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In this review we discuss how the nano-electro-mechanical properties of a superconducting
weak link, formed by a suspended nanowire bridging two superconductors, can strongly
affect mesoscopic effects in both the electronic and the mechanical subsystem. In particular
we will discuss how quantum coherence and electron–electron (Coulomb) correlations
may result in the possibility to resonantly redistribute energy between the electronic and
mechanical degrees of freedom, allowing controllable switching between pumping and
cooling of the nano-mechanical vibrations of the suspended nanowire. The two regimes
of a given current and a given voltage supplied to the nano-electro-mechanical weak link
is considered, resulting respectively in the possibility of ground-state cooling or resonant
generation of nano-mechanical vibrations for realistic experimental parameters.
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r é s u m é

Dans cet article nous décrivons comment les propriétés nano-électromécaniques d’une
connexion faible formée par un nanofil suspendu entre deux supreconducteurs, peut
fortement affecter les effets mésoscopiques dans le sous-système électronique comme
dans le sous-système. Nous décrirons en particulier comment la cohérence quantique et
les corrélations de Coulomb entre électrons peuvent rendre possible une redistribution
résonante de l’énergie entre les degrés de liberté électroniques et mécaniques, permettant
d’alterner de façon contrôlée le pompage et le refroidissement des vibrations nano-
mécaniques du nanofil. On considère deux régimes dans lesquels on fixe soit le courant,
soit la tension agissant sur la connexion nano-électromécanique, le résultat étant respec-
tivement un refroidissement dans l’état fondamental ou la génération résonante de
vibrations nano-mécaniques, obtenus pour des paramètres expérimentaux réaliste.
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Fig. 1. Schematic diagram of the system under consideration. (Left) A suspended nanowire of length L forms a weak link between two current-biased
superconducting leads. The transverse magnetic field H is applied perpendicular to the nanowire. (Right) The equivalent electronic circuit. A constant
current I is applied to the Josephson junction which is connected in parallel to a capacitor C and a resistance R .

1. Introduction

In this review we will discuss how the coupling between conduction electrons and mechanical bending modes in nano-
electro-mechanical systems (NEMS) may provide not only signal transduction between electrical and mechanical degrees
of freedom but also cause energy to be transferred between the two subsystems. In principle, energy may flow in either
direction over a sustained period of time, which means that the nano-mechanical subsystem can be either heated or cooled,
depending on the mode of operation of the device. We will describe heating as the result of an “electro-mechanical” energy
flow (to the mechanical subsystem) and associate cooling with a “mechano-electronic” energy flow (from the mechanical
subsystem). The question of the direction of the energy flow and how to control it externally is one of the most important
issues in modern NEMS research, not only for fundamental research but also for practical applications. While the pumping
of energy transferred from the electronic degrees of freedom into the mechanical subsystem provides the most conventional
form of actuation in electro-mechanical devices to date, see e.g. Refs. [1–13], the electronic cooling of nano-mechanical
systems is of central importance in the current discussion of quantum manipulation of mechanical degrees of freedom [14–
24].

By reducing the size of the electro-mechanical devices one decreases the number of degrees of freedom available to the
system, thereby restricting the applicability of conventional macroscopic thermodynamics for describing the energy flow
through such devices. The eventual failure of the macroscopic approach is due to the increasing role of fluctuations in sys-
tems with fewer and fewer degrees of freedom. Two regimes can be distinguished; one is the microscopic regime, where the
degrees of freedom really are very few and hence fluctuations are important, and the other is the mesoscopic regime where
in spite of the fact that the number of degrees of freedom is not small, fluctuations in observable quantities are nevertheless
large. While the microscopic regime is now coming under discussion [25], the regime of mesoscopic energy transfer can
readily be reached in sub-micron samples. We will show that in this case two prominent mesoscopic effects – quantum
coherence and Coulomb blockade of tunnelling – qualitatively affect the energetics of nano-electro-mechanical devices. In
doing so, we will consider a particular type of nano-electro-mechanical device, where a suspended nanowire is allowed
to carry an electrical current in the presence of an external magnetic field, see Fig. 1. The electromotive coupling induced
by the magnetic field serves to couple the flexural vibrations of the nanowire to the electrical current flowing through it.
Below, we analyse how this coupling may modify the mechano-electronic and electro-mechanical energy transfer when the
electronic leads connecting the system are superconducting. The motivation behind the choice to study superconducting
devices is that these systems are the best candidates for observing both macroscopic quantum coherence and Coulomb
blockade phenomena, making them ideal candidates for detection and manipulation of the mechanical vibrations at or close
to the quantum limit, see e.g. Refs. [26–32].

The outline of this article is as follows. In Section 2 we introduce the reader to the concept of nano-electro-mechanics
in Josephson weak links. In Section 3 we analyse how the electro-mechanical coupling induced by the magnetic field may
result in pumping of the suspended nanowire vibrations, thereby transferring energy from the electronic to the mechanical
degrees of freedom in a voltage-biased junction. By instead current-biasing the junction we show in Section 4 that the same
coupling can be used to transfer energy in the opposite direction, thereby cooling the vibrations of the suspended nanowire
to close to the quantum limit. Finally we summarise our findings in Section 5.

2. Mesoscopic nano-electro-mechanics of Josephson weak links

A Josephson weak link that is short on the scale of the superconducting coherence length ξ = h̄v F /�0, where v F is the
Fermi velocity and �0 is the superconducting gap, can be thought of as an interface between two superconductors and
phenomenologically characterised by a transmission probability D . A nonzero transmission probability implies a coupling
between the two superconductors, which in the limit D � 1 forms a weak superconducting link. The quantum coherence of
the electronic Andreev states, which form at the interface and are responsible for this coupling (see Ref. [33] and references
therein), gives rise to a strongly nonlinear dependence of the electrical current through the weak link on φ, that is on the
phase difference between the superconducting condensates on either side of the interface. This nonlinear dependence is
of course manifested in the dc and ac Josephson effects. Coulomb correlation effects, caused by accumulation of charge at
the interface as a result of electronic back-scattering, may make it necessary to treat φ as an operator φ̂ with quantum
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dynamics, rather than as a c-number. Both the quantum dynamics of the superconducting phase difference φ and the
nonlinear dependence of the current through the Josephson weak link on φ appear for small enough weak links (either in
a direction parallel to or perpendicular to the current) and should be considered as mesoscopic properties of the device.

The Andreev states, which appear at the interface between the two superconductors due to the Josephson coupling
between them, can be viewed as the degree of freedom of the device responsible for the supercurrent flow. The device is
sketched in Fig. 1, where the phenomenologically introduced capacitance C and resistance R characterise the electrostatic
response of the device to the electric charge accumulation and the dissipation due to quasi-particle excitations, respectively.

The quantum dynamics of the Josephson weak link can be described through the following Hamiltonian [34],

Ĥ = 4Ecn̂2 − E J cos φ̂ (1)

Here, the n̂ = ∂/∂φ̂ is the canonical conjugate operator to the superconducting phase operator φ̂ and represents the electrical
charge transferred between the superconductors due to the tunnelling of Cooper pairs [35]. In (1), Ec = e2/(2C) is the
Coulomb energy and E J is the Josephson energy with e the electronic charge.

Zero point oscillations of the superconducting phase defined in the Hamiltonian (1) are of order δφ ∼ Ec/E J . In the limit
of negligible Coulomb effects, Ec � E J , quantum fluctuations of the superconducting phase disappear, and the classical
dynamics of the superconducting weak link is recovered. For the case when the junction is biased by a voltage V , it follows
that

I = Ic sinφ (2a)
∂φ

∂t
= 2eV

h̄
(2b)

Here, I is the current through the device and Ic = (2e/h̄)E J is the critical current. Eqs. (2) imply that in the limit of weak
Coulomb effects, the current through the device is dictated by the phase difference according to Eq. (2a).

For the case when Coulomb correlations cannot be neglected, the quantum dynamics of the weak link is governed by the
Hamiltonian (1). In this case, the ground state wave function is localised to the minima of the Josephson potential, which
occur for φ = 2nπ , n = 0,1,2,3 . . . . By expanding the potential in the vicinity of these minima, weakly excited electronic
states are obtained corresponding to a spectrum of electronic states separated by the Josephson plasma oscillation frequency
ωp ,

Ek = (k + 1/2)h̄ωp = (k + 1/2)
√

8Ec E J , k = 0,1,2,3, . . . (3)

In this case, the current through the system is given as the quantum average of the derivative of the Hamiltonian with
respect to the operator φ̂. To account for this under conditions when the device is biased by a constant current I one may
modify the Hamiltonian (1) to include the Lagrange multiplier − jh̄φ̂ where j = I/(2e),

Ĥ = 4Ecn̂2 − jh̄φ̂ − E J cos φ̂ (4)

For the devices considered here, mechanical degrees of freedom are introduced through the flexural vibrations of the sus-
pended nanowire [36–39].1 The electronic degrees of freedom are affected by the inclusion of the mechanical element either
through a shift of the electronic energy levels or as a change in the electronic tunnelling probability due to displacements
of the nanowire. If these two mechanisms of electro-mechanical coupling appear simultaneously, an electro-mechanical
shuttle instability may occur due to the transfer of electronic charge through the device [1]. Additional possibilities for
nano-electro-mechanical operation occurs if the movable element is part of a superconducting weak link. In this case, time
dependent dynamics of the system may occur even at dc driving of the system. As a result, resonant electro-mechanical
coupling can be achieved even if only one of the two coupling mechanisms mentioned above is present. In this review we
will focus on the specifics of these mechanisms for the case of superconducting weak link junctions.

The physics of electro-mechanical coupling considered here can be based either on displacement dependent charge
accumulation at the weak link or on electromotive coupling to the electronic current flowing through the device. In the
first case, a so-called polaronic coupling occurs through the time dependent electrostatic force on the wire due to variation
(in time) of electronic charge injection into weak link. In a second case, which is only possible when an external magnetic
field is applied, a Lorenz force (and complementary to it an electromotive force) are responsible for the mutual influence
of mechanical and electronic degrees of freedom. These electromotive coupling mechanisms will here be considered as
examples of nano-electro-mechanical phenomena. Here we neglect the removal of the spin-degeneracy of electronic energy
levels by the magnetic field, considering the energy shift 2muB H (μB is the Bohr magneton) to be small on the scale of
the relevant energies E J and Ec . However, under different circumstances this energy shift can be responsible for nonlinear
effects in the transport of spin-polarised electrons in magnetic devices [41].

1 Systems where the mechanical degrees of freedom are introduced as a displacement of the centre of mass of the weak link with respect to the bulk
leads or a gate electrode were discussed in Ref. [40].
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The flexural vibrations of the suspended nanowire that forms the weak link may be described by expanding the motion
of the nanowire in its normal modes. Under such considerations, the mechanical displacement of the nanowire can be
formulated as a set of harmonic oscillations expressing the dynamics of the amplitude of oscillation as a function of time.
By considering resonant coupling of electrons to such modes (as well as a significant difference in frequency between
different modes) we may restrict our analysis to consider the effects of the electro-mechanical coupling with only a single
vibrational mode which we here take to be the lowest flexural mode whose eigenfrequency we denote by ω.2 Depending
on the level of description of the evolution of the mechanical degrees of freedom, we may considered either a classical
Newtonian or quantum mechanical description for the displacement of the nanowire. In a first case the equation of motion
of the flexural vibrations of the nanowire is given by,

mü + γ u̇ + mω2u = Fel (5)

In (5), u is the displacement of the central part of the wire in the direction perpendicular to its longitudinal axis, γ is a
phenomenological damping coefficient introduced to account for dissipation in the mechanical subsystem, m is the mass of
the nanowire and Fel is the force acting on the nanowire due to the electro-mechanical coupling. If instead the quantum
description applies, the dynamics of mechanical displacement is determined by the harmonic-oscillator Hamiltonian

Ĥmech = h̄ω
(
b̂†b̂ + 1/2

)
(6)

where b̂ [b̂†] are operators which annihilate [create] one quantum of mechanical vibration. For the case of a quantum
description, any effect of damping (either of the mechanical or electronic subsystem) has to be included phenomenologically
in the evolution of the associated density matrix (see Section 4).

In the absence of quantum fluctuations, the classical description of the mechanical degrees of freedom is sufficient to
describe the system (see Section 3). In this case, we find that energy may be pumped into the mechanical system, resulting
in a large amplitude of mechanical displacement at resonant driving. If these fluctuations may not be neglected, a full
quantum analysis is needed (Section 4) in which case we find that we may also use the electronic subsystem to cool the
mechanical vibrations of the nanowire to close to the quantum ground state.

Finally, the effects of the mechanical displacement on the electronic subsystem should be addressed. As will be discussed
further below, these effects may be included into the analysis of the electro-mechanical system through a renormalisation
of the evolution of the superconducting phase in the Josephson term of the electronic energy. Such a renormalisation takes
into account the additional voltage drop (electromotive force) caused by the mechanical motion of the current carrying
conductor in the presence of an external magnetic field (see Ref. [45]),

φ → φ − 4eLHu

h̄
(7)

The problem of the coupled electro-mechanical dynamics in nano-electro-mechanical weak links formulated above will
be considered in the following sections. There we will focus on the effects of quantum coherence and Coulomb correlations
and how these determine the observable phenomena due to the electro-mechanical coupling. In the next section (Section 3),
the effects of Coulomb blockade will be neglected, a restriction which is valid as long as the Josephson coupling is the
dominant mechanism. In Section 4 we relax this restriction to consider also the effects of Coulomb correlations on the
electro-mechanics of the device.

3. Superconductive pumping of nano-mechanical vibrations

In the first instance we will consider the possibility to transform electronic energy to mechanical energy in a voltage-
biased nano-electro-mechanical junction as was originally analysed in Ref. [45], see Fig. 1. The junction considered is taken
to have low transparency to electrons tunnelling between the leads such that a Josephson-type description of the electronic
degrees of freedom is applicable. Through the use of a transverse magnetic field we show that the alternating supercur-
rent over the junction, provided by the applied battery, couples to the mechanical degrees of freedom through the induced
Lorentz force. Below we analyse the outcome of this coupling and show that pronounced vibrational motion of the sus-
pended nanowire can be achieved at resonant conditions. These vibrations are associated with an energy transfer from the
battery to the vibrations of the nanowire, where the mechanical damping γ dictates the efficiency of this energy transfer.3

In the low transparency limit, D � 1, the bound Andreev states which describe the electronic degrees of freedom in the
system are widely separated in energy and the current through the wire is to a good approximation given by the Josephson
relation (2). For the parameters considered, Ic = D�0e/(2h̄) ∼ 100 nA is the critical current where �0 ∼ 10 meV. In what
follows, we perform a classical evaluation of the pumped vibrations for the case of a nanowire of length L ∼ 1 μm in a
magnetic field H ∼ 20 mT.

2 Coupling to the higher modes may also be considered, see e.g. Refs. [42–44].
3 The inductive coupling between flexural wire vibrations and the supercurrent flow in a SQUID loop has been considered in Refs. [46,47,31,32].
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Fig. 2. Numerical simulation of Eq. (8) for the time-averaged vibrational amplitude A = √〈Y (t)2〉 as a function of the bias voltage Ṽ for two different
driving strengths ε .

The Josephson relation implies that the current I through the wire will oscillate in time as the phase difference changes
due to the applied bias voltage V . The transverse magnetic field now serves two purposes. First, it will induce a force on
the wire due to the current through it, the Lorentz force, which is proportional to the product Ic LH . Secondly, the motion of
the wire in the magnetic field will induce an electromotive force which tries to oppose the motion causing it.4 In Ref. [45]
we show that the expression for the electromotive force can be formally derived from the Bogoliubov–de Gennes equation
which describes the electronic degrees of freedom of the superconducting junction (see also Ref. [48] for further details of
this derivation). The outcome of this analysis is that the phase difference over the junction depends on the motion of the
nanowire in the magnetic field φ̇(t) ∝ V − LHu̇(t) where u(t) is the vibrational amplitude of the nanowire and the dots
indicate the time derivative. Alternatively this can be seen as the back-action on the electronic system from the motion of
the nanowire in the magnetic field.

The magnetic field thus determines both the force on the wire due to the flow of charge carriers through it and the
evolution of the phase difference due the motion of the wire. Formally this is described by the dimensionless equations of
motion (see Eq. (5)) for the deflection coordinate Y (t) = u(t)4eLH/h̄ and phase φ(t),

Ÿ + γ̃ Ẏ + Y = ε sin(φ) (8a)

φ̇ = Ṽ − Ẏ (8b)

where time is measured in units of 1/ω. In (8), γ̃ = 1/Q is the damping coefficient of the nanowire where Q is the
mechanical quality factor, Q ∼ 1000. The electro-mechanical coupling is here given by ε = 8e2 H2L2 Ic/(mh̄ω2) which gives
the driving strength on the nanowire. Finally, Ṽ = 2eV /(h̄ω) is the dimensionless bias voltage. Following Ref. [45] we
consider the suspended nanowire in the form of a carbon nanotube for which the lowest vibrational mode is ω ∼ 1 GHz.

The dynamics of the vibrating nanowire is governed by Eqs. (8). Performing detailed numerical and analytical analysis
we find that the effect of the electro-mechanical coupling is that the vibrations of the nanowire can be pumped to finite
amplitude under resonant conditions as depicted in Fig. 2. Furthermore, we find that this pumping not only occurs at the
resonance frequency Ṽ = 1 but also that the parametric resonance Ṽ = 2 can be excited at higher driving force as displayed
in Fig. 2(b).5 In Ref. [45] it is shown that this behaviour is well explained through the two stability equations,

Ẋn = −γ̃ Xn − 2εn Jn(
√

Xn ) sinχn (9a)

χ̇n = −δ − 2εn J ′
n(

√
Xn ) cosχn (9b)

where the amplitude Xn and phase χn are slow functions of time at resonance (see Appendix A for a derivation of the
stability equations). In (9), Jn are Bessel functions of order n = 1,2, . . . with J ′

n being the derivative with respect to Xn and
δ = Ṽ − n measures the voltage offset from resonance.

The system considered will perform stable motion (vibrations with constant amplitude) if neither the amplitude Xn nor
phase χn change in time, i.e. both equations (9) are simultaneously 0. At resonance, δ = 0, this is found either at fixed phase
cosχn = 0 or fixed amplitude J ′

n(
√

Xn ) = 0. For the parametric resonance Ṽ = 2 such motion is only found once the driving
force is ε � εI = 2γ̃ , whereas the first resonance peak is always present at finite driving. Also, the vibrational amplitude is
initially an increasing function of the driving force (for both peaks), which eventually saturates to finite vibrations once the
driving force is ε � εII = γ̃ X∗

n/(2n Jn(
√

X∗
n )) where X∗

n corresponds to the fixed amplitude solution J ′
n(

√
X∗

n ) = 0 as shown
in Fig. 3(a).6

4 This is Lenz’s law; the induced current (or in this case phase) is always in a direction which is opposite to the change causing it.
5 Also higher resonance modes, i.e. Ṽ = 3,4, . . . can be found. However, by choosing the nanowire to be initially at rest these solutions cannot be reached

as their region of stability is separated from the origin by a separatrix.
6 The notation X∗

n and A∗
n = √

X∗
n is used interchangeably throughout this section. In Ref. [45] these are referred to as A0.
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Fig. 3. (a) Numerical simulation of the vibrational amplitude, Eq. (8), at the second resonance as a function of the driving strength. (b) Plot of the solution
Ẋ2 = 0 in (9) for χ2 = 3π/2 for three different driving strengths, ε < εI (dot-dashed (green) line), εI < ε < εII (dashed (black) line) and ε > εII (solid (red)
line). (c)–(d) Corresponding stability diagram for the amplitude and phase as a function of the driving strength.

These phenomena are explained through the solution of (9). At δ = 0 there always exists a solution Xn = 0 (no periodic
vibrations of the wire). The stability of this solution is found by considering the expansion of the Bessel functions for small
arguments X , Jn(

√
X ) ∼ Xn/2. With this one finds that the solution Xn = 0 is always unstable for n = 1 and becomes

unstable for n = 2 at ε > εI = 2γ̃ . Thus, the peak at Ṽ = 1 is always present for nonzero driving, whereas the peak at
Ṽ = 2 is only found once ε > εI as shown in Figs. 3(a) and 3(c). At larger driving strengths ε > εI , the amplitude is an
increasing function of ε (fixed phase solution) corresponding to the crossing of the two curves in Fig. 3(b). However, once
the driving is large enough that this crossing moves past X∗

n , the fixed phase stability point becomes a saddle point and the
system follows the trajectory of the fixed amplitude solution. This is shown in Figs. 3(c) and 3(d), from which we infer that
the nanowire vibrates at the finite amplitude A∗

n for all ε > εII if driven at resonance. A final check of the validity of the
stability analysis is to analyse the numerical solutions for the different resonance peaks (different n) at δ = 0 over the type-I
regimes. From (9) we expect the ratio Xn/(nε Jn(

√
Xn )) to be constant for all peaks at a given γ̃ in this regime. Comparing

this with the numerical simulations we find excellent agreement.
Moving off resonance, |δ| �= 0, one finds the width of the peaks by solving for δ in Eqs. (9),

(
γ̃ Xn

2εn Jn(
√

Xn )

)2

+
(

δ

2εn J ′
n(

√
Xn )

)2

= 1 (10)

For the parametric resonance n = 2 this implies that the total width of the peak is 2|δ| = 2(ε2/4 − γ̃ 2)1/2. Furthermore,
Eq. (10) has two stable solutions for the vibrational amplitude within the interval (−δc, δc) at ε > εII . These solutions
correspond to a separation of the fixed amplitude solutions in phase space with one solution being larger and the other
smaller than the fixed amplitude solution X∗

n at small |δ|. This is shown in Fig. 4(b) for the second resonance peak. As |δ|
is increased the solution which is larger than I∗n merges with the saddle point (defined by the fixed phase solution) at |δc |
and only one stable point (corresponding to the low amplitude solution) remains at larger |δ|. Close to the transition to
the fixed amplitude solution, ε = εII + �ε with �ε � εII , the width of the window of bistability 2δc scales as (�ε)3/2 as
discussed in Appendix A.

The pumping of the mechanical vibrations draws energy from the battery connecting the junction. This implies a finite dc
current Idc through the junction. At resonance this current provides the energy necessary to compensate for the mechanical
dissipation associated with γ̃ ,

Idc = γ̃ 〈Ẏ 2〉mh̄ω2

2 2
= γ 〈u̇2(t)〉

(11)

8eL H Ṽ V
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Fig. 4. Phase space diagram for the second resonance peak at ε > εII . In (a) δ = 0, two solutions can be found at the same amplitude. In (b) 0 < δ < δc ,
the solutions are separate in phase space. The dashed line corresponds to the fixed amplitude solution. (c) Current through the system at δ = 0 at the
parametric resonance as a function of the magnetic field. Here, HII is the magnetic field corresponding to εII .

Physically this implies that the current scales with the time-average velocity squared (see Appendix A for details on the
derivation of the dc current). As the velocity Ẏ and amplitude Y of the mechanical motion of the wire behave phenomeno-
logically equivalent at resonance this implies that the system originally analysed in Ref. [45] displays both positive and
negative differential magnetoresistance. To see this, consider at first the system when driven at resonance δ = 0 in the
regime εI < ε < εII . In this range, the amplitude is an increasing function of the magnetic field and the current corre-
spondingly increases with H (negative magnetoresistance). However, once ε > εII the vibrational amplitude saturates, and
the current scales as H−2 under which conditions the system displays positive magnetoresistance. The transition between
these two regimes is experimentally observable as a cusp as seen in Fig. 4(c). The observable dc current through over the
junction has been estimated to Idc ∼ 50 nA which corresponds to a vibrational amplitude of the mid-point of the nanowire
of ∼ 25 nm.

4. Cooling of a voltage-biased vibrating superconducting weak link

Next we turn our attention to the possibility to transfer energy from the mechanical to the electronic subsystem, thereby
cooling the motion of the suspended nanowire resonator. The analysis presented below was originally published in Ref. [49]
and considers a similar experimental setup as in the section above, however we now consider the junction to be biased by
a constant current rather than a constant voltage.7 In this section we thus consider the possibility to cool (rather than heat)
the mechanical vibrations of the nanowire through the absorption of mechanical vibrons by the electronic subsystem. In
order to do so, we perform a full quantum calculation of the system where the electronic degrees of freedom are described
through the so-called RCSJ-model and analyse the possibility to cool the vibrations of the nanowire through a phenomenon
known as macroscopic quantum tunnelling.

In the RCSJ-model, the current-biased Josephson junction is modelled as a circuit element connected in parallel to a
capacitance C and a resistance R as shown in Fig. 1. As we discussed in Section 2, in this kind of junction the time-
evolution of the phase difference φ is described through an equation which is equivalent to that of a particle moving in a
tilted cosine potential. This potential is usually referred to as the tilted washboard potential (see e.g. Ref. [52]) an example
of which is shown in Fig. 5 where the tilting angle is proportional to the bias current I and the height and width of the
valleys is determined from the physical parameters of the Josephson junction.

By changing the bias current the tilt of the washboard potential can be altered. In particular this implies that the phase
φ can be highly localised to one of the minima of the potential if h̄ I/(2e) < E J . The equation for the phase in any one of

7 In the case of a voltage-biased junction the mechanical subsystem can also be cooled to close to the quantum limit, see Refs. [50,51].
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Fig. 5. Schematic diagram of the tilted washboard potential U (φ) = −E J cosφ − jh̄φ as a function of phase φ at current-bias I = e/π(ωp −ω). Here, l labels
the valleys of the potential and σ = ↑,↓ are the two energy levels within the valleys considered. In the above, ΦT is the inelastic tunnelling amplitude
between two energy levels in consecutive valleys. The quantity Γ is the transition rate from the second to the first level within a valley generated by
interactions with the quasi-particle environment (see text).

the valleys of the tilted washboard potential is phenomenologically equivalent to that of a particle trapped in a virtually
parabolic well. Under such conditions, one expects quantised energy levels for the phase inside the valleys of the potential
as indicated in Fig. 5 (see Ref. [34] for a more detailed discussion). Experimentally, this prediction has been confirmed in
association with tunnelling of the quantum phase from bound energy states between consecutive valleys of the washboard
potential, a phenomenon which is known as macroscopic quantum tunnelling (MQT), see e.g. Refs. [53–55]. This kind of
under-barrier tunnelling is the underlying cooling mechanism considered in this analysis.

In Ref. [49] we analyse how the coupling between the electronic degrees of freedom and the oscillating nanowire affects
the dynamics of the system. The magnetic field is here considered to provide the electro-mechanical coupling in a similar
way as in the previous section. This implies that we treat the motion of the short (compared to the superconducting
coherence length) nanowire in the magnetic field as resulting in a modulation of the evolution of the phase difference,
φ → φ − 4eLHu/h̄ where all the symbols have the same meaning as in the previous sections. Under such considerations the
quantum Hamiltonian describing the system is given by Eq. (12), a derivation of which is given in Appendix B starting from
the analysis of Ref. [45],

Ĥ = 4Ecn̂2 − jh̄φ̂ − E J cos(φ̂ − Φû) + h̄ωb̂†b̂ (12)

In (12) the conjugate quantum variables n̂ and φ̂ describe respectively the electronic charge and phase over the junction
([φ̂, n̂] = i). The operator û = b̂ + b̂† is the deflection of the nanowire which is here treated as a quantum oscillator where b̂
[b̂†] annihilate [create] a vibrational quantum. Here, Φ = 4gπ LHuzp/Φ0 is the electro-mechanical coupling constant where
g is a geometric factor of order unity, uzp is the zero point amplitude of the nanowire oscillator and Φ0 = π h̄/e.

The conditions outlined above implies the inter-level spacing between the two lowest energy levels within a given valley
of the washboard potential, h̄ωp = (8E J Ec)

1/2, is much smaller than the height of the barrier separating the different valleys,
see Fig. 5. Under such conditions, the quantum phase is trapped in the minima of the potential, however it may tunnel
under the barrier separating two consecutive valleys, thereby resulting in a potential drop over the junction, φ̇ ∝ V . Such
macroscopic quantum tunnelling events are greatly promoted if the two energy levels involved in the process are resonant,
which can be controlled by the external bias current. With this, we define the critical current I∗ as the current which
ensures that the lowest (first) level is resonant with the second level in the next valley, I∗ � eωp/π [34]. This condition
also implies that we may neglect all but the two lowest energy levels as the overlap between the higher energy levels
will be small if the energy separation between the two lowest levels is of the order of h̄ω (for experimental parameters
ω � ωp).

The electro-mechanical coupling induced by the magnetic field implies that MQT can in the present situation also be
accompanied by emission/absorption of a quantum of mechanical energy.8 To analyse the effect of this coupling we per-
form a WKB calculation (see Ref. [34] for reference) for the overlap integrals for both the elastic (no interaction with the
mechanical subsystem) and inelastic (absorption/emission of a mechanical vibron by the electronic subsystem) tunnelling
channels. From this analysis we find that the inelastic tunnelling channels ∝ Φ(b̂ + b̂†) are proportional to the elastic tun-
nelling amplitude T ∝ h̄ωp exp(−π(E J /(2Ec))

1/2) under conditions of strong quantisation, 4Ec/E J � 1. With this, we may
express the inelastic tunnelling amplitudes as ΦT , where the inelastic absorption [emission] channel is associated with the
absorption [emission] of one quantum of energy h̄ω from the mechanical to the electronic subsystem. This is shown in Fig. 5
where the absorption channel is assumed to be in resonance I = I∗ − eω/π , i.e. the two bound energy states are separated
by one quantum of mechanical energy h̄ω. Note that due to the large separation in energy ω � ωp , the electro-mechanical
coupling will not introduce additional tunnelling channels between the higher levels.

8 Here, we consider only the linear expansion of the Hamiltonian (12) in the coupling parameter Φ < 1.
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Tunnelling through the inelastic channels changes the number of mechanical vibrons in the system. Below we show that
this may result in cooling (heating) of the mechanical subsystem if the absorption (emission) channel is resonant. A further
condition to ensure that the cooling processes discussed here will lower the effective temperature of the nanowire oscillator
is that the electronic subsystem, once in the second energy level, relaxes to the lower level in the same valley at a rate Γ

which is faster than the rate at which the system tunnels back with the emission of a vibron, Γ > T /h̄. Such relaxation
of the electronic subsystem arises from interactions with the quasi-particle environment in the superconducting leads. In
Ref. [49] these effects are included in the analysis through the phenomenological resistance R , see Fig. 1 with Γ = 1/(RC)

the electronic decay rate [56]. Furthermore, interactions with the quasi-particle environment lead to broadening of the
energy levels of the order of �ωp = ωp/(2Q el). For the system considered it is reasonable to assume Q el � 1, which
implies that the influence from the electronic quasi-particle environment on the tunnelling processes is negligible [34,56,
57].

To perform a quantitative analysis of the system we introduce the basis |l, σ 〉 where σ =↑,↓ labels the energy levels
inside a given valley (↓ is the first and ↑ is the second level) and l labels the valleys of the tilted washboard potential. In
this basis the Hamiltonian (12) reads,

Ĥ = Ĥ0 + ĤT

Ĥ0 =
∑
l,n,σ

(
Fl,σ + h̄ωb̂†b̂

)|l,σ 〉〈l,σ |, ĤT =
∑

l

T
(
Φ

(
b̂ + b̂†) + 1

)|l + 1,↑〉〈l,↓| + h.c. (13)

In the above, Fl,σ = h̄ωpmσ − lπ h̄ I/e are the eigenvalues for the electronic degrees of freedom in the basis |l, σ 〉, where
m↑ = 1 and m↓ = 0. It is clear from the above that the number of mechanical vibrons in the system can change through
macroscopic quantum tunnelling of the electronic system from one valley to the next. The joint dynamics of the electronic
and mechanical degrees of freedom is described through the Liouville–von Neumann equation for the density matrix ρ̂ of
the system,

∂ρ̂

∂t
= − i

h̄
[Ĥ0 + ĤT , ρ̂] + Ĵ (ρ̂) + γ (1 + nB)Lb̂(ρ̂) + γ nBLb̂†(ρ̂) (14)

Here, Ĵ (ρ̂) is a phenomenological damping operator for the electronic system,

Ĵ (ρ̂) = −Γ

2

∑
l

{
ρ̂|l,↑〉〈l,↑| + |l,↑〉〈l,↑ |ρ̂} + Γ

∑
l,l′

|l,↓〉〈l,↑|ρ̂|l′,↑〉〈l′,↓| (15)

which derives from the resistance R as discussed above [34]. In (14), the operator Lâ(ρ̂) = (2âρ̂â† − â†âρ̂ − ρ̂â†â)/2, is the
standard Lindblad operator which models interactions between the oscillator and the thermal environment. Here, γ = ω/Q
is the mechanical damping rate and nB = (exp(βh̄ω) − 1)−1, where β = (kB T )−1, is the average number of vibrons in
thermal equilibrium.

Below we investigate the stationary solution to (14). To find this solution we perform a standard perturbative analysis in
the small parameters T /(h̄Γ ), γ /Γ ∝ ε � 1 and look for a solution of the density matrix of the form ρ̂ = ρ̂0 +ερ̂1 +ε2ρ̂2 +
· · · (see Appendix B for a full derivation of the results presented below). Substituting this into (14) one finds that the leading
order solution ρ̂0 has the form ρ̂0 = ∑

l,n |l,↓,n〉ρ0(l,↓,n)〈l,↓,n|, where the index n labels the Fock state of the oscillator.
From (14) we also calculate the first order correction to the density matrix ρ̂1 = ∑

l,n, j=−1,0,1 |l + 1,↑,n + j〉c j(l,n)〈l,↓,n|+
h.c. With this, the equation for the second order term, ρ̂2, can only be resolved if the coefficients P (n) = ∑

l ρ0(l,↓,n) –
which give the population of the vibrational modes of the oscillator – satisfy the following equation,(

Γ− + γ (1 + nB)
)[

(n + 1)P (n + 1) − nP (n)
] + (Γ+ + γ nB)

[
nP (n − 1) − (n + 1)P (n)

] = 0 (16)

Here, Γ j are the tunnelling rates; j = −,0,+ is respectively the absorption, elastic and emission channel,

Γ± = Γ
4Φ2T 2

4(�F±)2 + h̄2Γ 2
, Γ0 = Γ

4T 2

4(�F0)2 + h̄2Γ 2

�F0 = Fl+1,↑ −Fl,↓, �F± = �F0 ± h̄ω

Tunnelling of the phase introduces a potential drop over the Josephson junction as discussed above. To analyse this we
introduce the operator for the potential drop V̂ = i[Ĥ, φ̂]/(2e) (in our representation φ̂ = 2π

∑
l,σ |l, σ 〉l〈l, σ |),

V̂ = π

ie

∑
l

T
(
Φ

(
b̂ + b̂†) + 1

)|l + 1,↑〉〈l,↓| + h.c. (17)

This implies that the bias voltage, V = Tr(V̂ ρ̂), is zero (the phase is stationary) to leading order in ρ̂ , and that the potential
drop is given by the first order correction to the density matrix, V = Tr(V̂ ρ̂1). Solving Eq. (16) one finds that the results for
the coefficients P (n) correspond to a thermal distribution of vibron excitations characterised by an effective temperature,

Teff = h̄ω
[

ln

(
Γ− + γ (1 + nB)

)]−1

(18)

kB Γ+ + γ nB
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Fig. 6. Average vibron population (solid) and bias voltage (dashed) in the stationary regime as a function of the current bias. Here, Φ = 0.3, Γ = ω/4,
T = h̄ω/20, nB = 20 and Q = 105.

which is different from the ambient temperature T except in the limit γ � Γ± . Furthermore, the analytical solution for the
average number of vibrons, 〈n〉 = ∑

n nP (n) and the bias voltage V are given by

〈n〉 = nBγ + Γ+
γ + Γ− − Γ+

(19)

V = π h̄

e

(
Γ−〈n〉 + Γ0 + Γ+

(〈n〉 + 1
))

(20)

Note that he potential drop in the stationary regime scales with the elastic tunnelling rate, Γ0 and the average vibron
occupancy. This is consistent with the physical processes discussed, i.e. in the limit γ ,Γ+ → 0 we get 〈n〉 = 0 (complete
ground state cooling as no heating channel is open) and V ∝ Γ0 (the system moves down the potential at the rate Γ0
which conserves the number of vibrons). Note, however, that Γ0 does not enter into the analytic solution of 〈n〉. This can
be understood as MQT through the elastic channel does not change the number of vibrons in the system.

In Fig. 6 we plot both the average stationary population of the mechanical subsystem and the corresponding voltage drop
as a function of the bias current. As expected, the lowest occupation is achieved when I = I∗ − eω/π (see Fig. 5). In this
regime, we find that ground state cooling of the mechanical subsystem is possible if the resolved side-band limit, ω > Γ , is
achieved. Under conditions when the bias current is I > I∗ the tunnelling events discussed above will lead to pumping of
the mechanical subsystem, in which case the above analysis does not apply once the limit T (〈n〉 + 1) ∼ h̄Γ is reached.

5. Conclusion

We have shown that mesoscopic phenomena can prominently affect the superconducting electro-mechanics on the
nanometre length scale. In particular, we have described how quantum coherence and Coulomb correlations can control
the redistribution of energy supplied to the NEM device from an external voltage or current source, resulting in a tun-
able switching between pumping or cooling of the nano-mechanical vibrations. Both these effects, i.e. mechano-electronic
and electro-mechanical energy transformation, can be detected electronically through observations of current spikes in the
voltage-biased setup and voltage spikes in the current-biased mode of operation. For both setups we have considered re-
alistic experimental parameters and find that pronounced mesoscopic phenomena is expected in the electro-mechanical
operation of the device. As an example, the level of cooling achievable for the current-biased geometry is sufficient to
maintain the nanowire close to its ground state.

In this review we have considered only the limit of strong electronic back-scattering, when only a single Andreev level
is involved in the NEM dynamics. In the opposite limit of a nearly ballistic superconducting weak link, the Andreev level
spacing can be significantly reduced. In this case, inter-Andreev level transitions assisted by the absorption/emission of a
vibrational quantum also become possible [58,59], a phenomenon which is observable as a reversal of the direction of super-
current flow. As was shown in Refs. [50] and [51], a nano-electro-mechanical weak link can in this mode of operation work
as a refrigerator for the mechanical vibrations where the voltage-driven Andreev levels absorb energy from the mechanical
subsystem and transfer it to a quasi-particle thermostat in the superconducting leads. This phenomenon opens additional
possibilities for ground-state cooling of the nano-mechanical vibrations similarly to what has been discussed in this review.
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Appendix A. Derivation and analysis of the stability equations

A.1. Stability equations

Starting from Eq. (8), the stability equations (9) can be found by introducing the ansatz Y (t) = √
Xn(t) sin(Θ(t)) where

Θ(t) = Ṽ t/n + χn(t)/n. Close to resonance both the amplitude Xn and phase χn are slow functions of time. Substituting
the expression for Y (t) into (8) we find two equations which govern Xn and χn when Ṽ � n. Integrating these over the
period Θ , we arrive at the stability equations of the system (9),

Ẋn = −γ̃ Xn + 2n
∂Heff

∂χn
, χ̇n = n − Ṽ − 2n

∂Heff

∂ Xn

Heff = ε

2π

π∫
−π

cos
(
nΘ − χn − √

Xn sin(Θ)
)

dΘ

Heff = ε Jn(
√

Xn ) cos(χn) (A.1)

A.2. Scaling of the bifurcation with the magnetic field

To find the scaling of the bifurcation amplitude with the magnetic field we expand the solutions of (9) close to the
transition from the constant phase to the constant amplitude solution, i.e. we consider ε = εII + �ε with �ε � εII . At
ε = εII the stable solution is given by Jn(

√
X∗

n ) = 0 and χ∗
n = (2n − 1)π/2. Expanding the solution about this point we find,

−γ̃ �Xn + 2n�ε Jn
(√

X∗
n
) = Jn(

√
X∗

n )δ2

4nεII| J ′′
n (

√
X∗

n )|2(�Xn)2
(A.2)

where �Xn = Xn − X∗
n . Note that in the above γ̃ is uniquely defined by εII through γ̃ = 2εIIn Jn(

√
X∗

n )/X∗
n . From Eq. (A.2)

we calculate the maximum separation in the vibrational amplitude which is found from the zeros of the cubic equation,(
�Xn − 2α

3

)2(
−�Xn − α

3

)
= 0, α = 2n�ε Jn(

√
X∗

n )

γ̃
(A.3)

With this, the maximum separation in amplitude between the two solutions scale as X∗
n�ε/εII . Furthermore, it can be

shown that,

δ2 Jn(
√

X∗
n )

4nεII| J ′′
n (

√
X∗

n )|2γ̃ = 1

2

(
2α

3

)3

(A.4)

which implies that we can solve for δ,

δ = (�ε)3/2
(

2X∗
n

3εII

)3/2(2nεII| J ′′
n (

√
X∗

n )|2
X∗

n

)1/3

(A.5)

to find that the width of the window of bistability scales with the magnetic field as H3 close to the region of bifurcation.

A.3. dc current

The dc current through the system is calculated by considering the energy dissipation due to the damping of the me-
chanical vibrations. This can be shown by multiplying (8) throughout by Ẏ and averaging over time. At resonance, the total
energy associated with the harmonic oscillator E ∝ Ẏ 2 + Y 2 does not change in time. This implies that the total energy
dissipated by the mechanical system γ̃ 〈Ẏ 2〉 is related to the current drawn from the battery according to,

γ̃
〈
Ẏ 2〉 = ε

T

T /2∫
−T /2

Ẏ sin(Ṽ τ − Y )dτ , τ = ωt (A.6)

Evaluating the right-hand side of (A.6) we eliminate the dependence of Ẏ and find,

γ̃
〈
Ẏ 2〉 = ε Ṽ

Idc

Ic
(A.7)

The corresponding expression for the dc current Idc is,

Idc = γ̃ 〈Ẏ 2〉mh̄ω2

8eL2 H2 Ṽ
= γ 〈u̇2(t)〉

V
(A.8)
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Appendix B. Derivation of system Hamiltonian and the stationary solution of the density matrix

B.1. System Hamiltonian

The Hamiltonian (12) can be derived starting from the classical equations of motion of the system. Referring to Fig. 1
these can be expressed as,

∂φ

∂t
= 2eq

h̄C
− 4eLH

h̄
u̇ (B.1a)

∂q

∂t
= I − 2eE J

h̄
sinφ (B.1b)

mü = −ku + 2LH

(
2eE J

h̄
sinφ

)
(B.1c)

In the above, q is the charge on the capacitor C such that the bias voltage over the junction is V = q/C . In (B.1a), the
evolution of the phase difference φ depends on the motion of the nanowire in the magnetic field (u̇ is the velocity of
the nanowire) which follows from the analysis of Section 3 and Ref. [45]. Eq. (B.1b) gives the time rate of charge on the
capacitor (note that the resistance R is not included here as it is introduced as a damping term in the evolution of the
density matrix). Finally, Eq. (B.1c) gives the equation of motion of the nanowire subject to the periodic driving force due to
the alternating Josephson current over the junction. The corresponding system Hamiltonian reads,

H = 4Ecn2 − 4eLH

m
pun + 8e2L2 H2

m
n2 + p2

u

2m
+ ku2

2
− 4eLH j0u − jh̄φ − E J cosφ (B.2)

where n = q/(2e) is the number of Cooper pairs, j = I/(2e) is the Cooper pair current and pu is the momentum of the
nanowire. Quantisation is achieved by regarding the variables a, pa , φ and n as Hermitian operators satisfying the following
commutation relations [û, p̂u]/h̄ = [φ̂, n̂] = i and [û, φ̂] = [û, n̂] = [p̂u, φ̂] = [p̂u, n̂] = 0. With this we perform the unitary
transformation,

Ĥ = e−iΦûn̂
ĤeiΦûn̂, Φ = 4π gLHuzp

Φ0
(B.3)

after which the Hamiltonian reads,

Ĥ = 4Ecn̂2 − jh̄φ̂ − E J cos
(
φ̂ − Φ

(
b̂ + b̂†)) + h̄ωb̂†b̂ (B.4)

Here we use the notation û = b̂ + b̂† for the deflection operator with uzp = [h̄/(2mω)]1/2 the zero point amplitude of the
oscillating nanowire.

B.2. Stationary solution of the density matrix

The evolution of the density matrix is governed by the Liouville–von Neumann equation (14),

∂ρ̂

∂t
= − i

h̄
[Ĥ0 + ĤT , ρ̂] + Ĵ (ρ̂) + γ (1 + nB)Lb̂(ρ̂) + γ nBLb̂†(ρ̂) (B.5)

In what follows we will consider the stationary solution of (B.5) by performing a perturbative analysis in the small
parameters T /(h̄Γ ),γ /Γ � 1. In particular we will consider the limit of high mechanical quality factor Q such that
γ = ω/Q < T /(h̄). To start the analysis we take the total density matrix to be of the form, ρ̂ = ρ̂0 + ερ̂1 + ε2ρ̂2 + · · ·
and equate powers of ε . With this we find the following equations,

0 = − i

h̄
[Ĥ0, ρ̂0] + Ĵ (ρ̂0) O

(
ε0) (B.6a)

0 = − i

h̄
[Ĥ0, ρ̂1] + Ĵ (ρ̂1) − i

h̄
[ĤT , ρ̂0] O

(
ε1) (B.6b)

0 = − i

h̄
[Ĥ0, ρ̂2] + Ĵ (ρ̂2) − i

h̄
[ĤT , ρ̂1] + γ (1 + nB)Lb̂(ρ̂0) + γ nBLb̂†(ρ̂0) O

(
ε2) (B.6c)

Solving the above equations at each order of ε we find ρ̂0 = ∑
l,n |l,↓,n〉ρ0(l,↓,n)〈l,↓,n| which satisfies (B.6a). Similarly,

the first order correction to the stationary density matrix is determined from (B.6b) as,

ρ̂1 =
∑

l,n, j=−1,0,1

|l + 1,↑,n + i〉c j(l,n)〈l,↓,n| + h.c. (B.7a)

c j(l,n) = T (n)
j ρ0(l,↓,n)

−�F + ihΓ/2
(B.7b)
j ¯
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Substituting this into (B.6c) we find the equation for the coefficients ρ0 by tracing out the spin (↑,↓) degrees of freedom,

Γ
∑

j=−1,0,1

4

4(�F j)
2 + h̄2Γ 2

(∣∣T (n− j)
j

∣∣2
ρ0(l − 1,↓,n − j) − ∣∣T (n)

j

∣∣2
ρ0(l,↓,n)

)
= γ (1 + nB)

[
nρ0(l,↓,n) − (n + 1)ρ0(l,↓,n + 1)

] + γ nB
[
(n + 1)ρ0(l,↓,n) − nρ0(l,↓,n − 1)

]
(B.8)

Tracing out the valley index l we recover the expressions presented in Section 4, i.e. Eq. (B.7b) gives

C j(n) ≡
∞∑

l=−∞
c j(l,n) = T (n)

j P (n)

−�F j + ih̄Γ/2

whereas Eq. (B.8) gives,(
Γ− + γ (1 + nB)

)[
(n + 1)P (n + 1) − nP (n)

] + (Γ+ + γ nB)
[
nP (n − 1) − (n + 1)P (n)

] = 0 (B.9)

In this expression the relationship between the coefficients are,

Γ± = Γ
4Φ2T 2

4(�F±)2 + h̄2Γ 2
, Γ0 = Γ

4T 2

4(�F0)2 + h̄2Γ 2

i

h̄
T (n)

j

(
C j(n) − C∗

j (n)
) = P (n)Γ j N, N =

{n + 1 j = +
1 j = 0
n j = −

In the above we note that (B.9) gives the balanced equation for the probability P (n) of finding the oscillating nanowire in
the state n. By regrouping the terms in this equation one can write it on the form

(n + 1)
[
C− P (n + 1) − C+ P (n)

] − n
[
C− P (n) − C+ P (n − 1)

] = 0 (B.10)

where

C− = Γ− + γ (1 + nB) and C+ = Γ+ + γ nB (B.11)

This is convenient, since it is clear that a solution to (B.10), and hence to (B.9), requires that the relation

P (n + 1)

P (n)
= C+

C−
(B.12)

holds for all n. This means that P (n) describes a thermal distribution of vibron excitations characterised by an effective
temperature implicitly defined by the relation P (n + 1)/P (n) = exp(−h̄ω/kB Teff). Using (B.11) and (B.12) one finds the
explicit result

Teff = h̄ω

kB

[
ln

(
Γ− + γ (1 + nB)

Γ+ + γ nB

)]−1

The stationary average distribution of the vibrational modes is obtained from (B.10)–(B.12) as

〈n〉 =
∞∑

n=0

nP (n) = nBγ + Γ+
Γ− + γ − Γ+

The density matrix ρ̂1 allows us to evaluate the potential drop over the junction in the stationary regime. Following the
derivation outlined above we find that the lowest order term of the density matrix, ρ̂0, does not contribute to the potential
drop as it is diagonal in the spin basis. As such, the potential drop is uniquely determined from ρ̂1.
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