponds to the modulation curve calculated for {0.097,0.096}, which excludes the contribution of the most
transmitted channel.

plot in the right panel of Fig. 7(a) the switching probability as a function of both the reduced bias current s = I B/I0 and
the reduced flux ϕ in the loop, for a particular atomic-contact obtained with sample #1 (described in Fig. 6). The left panel
of the same figure shows two examples of P (s) for two different values of flux. One observes that the switching probability
evolves very rapidly from 0 to 1 in a narrow range of bias current which depends on the applied flux. In the following, we
denote s∗ the reduced bias current leading to a switching probability P = 0.5, and refer to s∗(ϕ) as the SQUID “modulation
curve”.

In order to calculate the expected modulation curve one considers the phase dynamics in the full Josephson potential
of the SQUID in the presence of thermal fluctuations [39,43]. The potential is dominated by the Josephson energy of the
junction but contains a contribution which consists of the sum of the ground sate Andreev energies of every channel of the
atomic contact. As shown in the right panel of Fig. 7(a) this model works very well.

In conclusion, for all the contacts that we investigated using sample #1 the current–phase relation measured at low
temperatures is in quantitative agreement with the mesoscopic description of the Josephson effect, considering that only
the ground Andreev state is occupied in each channel. The next step in order to achieve a comprehensive test of the theory
would be to probe the excited Andreev states for example by directly performing spectroscopy of the transitions between
Andreev levels. However, during our first attempts to do so, we observed unexpected but important phenomena which shed
light on the microscopic nature of the system.

4.2. Out-of-equilibrium effects

The experiments presented in the previous sections were performed with atomic-SQUIDs obtained on sample #1, which
was fabricated on top of a metallic substrate and in which the on-chip lines connecting the SQUID to the outside world were
made out of gold, a dissipative metal at low temperature. On the contrary in our first design to attempt microwave Andreev
spectroscopy, in order to minimize dissipation which is expected to limit the lifetime of the excited Andreev levels [44] and
thus broaden the spectral lines, we decided to fabricate the samples on Kapton substrates with all on-chip electrodes made
out of aluminum. Apart from this change of material sample #2 was almost identical to the previous one and in particular
the critical current of the junction was I0 = 295 nA, less than 5% smaller than before. However, as we will discuss now, this
change of material had strong consequences on the overall behavior of the system.

The right panel of Fig. 7(b) shows the measured switching probability as a function of both the flux and the reduced
bias current for a SQUID with an atomic contact of transmissions {0.994,0.097,0.096} in sample #2. As compared to the
previous sample (see Fig. 7(a)) the switching probability P (s) does not vary sharply from 0 to 1 for all values of the
flux. In some flux ranges, it displays a step as a function of the bias current, as shown for ϕ = 0.44 in the left panel
of the same figure. These features appear only in a region bounded by the expected modulation curve s∗(ϕ) and by a
second modulation curve calculated without the contribution of the highest transmitted channel. In other words, in this
region the highest transmitted channel does not seem to always contribute to the total current through the contact. This is
exactly what is expected if the two Andreev states of this channel are either both empty or both occupied, an occupation
configuration achieved when a single quasiparticle is trapped in the Andreev doublet as discussed in Section 3.2. Since the
Andreev states have energies below the superconducting gap the quasiparticles are easily trapped. The fact that this effect
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Fig. 8. Voltage across the atomic-SQUID as a function of time during a sequence of bias current pulses (50 μs period) corresponding to a switching proba-
bility P = 0.2. Each voltage pulse corresponds to a switching event. Left: at a flux value for which the P (s) curve is normal. Right: Similar measurement,
at a flux value for which P (s) displays a step, showing intermittency attributed to the dynamics of single quasiparticle trapping and untrapping in the
Andreev doublet.

Fig. 9. Left: An atomic-SQUID coupled to a microwave resonator, represented here by the LC circuit (in green). The spectrum of the combined system is
probed through microwave reflectometry by weakly coupling the resonator to the external setup through a small capacitor. The signal reflected by the
sample is diverted by a circulator into a microwave amplifier. Right: Example of the expected spectrum (full lines) as a function of the magnetic flux
threading the SQUID loop. The resonance frequency of the bare resonator (green dashed line) is chosen to be 15 GHz, the Andreev frequency (magenta
dashed line) is for a channel of τ = 0.995, and the coupling energy is h × (5 GHz). Note the anti-crossing signaling the hybridization of the two quantum
systems. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

only appears on samples having no large normal electrodes able to efficiently remove the quasiparticles strongly supports
this hypothesis. Moreover, if trapping happens in a flux region for which the critical current gets enhanced by the double
occupancy, subsequent current pulses of the same height would be unable to make the system switch. It is only after the
quasiparticle gets untrapped that switching occurs again. This results in intermittency of switching as quasiparticles trap
and untrap, as shown in Fig. 8. Recently, we have measured the full dynamics of trapping and found that the lifetime of
trapped quasiparticles can be quite long, on the order of 100 μs [45]. This phenomenon is reminiscent of the “poisoning” by
a single quasiparticle observed in single Cooper-pair devices containing small superconducting islands in which the parity
of the total number of electrons actually matters. However, in the case we discuss here quasiparticle trapping occurs in a
constriction between two superconductors, a system containing no island at all and where charging energy does not play a
role.

5. Towards Andreev spectroscopy

As shown in the previous section, up to now only the properties of the Andreev ground state have been probed in detail.
Performing spectroscopy of the transition between two Andreev states is clearly the next important step which we are
presently pursuing along two different lines.

5.1. Microwave reflectometry

The idea here is to couple an atomic SQUID to the electromagnetic field of a coplanar waveguide resonator (left panel
of Fig. 9). By varying the flux threading the SQUID loop the Andreev transition frequency can be brought into resonance
with one of the resonator’s modes. This will result in the hybridization between the Andreev levels and the modes of the
cavity (right panel of Fig. 9). The goal of the experiment would be to detect this hybridization, a strategy that has been
implemented successfully for superconducting qubits [46]. The required technical developments are underway.
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Fig. 10. Left: Experimental setup: a voltage biased Josephson junction capacitively coupled to a dc SQUID. Center: Density of states of the two super-
conducting electrodes of the junction, shifted by eV . Cooper pairs can tunnel only if their energy drop 2eV is absorbed as photons in the modes of its
electromagnetic environment. Right: Measured current (color-coded) through the junction as a function of the voltage V JJ across it (vertical axis) and of the
magnetic flux threading the SQUID (horizontal axis). The flux dependent lines correspond to the excitation of the plasma mode of the SQUID. An example
of the junction I V (for a flux φ 	 .92φ0) is shown in the rightmost panel.

5.2. Inelastic Cooper pair tunneling

The second strategy that we are implementing to perform spectroscopy avoids these challenges by using an on-chip
microwave source and detector. Usually there is no current through a Josephson junction voltage biased below twice the
superconducting gap. However, current peaks can develop in its sub-gap I(V ) curve at voltages 2eV i = hνi if the energy
2eV lost by a Cooper pair tunneling across the barrier can be absorbed as photons by the modes νi of the electromagnetic
environment of the junction, like for example in the case of Dynamical Coulomb Blockade [47,48]. By capacitively coupling
an ancillary Josephson junction to the atomic-SQUID (see Fig. 10) we expect to detect in the I–V of the junction the Andreev
mode of the atomic contact. For the moment we have simply tested this idea on a conventional two-junction SQUID and
detected, as shown in the right panel of Fig. 10, its plasma resonance corresponding to the oscillations of the LC circuit
formed by the Josephson inductance of the junctions and their intrinsic capacitance.

6. Conclusions

Atomic-size contacts between metallic electrodes are now routinely obtained by a variety of techniques. Because the
number of conduction channels they accommodate can be adjusted in-situ, and their corresponding transmission coefficients
are amenable to precise measurement, these structures are model quantum point contacts which can be considered as a
test-bed for mesoscopic physics.

Besides the experiments described here, we have also tested quantitatively the predictions for other transport phenom-
ena: shot-noise in both the normal and superconducting states [49]; dynamical Coulomb blockade in the normal state
[22,50]; the crossover between supercurrent and MAR dissipative current in voltage-biased superconducting contacts [51];
the response of superconducting contacts to microwave irradiation [52]. In all cases the agreement between theory and
experiment is remarkable and the ensemble of results strongly supports the scattering theory of quantum transport.

In the superconducting state atomic contacts are the simplest possible weak-links and perfectly illustrate the key role
played by the Andreev bound states in the Josephson effect. The Andreev states in a short single channel Josephson structure
constitute a two-level system [53] that has been proposed as the basis for a new class of superconducting qubits [54–56,44].
What is particularly interesting and novel is that in contrast with all other superconducting qubits based on Josephson
junction circuits [57] an Andreev qubit is a microscopic two level system more like spin qubits in semiconducting quantum
dots. It can be viewed as a superconducting “quantum dot” possibly allowing manipulation of the spin degree of freedom
of a single quasiparticle [37,58]. As reviewed in this work we have already characterized Andreev states by measuring the
current they carry but the coherence properties of Andreev doublets are a key issue still to be addressed. The relaxation time
of the excited state and the dephasing time of a quantum superposition of the two states have to be measured, understood
and if possible controlled.
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