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This article aims at discussing the cosmological constant problem at a pedagogical but
fully technical level. We review how the vacuum energy can be regularized in flat and
curved space–time and how it can be understood in terms of Feynman bubble diagrams. In
particular, we show that the properly renormalized value of the zero-point energy density
today (for a free theory) is in fact far from being 122 orders of magnitude larger than
the critical energy density, as often quoted in the literature. We mainly consider the case
of scalar fields but also treat the cases of fermions and gauge bosons which allows us
to discuss the question of vacuum energy in super-symmetry. Then, we discuss how the
cosmological constant can be measured in cosmology and constrained with experiments
such as measurements of planet orbits in our solar system or atomic spectra. We also
review why the Lamb shift and the Casimir effect seem to indicate that the quantum
zero-point fluctuations are not an artifact of the quantum field theory formalism. We
investigate how experiments on the universality of free fall can constrain the gravitational
properties of vacuum energy and we discuss the status of the weak equivalence principle in
quantum mechanics, in particular the Colella, Overhauser and Werner experiment and the
quantum Galileo experiment performed with a Salecker–Wigner–Peres clock. Finally, we
briefly conclude with a discussion on the solutions to the cosmological constant problem
that have been proposed so far.
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r é s u m é

Cet article traite du problème de la constante cosmologique d’une manière pédagogique
aussi bien que technique. Nous passons en revue comment l’énergie du vide peut être
régularisée en espace temps plat et courbe, et comment son calcul peut être compris en
termes de diagrammes de Feynman en bulles. En particulier, nous montrons que la valeur
correctement renormalisée de l’énergie de point zéro maintenant (pour une théorie libre)
en en fait bien au dessous des 122 ordres de grandeur de l’énergie critique de l’univers.
Nous nous concentrons sur le cas des champs scalaires bien que nous considérions le
cas des fermions et des bosons de jauge également afin de traiter l’énergie du vide
en supersymétrie. Nous discutons aussi comment la constante cosmologique peut être
mesurée cosmologiquement et contrainte par la mesure de l’orbite des planètes du système
solaire ou encore des spectres atomiques. Nous passons aussi en revue pourquoi la mesure
du Lamb shift et de l’effet Casimir semblent indiquer que les fluctuations quantiques de

E-mail address: jmartin@iap.fr.
1631-0705/$ – see front matter © 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.
http://dx.doi.org/10.1016/j.crhy.2012.04.008

http://dx.doi.org/10.1016/j.crhy.2012.04.008
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:jmartin@iap.fr
http://dx.doi.org/10.1016/j.crhy.2012.04.008


J. Martin / C. R. Physique 13 (2012) 566–665 567
l’énergie du vide ne sont pas un artefact du formalisme de la théorie des champs. Nous
montrons ensuite comment les expériences sur l’universalité de la chute libre peuvent
aider à contraindre les propriétés gravitationnelles de l’énergie du vide et nous discutons le
statut du principe d’équivalence faible en mécanique quantique, en particulier l’expérience
de Colella, Overhauser et Werner ainsi que l’expérience de Galilée quantique faite avec une
horloge de Salecker–Wigner–Peres. Enfin, nous concluons brièvement avec une discussion
sur les différentes solutions au problème de la constante cosmologique qui ont été
proposées jusqu’à présent.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

This review article aims at discussing the cosmological constant problem [1–15]. This question is central in modern
physics because its resolution would certainly mean a very important step forward in our attempts to understand physics
beyond the current standard model.

The history of the cosmological constant problem is a long and rich one [5]. Its premises were in fact already present
immediately after the birth of quantum field theory. Indeed, from the Heisenberg uncertainty principle, we know that the
ground state energy of the quantum mechanical oscillator cannot be zero because the potential and the kinetic energies
cannot vanish at the same time. Since a (free) quantum field can be viewed as an infinite collection of harmonic oscillators,
it immediately comes that its ground state energy must be infinite. Of course, this is not yet the cosmological constant
problem because gravity does not enter the stage. But, clearly, potentially, a very severe problem is already present.

The infinity mentioned above is the first infinity that one encounters in quantum field theory [16–22]. However, the
presence of this infinity did not prevent the founding fathers of quantum field theory to develop the theory since, in
absence of gravity (a working assumption of quantum field theory justified by the weakness of gravity), only differences in
energies are observable. Therefore, in this context, this infinity can be merely ignored and the rest of the formalism can
be worked out without any problem. As is well known, other types of infinities appear and, this time, there is no way to
get around them. Treating and taming them is the goal of renormalization. The very impressive agreement between high
precision measurements in accelerators and the predictions of quantum field theory in presence of radiative corrections is
the proof that renormalization is able to correctly regulate these infinities.

Therefore, we see that these two types of infinities are treated very differently. The problem of the zero-point energy
is just avoided while the problem of the radiative corrections is directly and explicitly addressed. Clearly, one cannot help
thinking that the first problem is in fact swept under the carpet. And, indeed, as soon as gravity is turned on, it badly
strikes back.

At this point, it is worth noticing the following. One should not get the impression that the zero-point energy cannot be
renormalized. As a matter of fact, as will be discussed in this review, it can be made perfectly finite. However, this finite,
renormalized, value of the zero-point energy seems to be too large to be compatible with the observations. Again, this
is very different from the usual case of quantum field theory where the finite part extracted from a divergent expression
always leads to a good agreement with the experiments. At first sight, the cosmological constant problem is therefore
neither the presence of a new infinity nor our inability to regularize it but rather the apparent failure of the renormalization
scheme to produce, at the quantitative level, a finite vacuum energy compatible with the observational data.

In fact, a failure of renormalization is not the only logical possibility. The vacuum fluctuations could also be a mathe-
matical artifact of the quantum field theory framework and/or their gravitational properties could be abnormal. However,
when one tries to test (theoretically or experimentally) these ideas, it seems that one never encounters a problem of the
kind mentioned above. This fact must also be considered as a part of the cosmological constant problem which, therefore,
appears to have many different ramifications. We see that this problem is in fact a very deep problem which lies at the
cross roads between different branches of physics (gravitational physics, quantum field theory, cosmology etc., . . .). In brief,
it has to do with the gravitational properties of the quantum vacuum.

The importance of this question has recently been reinforced by the discovery that the expansion of our Universe is
accelerated [23,24]. According to standard lore, this could be the first observational evidence that the quantum vacuum
is able to curve space–time. On the other hand, the effect of a cosmological constant is visible only on large scales and,
therefore, it seems to be problematic to check this result elsewhere than in cosmology. But, if true, the cosmological con-
stant problem represents a unique situation where some aspects of quantum gravity are at play and where, at the same
time, corresponding observational signatures are not hopelessly beyond our technical capabilities. This makes it a valuable
opportunity to go beyond our current understanding of theoretical physics. The only other situation where the three above
mentioned aspects (quantum mechanics, gravity and the possibility to detect sizable observational effects) are mixed is the
theory of cosmological inflation [25–34] (for a review, see Refs. [35–37]) where the Cosmic Microwave Background (CMB)
anisotropies, first detected by the COBE (COsmic Background Explorer) satellite [38], are supposed to originate from the
quantum fluctuations of the inflation and gravitational fields (for the observational status of inflation, see Ref. [39]).

In this review article, we go through all the issues mentioned before. Our prejudice is to present the question at the
technical level, in full details, in order for the article to be reasonably self-contained. The price to pay for this approach
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is that, sometimes, we are led to consider problems that are well treated in standard textbooks and/or are not, strictly
speaking, directly concerned with the cosmological constant problem. On the other hand, this is also an opportunity to
review many different subjects belonging to different types of physics.

The outline of the article is the following one. In Section 2, we discuss how the cosmological constant Λ is introduced
in the Einstein field equations and we explain why the vacuum energy also participates in the value of Λ. In Section 3,
we treat the classical cosmological constant problem, i.e. we show that, in the presence of gravity, it is no longer true
that only differences of energy are observable. We illustrate this discussion by means of the electro-weak phase transition.
In Section 4, we demonstrate that, even if the classical ground state is tuned to zero, the quantum vacuum fluctuations
still give a contribution to the cosmological constant. We discuss how the corresponding quantum vacuum energy can
be calculated and argue that the method often used in the literature and which consists in introducing a cut-off, is not
appropriate. We also investigate how the quantum vacuum energy can be expressed in terms of Feynman diagrams (bubble
diagrams) and investigate the case where interactions are present. In Section 5, we focus on the so-called bubble diagrams.
We discuss them in the context of quantum field theory but also in ordinary quantum mechanics. We then show that they
have very different properties than the other loop diagrams. In Section 6, we use the Gaussian effective potential approach
to calculate the vacuum energy in a situation where non-perturbative effects are present. Since all the calculations are
carried out in the case of a scalar field, we treat in Section 7 the case of other types of fields (spinor and vector fields). This
also gives us the opportunity to discuss the idea of super-symmetry. In Section 8, we present the cosmological constant
problem in a more rigorous way. In particular, we show that a flat space–time calculation is a good approximation although
a fully consistent approach should be formulated in curved space–time. One concludes the first part of this review article
with Section 9 where we estimate the vacuum energy and find a value very far from the often quoted “122 orders of
magnitude”. In Section 10, we explain, from a theoretical point of view, how the value of the cosmological constant was
recently measured in cosmology. In particular, we discuss the hypothesis that are implicitly assumed in order to obtain this
result. In Section 11, we discuss whether the cosmological constant can be measured elsewhere than in cosmology and
argue that no other experimental context can compete with cosmology. However, we also show that other experiments can
put constraints on the vacuum energy that are interesting from the point of view of the cosmological constant problem.
In Section 12, we review the experiments (Lamb shift, Casimir effect) that seem to prove the existence of the vacuum
fluctuations. In Section 13, we investigate whether there are observations that can probe their gravitational properties. In
Section 14, we discuss whether the weak equivalence principle still holds in quantum mechanics since this has obvious
implications for the question of the vacuum weight. Finally, in Section 15, we present our conclusions and very briefly
review the solutions to the cosmological constant problem that have been proposed so far. Let us mention that this article
is part of a more general review on the dark energy question, see Refs. [40–43].

Before concluding this introduction, we would like to make the following remark. This article aims at discussing what
the cosmological constant problem is. This article does not aim at discussing what solutions to this problem have been
proposed even if, as already mentioned, in Section 15, we say a few words on this topic (and choose, in a totally arbitrary
way which only reflects the author prejudices, to focus more on some of them). The justification for the above mentioned
choice is that the question of the gravitational properties of vacuum zero-point fluctuations is already a highly non-trivial
one as the variety of the subjects listed above demonstrate. Therefore, it seems to us better to deeply understand what is
at play before trying to propose a way out. Of course, it is because this problem is very difficult and has many different
ramifications in many different branches of physics that it is so interesting.

2. The cosmological constant

In this first section, we introduce the cosmological constant as a free parameter in the classical action of the gravitational
field. This action, together with the action describing matter, can be expressed as

S = 1

2κ

∫
d4x

√−g(R − 2ΛB)+ Smatter[gμν,Ψ ] (1)

where κ ≡ 8πG/c4 ≡ 8π/m2
Pl ≡ 1/M2

Pl, mPl and MPl being the Planck mass and the reduced Planck mass, respectively. The
first term is the standard Einstein–Hilbert action and represents the gravitational part of the total action given by Eq. (1).
The cosmological constant appears in the second term of the above expression. As announced, at this level, it is merely
a new parameter of the total action and for this reason we write it as ΛB for “bare cosmological constant”. It has the
dimension of the inverse of a square length. It is compatible with general covariance and is of course compatible with a
conserved energy momentum tensor since ∇μgμν = 0. Therefore, this term appears to be totally natural from the relativistic
point of view and there is a priori no reason to discard it. Since, according to the standard lore of field theory, everything
which is not forbidden should be considered, the cosmological constant should clearly be included in our description of the
gravitational field. Finally, the third term in the above equation denotes the matter action where Ψ represents a generic
matter field that we do not need to specify at this stage. Variation of the total action with respect to the metric tensor leads
to the Einstein equations of motion which read

Rμν − 1
Rgμν +ΛB gμν = κTμν (2)
2
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where the stress–energy tensor is defined by

Tμν = − 2√−g

δSmatter

δgμν
(3)

As already mentioned, ΛB appears to be just a parameter of the model. At this level, the only thing that can be done is to
try to constrain it using various observations. But, clearly, in the present framework, there is no way to calculate its value
from more fundamental considerations.

However, as originally shown by Sakharov [44], the nature of the discussion is crucially changed when one takes into
account quantum field theory. The point is that the stress–energy tensor of a field placed in the vacuum state must be given
by

〈0|Tμν |0〉 = −ρvac gμν (4)

where ρvac is the constant energy density of the vacuum. This equation is valid for all the fields present in the Universe, as
will be shown below. There are several ways to prove the above result. Firstly, one can use the fact that, in flat space–time
(in Minkowski space–time), the only invariant tensor is ημν . Since the vacuum state must be the same for all observers,
one necessarily has 〈Tμν〉 ∝ ημν . In curved space–time, this means that

〈Tμν〉 = −ρvac(t,x)gμν (5)

and from the fact that the stress–energy tensor must be conserved, we reach the conclusion that ρvac must be a constant.
Therefore, one obtains the formula shown above.

Another way to obtain the same result is to consider a specific example, for instance a scalar field Φ . The corresponding
action reads

SΦ = −
∫

d4x
√−g

[
1

2
gμν∂μΦ∂νΦ + V (Φ)

]
(6)

where V (Φ) is the potential. Using the definition (3), the corresponding stress–energy tensor can be written explicitly as

Tμν = ∂μΦ∂νΦ − gμν

[
1

2
gαβ∂αΦ∂βΦ + V (Φ)

]
(7)

From this expression, one sees that the scalar field is in fact a perfect fluid. Now, the vacuum state is the minimum energy
state. Clearly, in order to minimize the energy we have to consider a situation where the kinetic energy vanishes and where
the field sits at the minimum of its potential. In this case, the stress–energy tensor reduces to

〈Tμν〉 = −V (Φmin)gμν (8)

which has exactly the expected form with ρvac = V (Φmin).
In fact what was shown before is that there are at least two sources for the vacuum energy. There is a “classical”

contribution given by Eq. (8) which originates from the value of the potential at its minimum. The corresponding vacuum
energy will be calculated in Section 3. There is also a “quantum-mechanical” source given by Eq. (5) which originates from
the zero point fluctuations of the ground state. This problem will be treated in Section 4.

Having established the form of the stress–energy–momentum tensor in the vacuum, one can now proceed with the
Sakharov argument. The next step consists in assuming that the equivalence principle applies to the zero-point fluctuations
(here, and from now on, we mean to the “classical” and “quantum-mechanical” contributions as discussed in the last para-
graph), that is to say that the zero-point fluctuations gravitate. Clearly, this is not a trivial step but, after all, the vacuum
fluctuations are just a specific type of energy and, in general relativity, all forms of energy gravitate. Therefore, a consistent
way of writing the Einstein equations when quantum field theory is taken into account seems to be

Rμν − 1

2
Rgμν +ΛB gμν = κT matter

μν + κ〈Tμν〉 (9)

where on the right-hand side the first contribution comes from ordinary matter while the second one represents the con-
tribution originating from the vacuum (of course, it is to be understood that we sum up the contributions coming form all
the fields present in the Universe). Using the form of 〈Tμν〉 established before, one arrives at

Rμν − 1

2
Rgμν +Λeff gμν = κT matter

μν (10)

where

Λeff =ΛB + κρvac (11)
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Therefore, we conclude that the effective cosmological constant is the sum of the bare cosmological constant and of a
contribution originating from the vacuum fluctuations. The effective cosmological constant Λeff is the quantity that one can
observe and constrain when tests of the Einstein equations are carried out.

As we now discuss, the problem is that κρvac is made of several terms which are all huge in comparison with the
observed value of Λeff.

3. The classical cosmological constant problem

The cosmological constant problem is in fact a multi facets question as the quantity Λeff receives contributions from
different origins. As was demonstrated in the last section on the example of a scalar field, a classical contribution to Λeff
comes from the value of the potential at its minimum. If this is not zero, then it affects the value of the effective cosmolog-
ical constant. This point is discussed in this section and is exemplified with the electroweak transition. Another contribution
comes from the quantum zero point fluctuations but this will be discussed in the next sections.

3.1. Phase transition

It is possible to study the dynamics of a phase transition with the help of the following simple model. Let us consider a
scalar field Φ in interaction with another scalar field Ψ such that

V (Φ,Ψ )= V (Φ)+ ḡ

2
Φ2Ψ 2 (12)

where ḡ is a dimensionless coupling constant and where the self-interacting potential is given by

V (Φ)= V 0 + λ

4

(
Φ2 − v2)2 (13)

λ being a coupling constant describing the self-interaction and v the value of the scalar field at the minimum of its potential
in absence of an interaction with Ψ . The quantity V 0 denotes the classical off-set. If the field Ψ is in thermal equilibrium,
then one is entitled to replace Ψ 2 with 〈Ψ 2〉T where the average is taken in a thermal state with temperature T . Since
〈Ψ 2〉T ∝ T 2 [45], the effective potential becomes

V eff(Φ)= V 0 + λ

4

(
Φ2 − v2)2 + ḡ

2
T 2Φ2 (14)

where we have slightly redefined the coupling constant ḡ in order to take into account the proportionality constant between
the thermal average and the temperature. This potential can also be expressed as

V eff(Φ)= V 0 + λv4

4
+ λv2

2

(
T 2

T 2
cri

− 1

)
Φ2 + λ

4
Φ4 (15)

where we have defined Tcri = v
√
λ/ḡ . One sees on the above equation that the interaction with the field Ψ gives a temper-

ature dependence to the effective mass of the Φ field, namely

m2
eff(T )≡ λv2

(
T 2

T 2
cri

− 1

)
(16)

As a consequence, when T > Tcri , that is to say before the transition, the square of the effective mass is positive while,
after the transition, when T < Tcri, it becomes negative. In the first situation, the minimum is located at Φ = 0 and the
corresponding value of the vacuum energy is V 0 + λv4/4, see Fig. 1. In the second situation, the minimum is located at
Φ = v and the off-set is simply given by V 0, see Fig. 1. We now clearly see the problem. If we require the vacuum energy
to vanish before the transition, we must choose V 0 = −λv4/4. But, then, after the transition, the vacuum energy is no
longer zero and is given by the negative value ρvac = −λv4/4. On the other hand, one can choose ρvac to vanish after the
transition. In this case, one must choose V 0 = 0. But this means that it was not zero before the transition, ρvac = λv4/4.
This last option can maybe viewed as the preferred solution since we do not have direct observational constraints on the
matter content of the Universe prior to Big Bang Nucleosynthesis (BBN). Anyhow, we see that the choice of a parameter in
the potential allows us to change the vacuum energy at the classical level, hence the name “classical cosmological constant
problem”. But, clearly, the off-set cannot be zero before and after the transition. Of course, in order to really establish that
there is a problem, the question remains to estimate this vacuum energy for realistic phase transition and to compare it
with the observational constraints. In the next subsection, we turn to the first issue and consider the case of the electroweak
phase transition.
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Fig. 1. The effective potential given by Eq. (14). Before the transition, for T > Tcri , the minimum of the potential is located at the origin and the vacuum
energy is given by V 0 + λv4/4. After the transition, for T < Tcri , the minimum is located at Φ = v and the corresponding vacuum energy has changed and
now equals V 0. It is clear that V 0 can always be chosen such that the vacuum energy vanishes either before or after the transition. It is equally clear that
one cannot choose the parameters of the potential such that ρvac is zero before and after the phase transition.

3.2. The electroweak phase transition

In this section, we calculate the vacuum energy “induced” by the electroweak phase transition. In order to achieve this
goal, we first must recall some basics facts about the standard model of particle physics, see Refs. [16–22].

The Higgs field is a doublet of complex scalar fields. It is charged under the group U(1)Y × SU(2)L characterized by two
coupling constant g′ and g . The Higgs field Lagrangian reads

LHiggs = −(DμΣ)† DμΣ − V
(
Σ,Σ†) (17)

where the covariant derivative can be expressed as

DμΣ = ∂μΣ + i
g′

2
YH BμΣ + igTa W a

μΣ (18)

where a runs from one to three. The quantities Bμ and W a
μ are the gauge bosons, YH is the Higgs weak hyper-charge and

Ta are the generators of the SU(2) group (see below for more details about these quantities). The potential is chosen to be

V
(
Σ,Σ†)= m2

2
Σ†Σ + λ

4

(
Σ†Σ

)2
(19)

and clearly resembles Eqs. (14) and (15) for T < Tcri. Indeed, in this expression, the quantity m2 is negative (as explained
before, m2 is in fact the square of the effective mass). This also means that the minimum of the potential is not located at
〈Σ〉 = 0 but at

〈Σ〉 = v =
√

−m2

λ
(20)

obtained from the condition ∂V /∂(Σ†Σ) = 0. The quantity v is in fact the new vacuum expectation value of the Higgs
after spontaneous symmetry breaking. In particle physics, one studies the theory after the transition, when the Higgs field
has stabilized at its new minimum. But, in reality, as explained before, we must consider that the transition is a dynamical
process. Before the transition we had m2 > 0 and the minimum was located at 〈Σ〉 = 0 and after the transition, m2 has
become negative and, consequently, the new vacuum is given by v . Returning to the minimum after the transition, it is easy
to show that the value of the potential at 〈Σ〉 = v is given by

V
(〈Σ〉 = v

)= −m4

4λ
(21)

and is negative. Clearly, this is because we have chosen V 0 = 0 in Eq. (19). As already explained in Section 3.1, this means
that the vacuum energy vanishes before the transition and becomes negative after, see also Fig. 1. This means that we
have considered the situation corresponding to the left panel in Fig. 2. Of course, this is arbitrary and we could also have
considered the situation corresponding to the right panel in Fig. 2. Again, as explained in the previous subsection, in this
case, the vacuum energy would vanish after the transition but not before.

The numerical value of the vacuum energy given by Eq. (21) is fixed by the electroweak physics in particular by the
parameters m and λ. Therefore, in order to compute ρvac explicitly, we must explain how m and λ are evaluated. For this
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Fig. 2. Effective potential of the Higgs boson before and after the electroweak phase transition. The left panel corresponds to a situation where the vacuum
energy vanishes at high temperature. As a consequence ρvac is negative at temperature smaller than the critical temperature. This is the situation treated
in the text where the quantity −m4/(4λ) is explicitly calculated. On the right panel, the off-set parameter V 0 is chosen such that the vacuum energy is
zero after the transition. As a consequence, it does not vanish at high temperatures.

purpose, we now briefly recall the main features of the standard model of particle physics. Let us come back to the Higgs
Lagrangian given at the beginning of this section, see Eq. (17). In the expression of LHiggs, the quantities Ta are the generator
of SU(2)L and are given by Ta = σa/2 where σa are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(22)

Using the gauge invariance, one can always rewrite the complex doublet as

Σ =
(

v + H√
2

)(
0
1

)
(23)

where H is a real scalar field, the “Higgs boson”. Therefore, the covariant derivative (18) can be expressed as

DμΣ =
(

i g
2 (v + H√

2
)(W 1

μ − iW 2
μ)

1√
2
∂μH + i(v + H√

2
)(

g′
2 YH Bμ − g

2 W 3
μ)

)
(24)

and the Higgs Lagrangian (17) becomes

LHiggs = −1

2
∂μH∂μH − V

(
Σ,Σ†)−(v2 + √

2v H + 1

2
H2
)

×
(

g2

4
W 1
μW 1μ + g2

4
W 2
μW 2μ + g2

4
W 3
μW 3μ + g′2

4
Y 2

H BμBμ − gg′

2
YH BμW 3μ

)
(25)

where the scalar potential can be written as

V
(
Σ,Σ†)= −λv4

4
+ 1

2
λv2 H2 + λ

2

v√
2

H3 + λ

16
H4 (26)

We now introduce the physical gauge bosons. As is well known, they are defined by

Bμ = − sin θ Zμ + cos θ Aμ, W 3
μ = cos θ Zμ + sin θ Aμ, W 2

μ = W +
μ − W −

μ

i
√

2
, W 1

μ = W +
μ + W −

μ√
2

(27)

where θ is the Weinberg angle, Aμ represents the photon and Zμ , W ±
μ the massive gauge bosons. Expressing the Higgs

Lagrangian (25) in terms of these new fields, one obtains the following expression

LHiggs = −1

2
∂μH∂μH − V

(
Σ,Σ†)−(v2 + √

2v H + 1

2
H2
)[

g2

4
W +
μW −μ + g2

4
W −
μW +μ

+ Zμ Zμ
(

g2

4
cos2 θ + g′2

4
Y 2

H sin2 θ + gg′

2
YH sin θ cos θ

)

+ AμAμ
(

g2

sin2 θ + g′2

Y 2
H cos2 θ − gg′

YH sin θ cos θ

)

4 4 2
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+ ZμAμ
(

g2

2
cos θ sin θ − g′2

2
Y 2

H cos θ sin θ − gg′

2
YH cos2 θ + gg′

2
YH sin2 θ

)]
(28)

Of course LHiggs is not the only term in the standard model Lagrangian. There are also the terms describing the kinetic
terms of the gauge fields

LK-Gauge = −1

4
Bμν Bμν − 1

4
WaμνW aμν

= −1

4
Aμν Aμν − 1

4
Zμν Zμν − 1

4
W+μνW +μν − 1

4
W−μνW −μν + · · · (29)

where Bμν is the B field strength, namely Bμν ≡ ∂μBν − ∂ν Bμ and where a similar definition applies to the other gauge
fields.

Finally, one must also specify how leptons are described. In the standard model of particle physics, a fermion is repre-
sented by a four-component Dirac spinor Ψ , see also Section 7.1 where the zero-point fluctuations of spinors are calculated.
Let us now recall what chirality is. For this purpose, we introduce the matrix γ 5 such that (γ 5)2 = I and (γ 5)† = γ 5. This
allows us to define two chiral projectors by

PR ≡ I4 + γ5

2
, PL = I4 − γ5

2
(30)

where I4 denotes the identity four by four matrix. We now define the Dirac matrices, see Section 7.1 for a more general
approach. In the chiral representation, they are given by

γ 0 =
(

0 −I2
−I2 0

)
, γ i =

(
0 σ i

−σ i 0

)

γ 5 =
(
I2 0
0 −I2

)
(31)

and the two projectors can be written as

PR =
(
I2 0
0 0

)
, PL =

(
0 0
0 I2

)
(32)

Given a Dirac spinor Ψ (we denote the four-component spinors by a capital Greek letter and the two-component spinors
by an ordinary Greek letter)

Ψ =
(
ψR
ψL

)
(33)

one can thus define the two states of chirality (right- and left-handed) by means of the following two expressions:

ΨR ≡ PRΨ =
(
ψR
0

)
, ΨL ≡ PLΨ

(
0
ψL

)
(34)

The quantities ψR,L are two-component spinors known as Weyl spinors. They play a very important role in super-symmetry,

see Section 7.4. Notice that we also have Ψ ≡ Ψ †γ 0 = −(ψ†
L ,ψ

†
R). This implies that the (mass-less) Dirac Lagrangian can be

expressed as

LDirac = −iΨγμ∂μΨ = −iψ†
Lσ

μ∂μψL − iψ†
Rσ

μ∂μψR (35)

where we have defined the covariant Pauli matrices σμ = (I2, σ
i) and σμ = (I2,−σ i).

After these brief reminders, we now consider the first family of the standard model leptons (the other two families can
be treated in the same fashion and the quarks must be considered separately), i.e. the electron and the neutrino. Following
the usual convention, we denote by eR the right-handed electron Weyl spinor and by eL the left-handed one. With regards
to the neutrino, only the left-handed particle is present in the standard model and will be denoted as νL. Then, we have
the following properties. The particles eL and νL are charged under U(1)Y but also under SU(2)L, i.e. they are considered as
a complex doublet of two-component spinors

Le =
(
νL
eL

)
(36)

On the other hand, eR is charged under U(1)Y but is postulated to be a SU(2)L singlet. Therefore, concretely, the Lagrangian
can be written as
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LLeptons = −iL†
eσ

μ

(
∂μ + i

g′

2
YL Bμ + igTa W a

μ

)
Le

− ie†
Rσ̄

μ

(
∂μ + i

g′

2
YR Bμ

)
eR (37)

where L†
e means (ν

†
L , e†

L). Notice the factor 1/2 in front of the gauge boson Bμ which is the usual convention [this factor
was already present in Eq. (18)]. The quantities YL and YR are the leptonic weak hyper-charges. Let us focus on the first
term in the above expression. The term between the parenthesis is a two by two matrix that can be written in terms of the
physical gauge bosons, using the definitions (27). Similarly, the second term can be expressed in terms of the fields Aμ and
Zμ . Then, the Lagrangian for the leptons can be rewritten as

LLeptons = −iν†
Lσμ

[
∂μ − i

(
g′

2
YL sin θ − g

2
cos θ

)
Zμ + i

(
g′

2
YL cos θ + g

2
sin θ

)
Aμ

]
νL

− ie†
Lσμ

[
∂μ − i

(
g′

2
YL sin θ + g

2
cos θ

)
Zμ + i

(
g′

2
YL cos θ − g

2
sin θ

)
Aμ

]
eL

+ g√
2
ν

†
Lσ

μW −
μ eL + g√

2
e†

Lσ
μW +

μνL − ie†
Rσ

μ

(
∂μ − i

g′

2
YR sin θ Zμ + i

g′

2
YR cos θ Aμ

)
eR (38)

Therefore, the total Lagrangian is now given by L = LHiggs + LK−Gauge + LLeptons. This Lagrangian depends on various free
parameters that we now discuss and choose. Firstly, the neutrino is not electromagnetically charged and from Eq. (38) one
has that

g′YL cos θ + g sin θ = 0 (39)

Secondly, the electron carries the charge e. This means that one must recover the following Lagrangian,

LEM = −iΨγμ(∂μ + i Q Aμ)Ψ (40)

where Q is the electromagnetic charge, Q = e in our case. Working out the interaction part of the above Lagrangian, one
obtains

Lint
EM = −Q e†

LσμAμeL − Q e†
RσμAμeR, (41)

and, looking at Eq. (38), one deduces that

g′

2
YL cos θ − g

2
sin θ = g′

2
YR cos θ = e (42)

As a consequence, comparing Eqs. (39) and (42), one can establish that 2YL = YR. It is conventional to choose YL = −1
and therefore YR = −2. Then, Eq. (39) leads to g′ = g tan θ , from which one can write cos θ = g/

√
g2 + g′2 and sin θ =

g′/
√

g2 + g′2. Finally, Eq. (42) implies that g sin θ = e. Everything can be summarized by the Gell-Mann formula

Q = e

(
I3 + Y

2

)
(43)

if the leptonic isospin doublet is assigned a “weak isospin” I = 1/2 such that the neutrino has a third component I3 = 1/2
while the electron is such that I3 = −1/2. Of course the right-handed particles are such that I = 0. Returning to Eq. (28)
and using the above equations, we see that the photons remains mass-less if YH = 1. This also allows us to determine the
mass of the gauge bosons and one arrives at

m2
W ± = g2 v2

2
(44)

m2
Z = 2v2

(
g

2
cos θ + g′

2
sin θ

)2

= m2
W ±

cos2 θ
(45)

One also easily proves that the coefficient of the cross-term ZμAμ vanishes. Finally, looking at Eq. (26), one establishes that
the Higgs mass is given by

m2
H = λv2 (46)

and, from the expression of the potential (26), one finds the expression of its value at the minimum

V
(〈Σ〉 = v

)= −λ v4

= −m4
H (47)
4 4λ
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in agreement with what we had before. Using the expression of the Higgs mass, one can re-write this expression as

ρvac = V
(〈Σ〉 = v

)= −1

4
m2

H v2 (48)

We see that in order to calculate the vacuum energy, we need to know v and the Higgs mass. Let us first discuss how
the vacuum expectation value of the Higgs can be obtained. For this purpose, we focus on the term in the electroweak
Lagrangian describing the interaction between leptons and charged gauge bosons (the so-called charged currents). From the
above considerations, see Eq. (38), they are given by

LintL-W = g√
2
ν

†
Lσ

μW −
μ eL + g√

2
e†

Lσ
μW +

μνL (49)

It is easy to verify by an explicit calculation that it can be re-expressed in terms of Dirac spinors1 as

LintL-W = g√
2
Ψ νγ

μ 1 − γ5

2
W −
μΨe

+ g√
2
Ψ eγ

μ 1 − γ5

2
W +
μΨν (50)

which is similar to the Fermi theory for the weak interaction described by the following Lagrangian

LFermi = GF√
2

Jλ Jλ† (51)

with Jλ = J (e)λ + J (μ)λ (i.e. an electronic and a muonic part) where the current is given by J (e)λ = Ψ eγλ(1 − γ5)Ψνe and

a similar definition for J (ν)λ . If, for instance we consider the decay of muon into an electron, a muonic neutrino and an
anti-electronic neutrino, described by the graph

(52)

the two theories will lead to the same leading contribution at small energies if the following identification is made

g2

8m2
W

= GF√
2

(53)

Indeed, the appearance of the gauge boson mass comes from the propagators of Wμ . At small momenta compared to the
mass, only mW remains and the above graph is in fact equivalent to the graph corresponding to the Fermi theory. Then,
using the expression of the W -bosons mass established before, m2

W = g2 v2/2, one arrives at

v2 =
√

2

4G2
F

(54)

Notice that there is a factor
√

2 difference with respect to the textbook [20] because we have defined the Higgs as v + H/
√

2
instead of (v + H)/

√
2. The Fermi constant is given by GF 	 1.16 × 10−5 (GeV)−2. Therefore,

v 	 175 GeV (55)

or
√

2v 	 246 GeV. We see that we have been able to calculate the Higgs vacuum expectation value v . As a consequence,
Eq. (48) reads

ρvac = −
√

2

16

m2
H

G2
F

(56)

The mass of the Higgs boson is not known although, at the time of writing, there are reasons to believe that mH < 129 GeV
at 95% CL [46] (there are even reasons to believe that mH 	 125 GeV but this is not yet established at a sufficient statistical
level at the time of writing). Therefore, we find that

1 Let us recall that they are defined by the following expression

Ψe =
(

eL

eR

)

and a similar expression for Ψν .



576 J. Martin / C. R. Physique 13 (2012) 566–665
ρEW
vac 	 −1.2 × 108 GeV4 	 −1055ρcri (57)

where ρcri 	 10−47 GeV4 is the critical energy density today. As will be discussed in the following, this result is in fact in
contradiction with various observations.

To conclude this section, let us recall that one can always adjust the vacuum energy today to zero by tuning the parame-
ter V 0. This is clearly not a very satisfactory method and this implies that the vacuum energy density was huge prior to the
electroweak phase transition. It is also worth noticing that this problem is not specific to the electroweak transition. Exactly
the same discussion could be presented for the Quantum Chromo Dynamics (QCD) transition [3,8] (for instance) and would
lead to the same problem since

ρQCD
vac 	 10−2 GeV4 	 1045ρcri (58)

Moreover, as we are now going to discuss in detail, even if we “solve” the classical cosmological constant by tuning the
vacuum energy to zero, see Eq. (8), the problem reappears at the quantum level. Indeed, we have seen that the zero-point
quantum fluctuations also give a contribution to the cosmological constant, see Eq. (5). The goal of the next section is to
estimate the corresponding energy density.

4. The quantum-mechanical cosmological constant problem

We have seen that, even if we solve the classical cosmological constant problem and find a convincing reason to put the
minimum of the potential to zero, ρvac is a quantity which also receives contributions from the zero-point fluctuations of
all the quantum fields present in the Universe. We now discuss this “quantum-mechanical” cosmological constant problem.
In principle, the corresponding vacuum energy density can be estimated from first principles. The goal of this section
(and of Section 6) is to carry out this task. We will first discuss how the Lorentz invariance affects the calculation of
the vacuum energy, see the next Section 4.1. Then, in Section 4.2, we will show how this question can be formulated in
terms of Feynman diagrams. In Section 4.3, we will also evaluate the vacuum energy not only for a free theory as usually
done but also in the more realistic case where interactions are present. Finally, in order to understand better the origin
of the vacuum energy density, in Sections 5.1 and 5.2, we will address the same question but in the context of ordinary
quantum mechanics. This will allow us in Sections 5.3 and 5.4 to discuss in more detail the properties of the so-called
bubble diagrams from which the cosmological constant originates. As mentioned above, all the fields present in the Universe
participate in the vacuum energy. Therefore, we need to do the calculation for scalar, fermion and vector fields. Here, in
a first step, we carry out the calculation for a real scalar field. The other types will be treated later on in Section 7. For
simplicity, we will also consider that the metric is flat and that the fields live in Minkowski space–time. A sloppy justification
is that the main contribution to the vacuum energy density comes from modes with very high momenta, corresponding to
scales at which the curvature of space–time is negligible. In fact, we will come back to this very important question in more
detail in what follows and will try to discuss this point in a more rigorous way, see Section 8.

4.1. The zero-point energy density

Let us consider a simple real free scalar field with the potential V (Φ) = m2Φ2/2 where m is the mass of the scalar
particle. In flat space–time, the equation of motion is nothing but the Klein–Gordon equation, namely

−Φ̈ + δi j∂i∂ jΦ − m2Φ = 0 (59)

Since the scalar field is free, the equation of motion is linear and, as a consequence, one can Fourier expand Φ(t, x) as

Φ(t, x)= 1

(2π)3/2

∫
d3k√
2ω(k)

(
cke−iωt+ik·x + c†

keiωt−ik·x) (60)

with

ω(k)≡
√

k2 + m2 (61)

The four-dimensional momentum has been written as kμ = (k0,k) and the integration is performed over its spatial part
only. We have used the notation |k| = k. Its time component is given by k0 = ω. As usual, the field has been quantized
by considering ck and c†

k (the so-called annihilation and creation operators) as quantum operators satisfying the following
commutation relation:[

ck, c†
k′
]= δ(3)

(
k − k′) (62)

This equation is in fact equivalent to the standard commutation rule between the field operator and its conjugate momen-
tum.

We are now in a position where one can compute 〈0|Tμν |0〉. From Eq. (7), we see that we must first evaluate the mean
values of various quantities depending on the field operator and its derivatives. Straightforward calculations lead to
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〈0|Φ̇2|0〉 = 1

(2π)3

∫
d3k

2ω(k)
ω2(k) (63)

〈0|δi j∂iΦ∂ jΦ|0〉 = 1

(2π)3

∫
d3k

2ω(k)
k2 (64)

〈0|Φ2|0〉 = 1

(2π)3

∫
d3k

2ω(k)
(65)

These equations can then be used to determine the energy density and pressure of the vacuum. From the above expres-
sion (7) of the stress–energy tensor, one has

T00 = H = 1

2
Φ̇2 + 1

2
δi j∂iΦ∂ jΦ + 1

2
m2Φ2 (66)

where H denotes the Hamiltonian density. This leads to the following expression for the energy density ρ = uμuν Tμν
measured by a fundamental observer characterized by its four-velocity vector uμ = (1,0)

〈ρ〉 = 〈0|u0u0T00|0〉 = 1

(2π)3

1

2

∫
d3kω(k) (67)

In the same manner, one can easily estimate the pressure. One obtains

〈p〉 =
〈
0

∣∣∣∣13 ⊥μν Tμν

∣∣∣∣0
〉

=
〈
0

∣∣∣∣12 Φ̇2 − 1

6
δi j∂iΦ∂ jΦ − 1

2
m2Φ2

∣∣∣∣0
〉

(68)

where ⊥μν≡ gμν + uμuν is a projector. Upon using the expressions (63), (64) and (65), one arrives at the following expres-
sion:

〈p〉 = 1

(2π)3

1

6

∫
d3k

k2

ω(k)
(69)

Notice that we also have

〈0|T0i|0〉 = − 1

(2π)3

1

2

∫
d3 kki = 0 (70)

and, hence, we do not need to consider to off-diagonal elements. This completes our calculation of the vacuum stress–energy
tensor.

From the above considerations, using Eq. (11), we deduce that

Λeff =ΛB + κ

(2π)3

∫
d3k

1

2
ω(k) (71)

The obvious problem with the previous calculation is that the integrals expressing the energy density 〈ρ〉 and the pres-
sure 〈p〉 blow up in the ultra-violet regime (and, therefore, strictly speaking, the effective cosmological constant is in fact
infinite). This is of course a well-known problem in quantum field theory. Usually, this type of divergences is ignored (or
sometimes removed by mean of the normal ordering product) because, in absence of gravity, only differences of energy
can be detected [16,17]. However, in the present context, this is clearly no longer the case since the absolute value of the
vacuum energy weighs and, therefore, can be measured. This is why regularizing these infinities becomes a crucial issue
that we now discuss in some details.

The common method found in the literature is to introduce a cut-off at k = M , where the physical interpretation of M
is that this is the scale at which the effective theory used before breaks down [2,4,5,7,9]. The quantity M is not known: it
could be the Planck scale, the string scale or even the super-symmetric breaking scale. As we will see later on, this is in
fact not important because the cosmological constant problem is present regardless of the precise value of the cut-off. In
this approach, the energy density becomes

〈ρ〉 = 1

4π2

M∫
0

dk k2
√

k2 + m2 (72)

= M4

16π2

[√
1 + m2

M2

(
1 + 1

2

m2

M2

)
− 1

2

m4

M4
ln

(
M

m
+ M

m

√
1 + m2

M2

)]
(73)

= M4

2

(
1 + m2

2
+ · · ·
)

(74)

16π M
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where, in the last expression, we have expanded the exact expression in terms of the small parameter m/M . We see that
the divergence is quartic in the cut-off scale. Let us now perform the same calculation for the pressure. Using Eq. (69), one
obtains

〈p〉 = 1

3

1

4π2

M∫
0

dk
k4

√
k2 + m2

(75)

= 1

3

M4

16π2

[√
1 + m2

M2

(
1 − 3

2

m2

M2

)
+ 3

2

m4

M4
ln

(
M

m
+ M

m

√
1 + m2

M2

)]
(76)

= 1

3

M4

16π2

(
1 − m2

M2
+ · · ·
)

(77)

It is clear from the previous expressions that 〈p〉/〈ρ〉 �= −1 which indicates that the stress–energy tensor is not of the form
∝ −ρgμν . In the limit m → 0, as can be easily shown from Eqs. (74) and (77), the equation of state is in fact 〈p〉/〈ρ〉 = 1/3.
This would mean that the zero point fluctuations do not behave like a cosmological constant but rather like radiation. On
the other hand, this result seems to be strange since we know from fundamental considerations that the stress–energy
tensor of a system in its ground state must be proportional to the metric tensor. Clearly, something has gone wrong is our
calculation.

Interestingly enough, let us also note in passing that if one only focuses on the logarithmic terms, namely

〈ρ〉log = − m4

32π2
ln

(
M

m
+ M

m

√
1 + m2

M2

)
(78)

〈p〉log = m4

32π2
ln

(
M

m
+ M

m

√
1 + m2

M2

)
(79)

then the equation of state of the vacuum is correctly reproduced (even if the energy density can be negative). In fact, as we
explain below, this is not a coincidence [47].

It is easy to check that the previous considerations are not an artifact of the fact that we have introduced a sharp cut-off.
Indeed, if rather than a sharp cut-off in the upper limit of the integrals, one introduces a smooth exponential cut-off, one
obtains (for simplicity, one only considers the case m = 0),

〈ρ〉 = 1

4π2

∞∫
0

dk k3e−αk = 1

4π2

Γ (4)

α4
(80)

= 1

4π2
6M4 (81)

where we have written α = 1/M and where Γ (z) is the Euler’s integral of the second kind [48,49]. One recovers our familiar
quartic divergence. Doing the same manipulation for the pressure, one obtains again that 〈p〉/〈ρ〉 = 1/3.

In fact, what has gone wrong is that we have used schemes of regularization that do not respect the symmetry of our
underlying theory [47,50,51]. Indeed, the Lorentz invariance is broken when we impose a cut-off on the spatial momentum
only. As exemplified by Eq. (81), it is easy to show that this is a feature of any regularization scheme breaking Lorentz
invariance and not a specific property of the particular cut-off scheme used above (and usually used in the literature). In
fact, this property is well known in the context of gauge theories. If one regulates divergent graphs with a method that is
not gauge invariant, then one obtains incorrect results [52]. Here, the situation is very similar.

Therefore, in order to meaningfully evaluate the zero-point energy density, one must use a regularization scheme that
does not break Lorentz invariance [47,50,51]. An obvious choice is dimensional regularization and we now explore this
route. In order to use this method, we first reformulate our problem in a d-dimensional Minkowski space–time. Obviously,
the Klein–Gordon equation (59) remains unchanged except that the indices of the Krönecker symbol now run from 0 to
d − 1. The Fourier expansion of the field becomes [compare with Eq. (60)]

Φ(t, x)= 1

(2π)(d−1)/2

∫
dd−1k√
2ω(k)

(
cke−iωt+ik·x + c†

keiωt−ik·x) (82)

and, as a consequence, the energy density can be expressed as

〈ρ〉 = μ4−d

(d−1)

1
∫

dd−1kω(k) (83)

(2π) 2
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= μ4−d

(2π)(d−1)

1

2

∞∫
0

dk kd−2 dd−2Ωω(k) (84)

where we have introduced a scale μ in order for the equation to be dimensionally correct. This equation should be
compared with Eq. (67). Then, using the fact that the angular integrals can be easily performed, namely

∫
dd−2Ω =

2π(d−1)/2/Γ (d/2 − 1/2), where, again, Γ (z) is the Euler’s integral of the second kind [48,49], one obtains

〈ρ〉 = μ4

2(4π)(d−1)/2

Γ (−d/2)

Γ (−1/2)

(
m

μ

)d

(85)

Performing the same calculation for the pressure, one arrives at a similar expression

〈p〉 = μ4−d

(2π)(d−1)

1

2(d − 1)

∫
dd−1k

k2

ω(k)
(86)

= μ4

4(4π)(d−1)/2

Γ (−d/2)

Γ (1/2)

(
m

μ

)d

(87)

But Γ (−1/2)= −2Γ (1/2) and, as a consequence,

〈p〉 = −〈ρ〉 (88)

This time, as expected, we have obtained the equation of state of the vacuum. The fact that the regularization method used
satisfies the Lorentz symmetry has led us to the correct result.

The consistency of the above result can be checked in a different manner [47]. Using Eqs. (83) and (86) for the energy
density and the pressure, one sees that they satisfy the following differential equation:

〈ρ〉 − 2m2 d〈ρ〉
dm2

= (d − 1)〈p〉 (89)

Using the fact that 〈p〉 = −〈ρ〉 one obtains

m2 d〈ρ〉
dm2

= d

2
〈ρ〉 (90)

which can be integrated to give 〈ρ〉 ∝ md in full agreement with Eq. (85). Therefore, we conclude that the above considera-
tions are all consistent.

Let us now analyze in more details the structure of the divergences. For this purpose one writes d = 4 − ε , where ε is
supposed to be a small parameter, and we expand 〈ρ〉 in terms of ε . The Euler function is such that

Γ

(
−2 + ε

2

)
= 1

−2 + ε/2

1

−1 + ε/2

1

ε/2
Γ

(
1 + ε

2

)
(91)

with Γ (1 + ε/2) 	 Γ (1) + εΓ ′(1)/2, Γ ′(1) = Ψ (1)Γ (1) where Ψ is the Polygamma function [48,49] and Ψ (1) = −γ 	
0.57772 the Euler–Mascheroni constant [48,49]. If, in addition, we use the two following expansions:

(4π)−3/2+ε/2 	 1

(4π)3/2

[
1 + ε

2
ln(4π)

]
(92)

(
m

μ

)4−ε
	
(

m

μ

)4(
1 − ε

m

μ

)
(93)

then one arrives at the following expression for the energy density of the vacuum:

〈ρ〉 	 − m4

64π2

[
2

ε
+ 3

2
− γ − ln

(
m2

4πμ2

)]
+ · · · (94)

Using a MS renormalization scheme convention [MS means “modified minimal subtraction” and simply consists in subtract-
ing the pole ∼ 1/ε together with the accompanying terms γ and ln(4π), see Chapter 11 of Ref. [16]; in fact, here, we
slightly modify the convention such that the term 3/2 is subtracted as well], the regularized, finite, energy density of the
vacuum now reads

〈ρ〉 = m4

64π2
ln

(
m2

μ2

)
(95)

This result is very different from the result obtained by imposing a sharp cut-off. In fact, one recovers the structures of the
logarithm terms found in Eqs. (78) and (79) since it is well known that the dimensional regularization scheme removes the
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power law terms. As discussed around Eqs. (78) and (79), this is the reason why those terms lead to the correct vacuum
equation of state. We see that the result is not proportional to the cut-off scale to the power four, as usually claimed on
dimensional grounds, but to the mass of the particle to the power four, which is also dimensionally correct. Physically, for
instance, this means that the photon does not contribute to the vacuum energy density contrary to what a sharp cut-off
calculation would predict. Therefore, the order of magnitude of the final result can a priori be very different. We also notice
that the sign of 〈ρ〉 can change according to m > μ or m < μ. Of course, it remains to be seen whether this could solve
the cosmological constant problem and we will argue below that, unfortunately, the answer to this question is no. It should
also be kept in mind that the above calculation is valid for free fields. It is clear that a more realistic version should take
into account the interactions and we will also consider this issue in the following. However, before addressing these various
points and in order to gain further physical insights, we would like to investigate again the above issues, this time from the
Feynman diagrams point of view. We turn to this question in the next subsection.

4.2. The vacuum and the Feynman diagrams

We have seen in the last subsection that the vacuum contribution to the cosmological constant is given in terms of
divergent integrals. A priori, there is no reason to be surprised since divergent integrals are routinely found in quantum field
theory. We have the method of renormalization at our disposal to get rid of these infinities and the so accurate predictions
of particle physics are here to remind us that this is a very convincing way of taming these divergences. However, we will
see that the divergent integrals that we encounter when we calculate the vacuum energy are in fact of a different nature
than the divergent integrals met when we calculate, say, a cross section. In order to discuss this point in more detail and to
understand better the structure of these divergences, we now briefly return to some textbook considerations [16–22].

In quantum field theory, the basic object is the generating functional defined by the following path integral (we still
restrict our considerations to a simple scalar field):

Z [ J ] = N
∫

DΦ exp

{
i

∫
d4x
[
L+ J (x)Φ(x)

]}
(96)

where N is a number chosen such that Z [ J = 0] = 1. The quantity L is the Lagrangian density while J represents a source
coupled to the scalar field. From the generating functional, one can compute the various correlation functions

G(n)(x1 · · · xn)= 〈Ω|T [Φ(x1) · · ·Φ(xn)
]|Ω〉 (97)

=
(

1

i

)n
δn Z [ J ]

δ J (x1) · · · δ J (xn)

∣∣∣∣
J=0

(98)

where |Ω〉 denotes the vacuum state of the theory. We distinguish it from |0〉 which denotes the vacuum state of the
theory without interaction. In this last case, the generating functional can be computed exactly. It reads (notice that we
have Z0[0] = 1 and that the “0” subscript indicates that we refer to the free theory)

Z0[ J ] = exp

[
−1

2

∫
d4x d4 y J (x)DF(x − y) J (y)

]
(99)

where DF is the Feynman propagator defined by the following expression:

DF(x1 − x2)= 〈Ω|T [Φ(x1)Φ(x2)
]|Ω〉 (100)

T denoting the time ordered product. As is well known, the propagator can be conveniently expressed in Fourier space as

DF(x1 − x2)= i

(2π)4

∫
d4k

k2 + m2
eikμ·(xμ1 −xμ2 ) (101)

In presence of interactions, one can write L = L0 + Lint where Lint represents the self-interacting part of the Lagrangian
density. In this case the generating functional can be written as

Z [ J ] = N exp

{
i

∫
d4xLint

[
1

i

δ

δ J (x)

]}
Z0[ J ] (102)

where, in order to have the correct normalization, the factor N must be given by

N−1 ≡ exp

{
i

∫
d4xLint

[
1

i

δ

δ J (x)

]}
Z0[ J ]

∣∣∣∣
J=0

(103)

As explained in the standard quantum field theory textbooks, the above expressions (102) and (103) are particularly well
suited for a perturbative expansion. For instance, if we want to calculate the generating functional for the case of a quartic
theory Lint = λΦ4/4!, where λ is the coupling constant, we are led to the following expansion in λ
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Z [ J ] = N
[

1 − i
λ

4!
∫

d4x
1

i4

δ4 Z0[ J ]
δ J (x)4

+ · · ·
]

(104)

As usual, the various terms that appear in this expansion can be graphically represented by Feynman diagrams. The Feynman
rules of the theory in real space are given by

D(x1 − x2)≡ (105)

−iλ

∫
d4x ≡ (106)

i

∫
d4x J (x)≡ (107)

and a loop for a propagator evaluated at the same point in space–time. This completes our quick reminder of the basics of
field theory that we need in the following.

Now, we compute the energy density of a free scalar field (the interacting case is treated in the next subsection) using
the tools that we have just presented. In fact, it is interesting to calculate the trace of the stress–energy tensor. Upon using
Eq. (7), one obtains

〈T 〉 = 〈ημν Tμν
〉= −〈ρ〉 + (d − 1)〈p〉 (108)

Then, since the energy density and the pressure are given by Eqs. (83) and (86), the above relation can be re-expressed as

〈T 〉 = −μ4−d
∫

dd−1k

(2π)d−1

m2

2ω(k)
(109)

But, from Eqs. (100) and (101), and now specifying to the case d = 4, one has

DF(0)= i

(2π)4

∫
d4k

k2 + m2
= i

(2π)4

∫
dk0 d3k

−(k0)2 +ω2
(110)

where we have distinguished the integration over the time and space components of the momentum. Using the identity∫
dk0/[−(k0)2 +ω2] = −π/(iω), see also Eq. (154), this leads to

DF(0)= −
∫

d3k

(2π)32ω
(111)

or, in other words,

〈T 〉 = m2 DF(0) (112)

But, if we now use the fact that 〈p〉 = −〈ρ〉, Eq. (108) can also be written as 〈T 〉 = −d〈ρ〉. As a consequence, Eq. (112)
implies that

〈ρ〉 = −m2

4
DF(0) (113)

This equation can also be obtained by a direct calculation. Indeed, one has

DF(0)= iμ4−d

(2π)d

∫
dk0 dd−1k

−(k0)2 +ω2
(114)

= − d

m2

μ4

2(4π)(d−1)/2

Γ (−d/2)

Γ (−1/2)

(
m

μ

)d

(115)

= − d

m2
〈ρ〉 (116)

where, in the second step of the calculation, we have used dimensional regularization. Now, using Eq. (11) and the Feynman
rule stipulating that a propagator evaluated at the same point is represented by a loop, one can re-write the cosmological
constant as

Λeff =ΛB − κ
m2

4
(117)

In other words, the cosmological constant is given by a “bubble diagram”, i.e. a diagram that has no external leg.
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We have just established that the vacuum energy density, or equivalently the cosmological constant, can be expressed
in term of a bubble diagram. This type of diagram plays a special role in quantum field theory and we will discuss this
point in more detail in the following next subsections. In order to develop our intuition, let us first calculate explicitly the
generating function in the case of a self-interacting scalar field. The calculation is straightforward and upon using Eq. (99),
this leads to

−i
λ

4!
∫

d4x
1

i4

δ4 Z0[ J ]
δ J (x)4

= −i
λ

4!
{

3
∫

d4x D2(0)− 6
∫

d4x D(0)

[∫
d4 y D(x − y) J (y)

]2

+
∫

d4x

[∫
d4 y D(x − y) J (y)

]4}
Z0[ J ] + · · · (118)

= 1

4!

(
3 + 6 + + · · ·

)
Z0[ J ] (119)

One notices the appearance of a “bubble diagram” (the first one), similar (i.e. with no external leg) but not identical to the
one encountered in the calculation of the cosmological constant. We also have a diagram with a loop (the second one) but
with external legs and a diagram with no loop (the last one). All the diagram with loops (that is to say the two first ones)
are divergent in quantum field theory. Nevertheless, the bubble diagram and the loop diagram play in fact a very different
role as we are going to see. Let us now calculate the normalization N , see Eq. (103). It uses the same expression as before
but with J = 0 which means that all the diagram containing a source disappear. As a consequence, we have

N−1 = 1 + 3

4! (120)

We can now gather everything and compute the generating functional. Upon using the expression (104) and the re-
sults (119) and (120), one arrives at

Z [ J ] =
[

1 + 1

4!

(
6 +

)
+ · · ·
]

e
1
2 (121)

We see that the bubble diagram has canceled in the final expression. Since all the predictions (cross-sections, etc. . . .) follow
from the calculation of the generating functional, we see that the bubble diagrams never contribute, in absence of gravity,
to any observables. On the contrary, when the gravitational field is turned on, the bubble diagrams become important and
can affect the predictions of the theory. In summary, the cosmological constant problem can be viewed as the appearance
of a new type of divergent graphs. As demonstrated with Eq. (95), these graphs can be regularized but, as will be discussed
below, the regularized value seems to be incompatible with some astrophysical observations.

4.3. The vacuum in presence of interactions

So far we have calculated the vacuum energy density for a free field. It is natural to ask what happens when one
considers interaction [50] since we know that a realistic model necessarily contains such terms. For this purpose, let us
therefore consider again a simple self-interacting scalar field with Lint = λΦ4/4!. As a consequence, this adds the following
contribution to the energy density of the vacuum:

�ρ = λ

4!
〈
Φ4〉= 3λ

4!
〈
Φ2〉2 = λ

8
D2

F(0) (122)

= i

8
∫

d4x
(123)

where, on the first line in the above expression, we have used the fact that the vacuum wave-functional is a Gaussian. As
expected, this new term is also given by a bubble diagram. However, one should not forget that, when interaction is present,
one must also renormalize the mass. As is well known, at one loop, the renormalization of the mass comes from the tadpole
diagram. More precisely, one has to calculate the correction to the propagator. It is given by the following expression:

〈Ω|T [Φ(x1)Φ(x2)
]|Ω〉 = + 1

2
+ · · · (124)

or, in terms of explicit expressions (see Eq. (101))
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〈Ω|T [Φ(x1)Φ(x2)
]|Ω〉 = DF(x1 − x2)− iλ

2

∫
d4x DF(x1 − x)DF(0)DF(x − x2)+ · · · (125)

= i

(2π)4

∫
d4 p

p2 + m2
eipμ·(xμ1 −xμ2 ) + iλ

2
DF(0)

1

(2π)4

∫
d4 p

eipμ·(xμ1 −xμ2 )

(p2 + m2)2
+ · · · (126)

= i

(2π)4

∫
d4 p

p2 + m2
eipμ·(xμ1 −xμ2 )

[
1 + λ

2
DF(0)

1

p2 + m2

]
+ · · · (127)

= i

(2π)4

∫
d4 p

p2 + m2 − λDF(0)/2
eipμ·(xμ1 −xμ2 ) + · · · (128)

where the last equation is equivalent to the previous one at leading order in the coupling constant. We see that this implies
the following redefinition (or renormalization) of the mass:

m2
ren = m2 − λ

2
DF(0) (129)

As a consequence, the vacuum energy which is now the sum of the free contribution (113) and of the contribution (122),
which originates from the self-interaction of the field, can be re-expressed as

〈ρ〉 = −m2

4
DF(0)+ λ

8
D2

F(0)

= −m2
ren

4
DF(0)− 1

4

[
λ

2
DF(0)

]
DF(0)+ λ

8
D2

F(0)

= −m2
ren

4
DF(0) (130)

where, in the second line, we have used Eq. (129). The extra contribution coming from the interacting term is exactly
canceled by the renormalization of the mass [50,53]. In other words, one sees that the presence of the interaction has not
modified the expression of the vacuum energy density (113), at least at one loop, provided the final result is expressed in
terms of the renormalized mass rather than the bare one.

5. Bubble diagrams

The previous sections have shown the central role played by bubble diagrams in the vacuum energy problem. These
diagrams do not affect the physical predictions when the gravitational field is turned off and this is why, in standard
quantum field theory, there are usually ignored. In this section, we wish to discuss in more detail this type of diagram. For
this purpose, we will analyze them in ordinary quantum mechanics where the technical aspects are less complicated and
where the interpretation is easier [54–56].

5.1. Quantum mechanics as a field theory

Let us start with the simplest quantum-mechanical system, namely the one-dimensional harmonic oscillator. Let us
denote by x(t) the position of the particle evolving into a parabolic potential. Then, the corresponding Lagrangian is given
by

L(ẋ, x)= 1

2
mẋ2 − 1

2
mω2x2 (131)

where m is the mass of the particle and ω is the effective frequency. Then, let us define the “scalar field” Φ(t) by

Φ(t)≡ √
mx(t) (132)

which implies that Φ has dimension −1/2. As a consequence, the Lagrangian now reads

L = Φ̇2

2
− ω2

2
Φ2 (133)

This Lagrangian is similar to that which one encounters in field theory for a free scalar field. This means that all the
techniques of quantum field theory can in fact be used in ordinary quantum mechanics. Of course, this does not lead to
genuine new results since both approaches are equivalent but this can shed a new light of some physical results. This is the
strategy that we use here applied to the vacuum energy problem. We now quickly remind how the formalism of quantum
field theory can be implemented in quantum mechanics. We will also compare this approach to the standard approach of
quantum mechanics. The first step is to define the conjugate momentum. It is given by
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Π(t)= ∂L

∂Φ̇
= Φ̇(t) (134)

and this leads to the following Hamiltonian

H = Π2

2
+ ω2

2
Φ2 (135)

The next step is to introduce the creation and annihilation c† and c operators. They are defined by the expressions

Φ = 1√
2ω

(
c† + c

)
(136)

Π = i

√
ω

2

(
c† − c

)
(137)

As usual one can check that [Φ,Π] = i implies [c, c†] = 1. As it is standard in field theory, we now work in the Heisenberg
picture where the operators are time dependent. A straightforward calculation shows that the Hamiltonian can be expressed
as

H = ω

2

(
cc† + c†c

)
(138)

This allows us to calculate the time evolution of the operator c. Indeed, the Heisenberg equation reads

i
dc

dt
= [c, H] =ωc (139)

from which we deduce that

c(t)= c(0)e−iωt = c0e−iωt (140)

As a consequence, the field operator can be written in terms of the creation and annihilation operators in a way which is
very similar to Eq. (60), namely

Φ(t)= 1√
2ω

(
c0e−iωt + c†

0eiωt) (141)

Of course we do not have an integral over the Fourier modes because, in quantum mechanics, we deal with a single
harmonic oscillator as opposed to an infinite collection of harmonic oscillators in field theory.

At this level, the theory is known exactly. It is clear that the most interesting part is in fact the treatment of the
interactions which, in field theory, is based on the calculation of the Feynman diagrams. Since this calculation is itself based
on the calculation of the propagator, one must now evaluate it for our simple system. It is defined by an equation similar
to Eq. (100), namely

D(t1, t2)≡ 〈0|T [Φ(t1)Φ(t2)
]|0〉 (142)

where we recall that the time ordered product is defined by

T
[
Φ(t1)Φ(t2)

]= {Φ(t1)Φ(t2), t1 > t2

Φ(t2)Φ(t1), t2 > t1

Then, the calculation proceeds straightforwardly and one obtains for t1 > t2

D(t1, t2)=
〈
0

∣∣∣∣ 1√
2ω

(
c0e−iωt1 + c†

0eiωt1
) 1√

2ω

(
c0e−iωt2 + c†

0eiωt2
)∣∣∣∣0
〉

(143)

= 1

2ω
e−iω(t1−t2) (144)

and, in a similar way if t2 > t1,

D(t1, t2)=
〈
0

∣∣∣∣ 1√
2ω

(
c0e−iωt2 + c†

0eiωt2
) 1√

2ω

(
c0e−iωt1 + c†

0eiωt1
)∣∣∣∣0
〉

(145)

= 1

2ω
eiω(t1−t2) (146)

The two previous equations can be summarized into a single one

D(t1, t2)= 1
e−iω|t2−t1| (147)
2ω
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Fig. 3. Contours in the complex time plane used to calculate the Feynman propagators of the one-dimensional harmonic oscillator. As usual, there are two
poles on the real axis that can be avoided by going along the two small red circles. The final contour is closed by a large blue circle of radius R .

We see that the system is so simple that we obtain an explicit expression of the propagator in real space (in fact, in field
theory, there is also an expression of the propagator in real space but it is not so often used because of its complexity
– it is given in terms of ordinary and modified Bessel functions). Nevertheless, in order to compare with the standard
approach and Eq. (101), it is interesting to obtain the expression of the propagator in Fourier space. The Fourier transform
of a function f (t) is defined by

f (t)= 1√
2π

+∞∫
−∞

f (E)eiEt dE (148)

The calculation is easy and well known. Here, for convenience, we quickly remind how it proceeds. For that purpose, let us
consider the function

f (z)≡ e−izt

z2 −ω2
(149)

It has two poles at z = ±ω on the real axis, see Fig. 3. We assume that t > 0 and consider the following contour: along
the real axis with two small circles Γ ±

ε around the two poles (the circle around z = −ω goes into the lower part of the
complex plane while the circle around z = +ω goes into the upper part); and we complete by a big circle Γ −

R going into
the lower part of the complex plane. In this case, only the pole z = +ω is inside the contour Γ = R∪ Γ ±

ε ∪ Γ −
R , see Fig. 3.

We have

lim|z|→∞
∣∣zf (z)

∣∣= lim|z|→∞
|z|e�(z)t

z2 −ω2
= 0 (150)

since �(z) < 0 in the lower part of the complex plan. According to the first Jordan lemma, this means that the integral on
the big circle vanishes. In the same way, we have limz→0 |zf (z)| = 0 and the second Jordan lemma tells that the integral
on Γ ±

ε is also zero. Then, using the fact that f (z) ≡ P (z)/Q (z) and that, in this case, the residue can be written as
Res( f , z)= P (z)/Q ′(z), one obtains

Res( f , z = +ω)= e−iωt

2ω
(151)

As a consequence

lim
R→+∞

[
i

2π

∫
Γ

f (z)dz

]
= i

2π

∞∫
−∞

f (z)dz

= i

2π
× −2iπRes( f , z = +ω)

= e−iωt

(152)

2ω
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where the minus sign in the second line comes from the fact that the contour is clockwise (i.e. opposite to the direct
direction).

Now if t < 0, then the big circle is taken in the upper plane. As a consequence, the pole inside the contour is now the
one located at z = −ω. Therefore,

i

2π

∫
Γ

f (z)dz = i

2π

∞∫
−∞

f (z)dz

= i

2π
× +2iπ Res( f , z = −ω)

= eiωt

2ω
(153)

The previous considerations allow us to conclude that

i

2π

+∞∫
−∞

e−iEt

E2 −ω2
dE = e−iω|t|

2ω
= D(t) (154)

that is to say we have established the Fourier transform of the propagator. It should be obvious that the above equation is
the counterpart of Eq. (101). As in field theory, we will show that it can be used to develop a perturbative method which
allows us to take into account interactions.

5.2. Perturbation theory in quantum mechanics

Before discussing our main subject, we need to explain how the Feynman diagrams can be used in quantum mechan-
ics [55,56]. Usually, in quantum mechanics, the perturbation theory is not based on Feynman diagrams [57]. This gives the
impression that the techniques of field theory are very different. In fact, as we now demonstrate, these techniques can also
be utilized in ordinary quantum mechanics [54] and, obviously (as could have been guessed from the very beginning), they
lead to the same physical predictions. In the following, we will discuss this question and compare the two approaches in
some details. We believe that this can improve our physical understanding of the vacuum energy problem.

In order to achieve the above mentioned task, we need to recall how interactions are treated in quantum mechanics. For
this purpose, let us consider a system obeying the following Schrödinger equation:

i
d|Ψ (t)〉S

dt
= H(pS, xS)

∣∣Ψ (t)〉S (155)

where H(pS, xS) is the Hamiltonian operator. The above equation is written in the Schrödinger representation, hence the
subscript “S”. Then, one can define the evolution operator U (t, ti) which relates the state vector at the time t to the state
vector at some initial time ti < t by the following expression:∣∣Ψ (t)〉S = U (t, ti)

∣∣Ψ (ti)
〉
S (156)

This operator obeys

i
∂U (t, ti)

∂t
= HU (t, ti) (157)

and, provided the Hamiltonian is not explicitly time dependent, it can also be written as

U (t, ti)= e−iH(t−ti) (158)

Of course, in this representation, the operator pS and xS are time independent since only the state can change with time.
One the contrary, in the Heisenberg representation, the state vector does not evolve and can be expressed in terms of

the Schrödinger state vector evaluated at some reference time t = t0,

|Ψ 〉H ≡ ∣∣Ψ (t0)
〉
S (159)

Notice that the reference time is arbitrary and is not necessarily ti . In this picture, the operators are time-dependent and,
for instance, xH(t) is given by

xH(t)≡ U †(t, t0)xSU (t, t0) (160)

such that xH(t0)= xS. In this picture, the time evolution of the operators is computed from the Heisenberg equation which
reads
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i
dxH

dt
= i

∂U †(t, t0)

∂t
xSU (t, t0)+ iU †(t, t0)xS

∂U (t, t0)

∂t
(161)

= −U † HxSU + U †xS HU (162)

= [xS, H] (163)

where in the second line we have used that −i∂U †/∂t = U † H .
Let us now consider the case where interactions are explicitly present. We assume that the corresponding Hamiltonian

can be split into two parts, one corresponding to the free theory and one corresponding to the interactions

H = H0 + H int (164)

We also assume that H int is a small perturbation. The free evolution, due to the free Hamiltonian H0, is described by the
evolution operator U0. This operator is of course different from U which describes the full evolution with the interactions
taken into account. Clearly, U0 can be expressed as

U0(t, ti)= e−iH0(t−ti) (165)

Then the idea is to factor out the free evolution (which is supposed to be known) and to focus on the time evolution due
to the perturbation on top of the free evolution. For this purpose, we define the interaction representation by (again, the
representations are supposed to coincide when t = t0)

xI(t)= U †
0(t, t0)xSU0(t, t0) (166)

= eiH0(t−t0)xSe−iH0(t−t0) (167)

Clearly xI(t) is different from xH(t) because its time evolution is “generated” only by the free Hamiltonian and not by the
total one. Let us now calculate the equation of motion of xI(t). One has

dxI

dt
= iH0xI + eiH0(t−t0)xS × −iH0e−iH0(t−t0) (168)

= i[H0, xI] (169)

Therefore, the time evolution of xI(t) is controlled by the free Hamiltonian. This evolution is supposed to be known. In the
same manner, we define the state vector in the interaction picture by∣∣Ψ (t)〉I = U †

0(t, t0)
∣∣Ψ (t)〉S (170)

As a consequence, in the interaction picture, both the state vectors and the operators are time dependent. The equation
obeyed by the state vector is given by

i
d|Ψ 〉I

dt
= −H0|Ψ 〉I + eiH0(t−t0)i

d|Ψ 〉S

dt
(171)

= −H0eiH0(t−t0)|Ψ 〉S + eiH0(t−t0)(H0 + H int)|Ψ 〉S (172)

= eiH0(t−t0)H int|Ψ 〉S (173)

= eiH0(t−t0)H inte
−iH0(t−t0)|Ψ 〉I (174)

= H I|Ψ 〉I (175)

where H I = U †
0(t, t0)H intU0(t, t0) in agreement with the definition (166). The time evolution of |Ψ 〉I is therefore generated

only by the interacting Hamiltonian. Then, it is natural to define the evolution operator in the interaction picture. This
operator is associated with the Schrödinger equation (175). Its definition reads∣∣Ψ (t)〉I = U I(t, ti)

∣∣Ψ (ti)
〉
I (176)

Of course U I is different from U0 (and from U ). A straightforward calculation shows that it can also be expressed as

U I(t, ti)= T exp

[
−i

t∫
ti

dτ H I(τ )

]
(177)

Another expression for U I is based on the following considerations. From Eqs. (176) and (170), we have∣∣Ψ (t)〉I = U I(t, ti)
∣∣Ψ (ti)

〉
I (178)

= U I(t, ti)U
†
0(ti, t0)

∣∣Ψ (ti)
〉
S (179)

= U †
(t, t0)

∣∣Ψ (t)〉 (180)
0 S
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Therefore, one obtains∣∣Ψ (t)〉S = U0(t, t0)U I(t, ti)U
†
0(ti, t0)

∣∣Ψ (ti)
〉
S (181)

= U (t, ti)
∣∣Ψ (ti)

〉
S (182)

from which we deduce that

U (t, ti)= U0(t, t0)U I(t, ti)U
†
0(ti, t0) (183)

or

U I(t, ti)= U †
0(t, t0)U (t, ti)U

†
0(ti, t0) (184)

= eiH0(t−t0)e−iH(t−ti)e−iH0(ti−t0) (185)

This expression is very natural since it expresses nothing but the fact that the full evolution of the system is just the
combination of the free evolution and of the evolution due to the interacting term. Let us also remark that one can write

xI(t)= U †
0(t, t0)xSU0(t, t0) (186)

= U †
0(t, t0)U (t, t0)xHU †(t, t0)U0(t, t0) (187)

= eiH0(t−t0)e−iH(t−t0)xH(t)e
iH(t−t0)e−iH0(t−t0) (188)

= U I(t, t0)xH(t)U
†
I (t, t0) (189)

Again, this result is very intuitive and expresses the fact that, in the interacting picture, the free evolution of the operators
is factorized out.

After these preliminaries, one can now derive the Gell-Mann Law equation which is at the heart of the perturbative
treatment presented in what follows. Let |nI〉 be the energy eigenstates of the full Hamiltonian, i.e. the free Hamiltonian
plus the Hamiltonian describing the interactions. We denote the true vacuum state by |0I〉 ≡ |Ω〉, in agreement with the
conventions adopted in the previous subsections. Then, one can always expand the vacuum state of the free theory according
to

|0〉 =
∞∑

n=0

|nI〉〈nI|0〉 (190)

= |Ω〉〈Ω|0〉 +
∞∑

n �=0

|nI〉〈nI|0〉 (191)

As a consequence, applying the operator e−iH(t+t0) to the above relation, one obtains

e−iH(t+t0)|0〉 = e−iE0(t+t0)|Ω〉〈Ω|0〉

+
∞∑

n �=0

e−iEn(t+t0)|nI〉〈nI|0〉 (192)

Then, we take the limit t → ∞(1 − iε). This kills all the terms on the right-hand side but the first one. Indeed, we have
En > E0 (n �= 0) and this means that e−iE0t goes to zero less rapidly than all the other exponential terms. Therefore, in
this limit, Eq. (192) reads e−iH(t+t0)|0〉 	 e−iE0(t+t0)|Ω〉〈Ω|0〉 and, by inverting this formula, this allows us to express the
interacting vacuum as

|Ω〉 = lim
t→∞(1−iε)

eiE0(t+t0)

〈Ω|0〉 e−iH(t+t0)|0〉 (193)

= lim
t→∞(1−iε)

eiE0(t+t0)

〈Ω|0〉 e−iH(t+t0)eiH0(t+t0)|0〉

= lim
t→∞(1−iε)

eiE0(t+t0)

〈Ω|0〉 U I(t0,−t)|0〉 (194)

In the second line, we have used the fact that H0|0〉 = 0 since we can always define the ground state as the state associated
to the zero of energy. This means that eiH0(t+t0)|0〉 = |0〉 and explains the appearance of the new factor eiH0(t+t0) . In the
same fashion, using eiH(t−t0)|Ω〉 = eiE0(t−t0)|Ω〉, one has

〈0|e−iH(t−t0) = lim 〈0|Ω〉〈Ω|e−iE0(t−t0) (195)

t→∞(1−iε)
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from which one deduces that

〈Ω| = lim
t→∞(1−iε)

eiE0(t−t0)

〈0|Ω〉 〈0|e−iH(t−t0) (196)

= lim
t→∞(1−iε)

eiE0(t−t0)

〈0|Ω〉 〈0|eiH0(t−t0)e−iH(t−t0)

= lim
t→∞(1−iε)

eiE0(t−t0)

〈0|Ω〉 〈0|U I(t, t0) (197)

Therefore, the norm of the vacuum state is given by

〈Ω|Ω〉 = lim
t→∞(1−iε)

e2iE0t

|〈0|Ω〉|2 〈0|U I(t, t0)U I(t0,−t)|0〉 (198)

In the following, we take 〈Ω|Ω〉 = 1 although this choice is not mandatory (but, then, when we compute a correlation
function, it would be necessary to divide the corresponding expression by 〈Ω|Ω〉).

We are now in a position where one can calculate the two-point correlation function of the field operator (recall that
x(t) is directly proportional to the field operator, see Eq. (132)). Using the previous results, one obtains

〈Ω|xH(t2)xH(t1)|Ω〉 = lim
t→∞(1−iε)

e2iE0t

|〈0|Ω〉|2 〈0|U I(t, t0)U
†
I (t2, t0)xI(t2)U I(t2, t0)U

†
I (t1, t0)xI(t1)U I(t1, t0)U I(t0,−t)|0〉

(199)

= lim
t→∞(1−iε)

〈0|U I(t, t0)U I(t0, t2)xI(t2)U I(t2, t0)U I(t0, t1)xI(t1)U I(t1, t0)U I(t0,−t)|0〉
〈0|U I(t, t0)U I(t0,−t)|0〉 (200)

= lim
t→∞(1−iε)

〈0|U I(t, t2)xI(t2)U I(t2, t1)xI(t1)U I(t1,−t)|0〉
〈0|U I(t,−t)|0〉 (201)

= lim
t→∞(1−iε)

〈0|T[xI(t2)xI(t1)U I(t,−t)]|0〉
〈0|U I(t,−t)|0〉 (202)

= lim
t→∞(1−iε)

〈0|T[xI(t2)xI(t1)exp(−i
∫ t
−t dτ H I)]|0〉

〈0|exp(−i
∫ t
−t dτ H I)|0〉 (203)

where, in order to go from the first to the second line, we have used Eq. (198) and the normalization 〈Ω|Ω〉 = 1 to express
the term |〈0|Ω〉|2. Eq. (203) is the Gell-Mann Law equation [16]. It will be the basis for our perturbative treatment of
quantum mechanics. It plays the same role as Eq. (97) since it allows us to perturbatively evaluate the various correlation
functions in terms of Feynman diagrams (the Gell-Mann Law equation can be generalized to higher correlation function if
needed).

5.3. Quantum mechanics and bubble diagrams

In order to mimic the self-interacting field theory studied before, we now consider a quartic oscillator in quantum me-
chanics [55,56], i.e. a system where the potential is given by V (x)∼ x2 + x4. More precisely, this means that the interacting
Hamiltonian can be expressed as

H int = λ

4!Φ
4 (204)

where we recall that Φ is given by Eq. (132). Let us then compute the two-point correlation function. For this purpose, as
explained before, we use the Gell-Mann Law equation. The numerator reads〈

0

∣∣∣∣T
[
Φ(t2)Φ(t1)exp

(
−i

∫
dτ H I

)]∣∣∣∣0
〉

(205)

where, for simplicity, we do not write the limits (but there will be reestablished when needed). It is also important to
remember that the field are written in the interacting picture (and, again for simplicity we do not write the subscript “I”,
they can be considered as free fields). Obviously, one cannot calculate exactly this quantity so we do it perturbatively by
expanding the exponential. At first order in the coupling constant λ, we obtain〈

0

∣∣∣∣T
{
Φ(t2)Φ(t1)

[
1 − i

λ

4!
∫

dτΦ4(τ )+ · · ·
]}∣∣∣∣0
〉
= 〈0|T[Φ(t2)Φ(t1)

]|0〉

− i
λ
∫

dτ 〈0|T[Φ(t2)Φ(t1)Φ
4(τ )
]|0〉 + · · · (206)
4!
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= D(t1, t2)− i
λ

4!
∫

dτ 〈0|T[Φ(t2)Φ(t1)Φ
4(τ )
]|0〉 + · · · (207)

It should now be clear that the same expression can also be written in terms on Feynman diagrams. One arrives at the
following expression

〈
0

∣∣∣∣T
[
Φ(t2)Φ(t1)exp

(
−i

∫
dτ H I

)]∣∣∣∣0
〉
= + 3

4! + 12

4! +O
(
λ2) (208)

where we have defined the following Feynman rules [55,56]

D(t1, t2)≡ (209)

−iλ

∫
dτ ≡ (210)

Clearly, these Feynman rules are nothing but the one-dimensional version of the standard Feynman rules (105) and (106)
of quantum field theory. The only difference is that four-dimensional space–time integrations are simply replaced with one-
dimensional time integration. In fact, in terms of diagrams, the expressions in field theory or in quantum mechanics are
exactly similar. In particular, we see the appearance of diagrams with loops and external legs (the tadpole) and also of
diagrams with loops but no external legs, our bubble diagrams. The advantage of our approach now becomes clear. We are
in a position where not only one can compute these diagrams in quantum mechanics but we can also investigate their deep
meaning by comparing the result with the standard perturbative theory of quantum mechanics where everything is well
under control.

Let us start with the tadpole diagram. Using Eqs. (209) and (210), the corresponding expression can be written as

= −iλ

∫
dτ D(t1, τ )D(τ , τ )D(τ , t2) (211)

= − iλ

8ω3

∫
dτe−iω|t1−τ |−iω|τ−t2| (212)

= − iλ

4ω2
D(t2, t1)

(
|t2 − t1| − i

ω

)
(213)

The most striking difference with the case of quantum field theory is that the tadpole diagram is now finite. In some
sense, this is the signal that ordinary quantum mechanics does not need renormalization: the perturbative approach leads
to finite result. Technically, this is due to the fact that we deal with one-dimensional integrals that have better convergence
properties. Physically, this is due to the fact that a single quantum-mechanical oscillator leads to finite predictions while an
infinite collections of such systems apparently lead to infinite physical quantities.

Now let us calculate the “bubble diagram” present in the second term of the above expansion (208). Having established
that the tadpole diagram is now finite, it is particularly interesting to see what happens for this type of diagram. Using
again the Feynman rules (209) and (210), it is straightforward to establish that

= −iλ

∫
D2(τ , τ )dτ (214)

= −i
λ

4ω2

∫
dτ = ∞ (215)

Therefore, even in quantum mechanics, the bubble diagram remains divergent. This shows that the divergent nature of
the loop and bubble diagrams is, in some sense, different. They are both divergent in quantum field theory but one (loop
diagrams with external legs) becomes finite in the limit of quantum mechanics while the other (bubble diagram) remains
infinite.

But this now leads to the following question. We know from the standard perturbation theory of quantum mechanics
that all the physical predictions are finite, even without renormalization. However, using the other approach based on the
Feynman diagrams, we have just seen that it leads to terms that can be divergent. How these two facts can be consistent
with each other? The answer is of course that, as in field theory, the bubble diagrams exactly cancel out in the calculation
of the correlation functions. This can easily be seen if one notices that

+ 3

4! + 12

4! =
(

+ 12

4! + · · ·
)



J. Martin / C. R. Physique 13 (2012) 566–665 591
×
(

1 + 3

4!
)

+O
(
λ2) (216)

and that〈
0

∣∣∣∣exp

(
−i

∫
dτ H I

)∣∣∣∣0
〉
= 1 + 3

4! +O
(
λ2) (217)

Therefore (as expected) the infinities of the bubble diagram never play a role in ordinary quantum mechanics. As a conse-
quence, the two-point correlation function is given by

〈Ω|Φ(t2)Φ(t1)|Ω〉 = + 12

4! +O
(
λ2) (218)

which is perfectly finite. Again, in terms of Feynman diagrams the above equation is strictly equivalent to the corresponding
one in quantum field theory, see Eq. (124).

5.4. Quantum mechanics and vacuum energy

Let us now discuss how the vacuum energy is evaluated in ordinary quantum mechanics. The calculation is straightfor-
ward when there is no interaction and, from Eq. (138), one obtains

〈H〉 = ω

2
(219)

This is of course nothing but the ground state energy of a harmonic oscillator. It cannot be zero because, due the Heisenberg
uncertainty principle, the kinetic and potential energy cannot vanish at the same time. It can also be rewritten as

〈H〉 =ω2 D(0) (220)

where we have used Eq. (147). This exactly corresponds to Eq. (113) with m = ω and 4 → 1 (since we now work in one
dimension rather than in four), except that there is a sign difference which comes from the fact that, in field theory, we have
used the signature (− + ++). Of course, the big difference is that D(0) is a finite quantity in quantum mechanics. In some
sense, the vacuum energy problem appears to be very simple, almost trivial. The ground state of a quantum-mechanical
oscillator is finite but a quantum field is a system which can be described by an infinite collection of harmonic oscillators
and, as a consequence, its ground state energy is infinite.

Let us now consider a case where an interaction is present as we did in Section 4.3. For simplicity, we consider again
the case of a quartic oscillator with V int = λΦ4/4!. Upon using the standard perturbation theory in quantum mechanics,
one can calculate the displacement of the energy levels. They are given by the standard formula [57]

En = E0
n + 〈n|V int|n〉 (221)

where |n〉 are the unperturbed eigenvectors. It is easy to show that they can be expressed as

�En ≡ En − E0
n = λ

32ω2

(
2n2 + 2n + 1

)
(222)

which means that, for the first two levels, the shift in energy is given by

�E0 = λ

32ω2
, �E1 = 5λ

32ω2
(223)

We can now use the other method, based on the Feynman diagrams. It is easy to obtain that

�E0 = λ

4!
〈
Φ4〉= 3λ

4!
〈
Φ2〉2 = λ

8
D2(0)

= i

8
∫

dt
(224)

Clearly, we have just obtained the strict equivalent of Eq. (123), the term
∫

d4x being replaced by
∫

dt as could have been
guessed in the context of quantum mechanics. Then, using the fact that D(0)= 1/(2ω), one obtains that

�E0 = λ

32ω2
(225)

that is to say we recover the result established before, see Eq. (223). Therefore, we have shown explicitly that the two
approaches lead to the same result. It is also interesting to notice that �E0 is given by a bubble diagram but that this
divergent graph is canceled by the infinite term

∫
dt so that a finite quantity is left.
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The previous considerations also lead to the following question: before we had to deal with the renormalization of the
mass. How does this aspect appear in the present context? In this case, we deal with the same diagrams, namely

〈Ω|T [Φ(t1)Φ(t2)
]|Ω〉 = + 1

2
+ · · · (226)

or, in terms of explicit expressions [compare with Eqs. (124) and (125)]

〈Ω|T [φ(t1)φ(t2)
]|Ω〉 = DF(t1 − t2)− iλ

2

∫
dτ D(t1 − τ )DF(0)DF(τ − t2) (227)

= DF(t1 − t2)+ iλ

2
DF(0)

1

2π

∫
dE

e−iE(t1−t2)

(E2 −ω2)2
(228)

and this leads to

ω2
ren =ω2 + λ

2
D(0) (229)

which is exactly Eq. (129) (again, there is a sign difference which originates from the sign difference in the propagator, see
above). In quantum mechanics, the propagator is finite and therefore

ω2
ren =ω2 + λ

4ω
(230)

or

ωren =ω+ λ

8ω2
(231)

Then, one can express the spectrum in terms of the renormalized “mass” ωren as we have done in quantum field theory
although this is not necessary here since the result is anyway finite. Straightforward calculations lead to

En =ωren

(
n + 1

2

)
− λ

32ω2
ren

(
2n2 − 2n − 1

)
(232)

It does not come as a surprised that, as a function of the renormalized mass, the spectrum is a different function of n, see
Eq. (222). However, from the above expression one also obtains

E1 − E0 =ωren (233)

In presence of an interaction, the difference between the first excited state and the fundamental level has been “modified”
(or, rather, is expressed differently). But, observationally, we define or measure the spectrum with respect to E1 − E0. In
other words what we define as ω is in fact E1 − E0. Therefore, renormalizing ω consists in preserving this definition even
in presence of an interaction. Obviously, E1 − E0 is not the bare ω (the one which appears in the Lagrangian) when the
an-harmonic term is present. What we do here is to define ω as the observed one, namely as E1 − E0, and then calculate
the spectrum in terms of that observational quantity. What is done in quantum field theory is clearly exactly similar to the
above described procedure except of course that the bare quantities are in fact infinite because DF(0) is infinite. Therefore,
this exercise illustrates nicely the deep meaning of renormalization.

This concludes our discussion of the vacuum energy density in terms of Feynman diagrams. We have shown that the
cosmological constant is in fact given in terms of very peculiar graphs, the so-called bubble diagrams. These diagrams
are, in a sense, more divergent than the usual loop diagrams because they remain infinite even in the limit of quantum
mechanics contrary to the last ones. In non-gravitational physics, this is not a problem because the bubble diagrams always
cancel out in the equations describing observable quantities. When the gravitational field is turned on, we face the tasks of
renormalizing these diagrams which is more difficult than in the standard situation because of their bad behavior mentioned
before. Given that astrophysical observations seem to indicate that the vacuum energy is non-vanishing (see below), the
details of the renormalizing procedure become a crucial issue. Not only we have to extract a finite quantity from a divergent
graph but this finite quantity must be in agreement with the observations. As argued before, the technique which consists
in imposing a spatial cut-off is certainly not consistent (and, as well known, gives a very large contribution to the vacuum
energy). A more reasonable approach seems to be dimensional regularization since this satisfies Lorentz invariance and is
therefore consistent with the vacuum equation of state. As shown before, this typically leads to Eq. (95). In the next section,
we present a new argument, based on the Gaussian effective potential, which seems to support this conclusion.
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6. The Gaussian effective potential

The Gaussian effective potential is a non-perturbative approach to quantum field theory [58–66]. Originally developed
in the context of quantum mechanics, it is has been generalized to field theory. Much less well known is the fact that the
Gaussian effective potential method has something to say about the vacuum energy problem and the aim of this section is
to present these considerations [59]. In the next subsection, we quickly recall the main idea and how this approach can be
applied to ordinary quantum mechanics. Then, we explain how it can be implemented in quantum field theory and, finally,
we discuss its implication for the cosmological constant problem.

6.1. The Gaussian effective potential in quantum mechanics

The main idea underlying the Gaussian effective potential approach is the following one [58]. At the classical level, a
system is described by a potential. Once this one is specified, one can compute the evolution of the system. When quantum
effects are taken into account, the behavior of the system will be modified and, by means of the formalism of quantum
mechanics, one can work out the corresponding physical predictions. The idea of the Gaussian effective potential is to
find an effective potential which, at the same time, can be used as if it were a “classical” potential (that is to say can be
used in the framework of Newtonian dynamics) and takes into account the quantum effects. At first sight, this approach
seems equivalent to what is known in the literature as the effective potential [67,68]. In this method, one requires the
wave-function mean value to be centered at a fixed point Φ0. Then, the effective potential gives the exact ground state
energy of the system in presence of quantum corrections. However, in some situation, the result can be quite artificial.
Consider for instance a situation where the wave-function possesses two large peaks on each side of Φ0. In such a case,
the effective potential does not necessarily lead to a correct description of what happens in the vicinity of Φ0 because its
shape could just be determined by some average procedure between the two distant peaks. Typically, one would obtain a
convex potential centered at Φ0 while our physical intuition rather indicates that the effective potential should be a double-
well potential, the two wells corresponding to the two peaks of the wave-function. Another problem is that the standard
effective potential is usually computed perturbatively in h̄. Clearly, when the quantum corrections become important, this
approach breaks down. Since the Gaussian effective potential does not suffer from the two above mentioned drawbacks, we
will use it in this review. When possible, we will discuss the difference between the two approaches in order to stress their
differences and similarities [69].

We now turn to the precise definition of the Gaussian effective potential. This definition is based on a variational princi-
ple. Here we consider a one-dimensional system as we have already done in Section 5.1. In particular, this means that the
scalar field is given by Eq. (132). Then, the Gaussian effective potential is defined by [58]

V G(Φ0)= min
Ω

〈Ψ |H|Ψ 〉 (234)

where H is the Hamiltonian of the system and where the wave-function is taken to be a simple Gaussian (hence the name
Gaussian effective potential)

Ψ (Φ)=
(
Ω

h̄π

)1/4

e−Ω(Φ−Φ0)
2/(2h̄) (235)

The parameter Ω is related to the width of the wave-function. Here the idea is to find the value of Ω which minimizes the
energy of the system. In practice, the mean value of the Hamiltonian that appears in Eq. (234) can be expressed as

〈H〉 =
∞∫

−∞
dΦΨ ∗(Φ)

[
− h̄2

2

d2

dΦ2
+ V (Φ)

]
Ψ (Φ) (236)

To illustrate how the calculation of the Gaussian effective potential works on a concrete example, we choose the following
potential

V (Φ)= 1

2
m2Φ2 + λΦ4 (237)

that is to say the potential of an an-harmonic oscillator. Another motivation for this choice is that the comparison with field
theory is easy since the prototypical model possesses the same potential. Upon using Eq. (235) in Eq. (236), one arrives at

〈H〉(Φ0,Ω)= h̄Ω

4
+ 1

2
m2
(
Φ2

0 + h̄

2Ω

)

+ λ

[
Φ4

0 + 6Φ2
0

h̄

2Ω
+ 3h̄2

(2Ω)2

]
(238)

We must now determine the optimal Ω . As explained above, this is achieved by requiring ∂〈H〉/∂Ω = 0, which leads to the
equation
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Ω3 − (m2 + 12λΦ2
0

)
Ω − 6h̄λ= 0 (239)

This equation allows us to determine Ω in terms of Φ0. In the following, we write this result as Ω0 ≡Ω(Φ0). Upon using
the above relation in the expression of 〈H〉, one obtains the following expression for the Gaussian effective potential

V G(Φ0)= 1

2
m2Φ2

0 + λΦ4
0 + h̄Ω0

2
− 3h̄2λ

4Ω0
(240)

Of course, as already emphasized before, one should not forget that Ω0 is a function of Φ0.
A complete study of the above potential has been provided in Ref. [58] and we will not repeat this analysis. Here, we just

want to illustrate that the Gaussian effective potential is an accurate method to estimate the ground state of a system (even
in the strong coupling limit) since this is directly relevant for the cosmological constant problem. Let us consider the case
where m2 > 0 (the case of the double-well potential, reminiscent of symmetry breaking in field theory has been studied in
Ref. [58]). The ground state of the an-harmonic oscillator is given by Eq. (240)

V G(Φ0 = 0)= h̄Ω0

2

(
1 − 3

2

h̄λ

Ω3
0

)
(241)

where Ω0 is solution of

Ω3 − m2Ω − 6h̄λ= 0 (242)

The discriminant of this cubic equation can be expressed as

�(Φ0 = 0)= 4m6
(

1 − 972

16

1

ξ6

)
(243)

where the quantity ξ in the above relation is given by

ξ2 ≡ m2

(2λ)2/3
(244)

The awkward coefficient 972/16 in Eq. (243) originates from our will to work with the definition of ξ used in Ref. [58]. The
cubic equation (242) can be explicitly solved. We deal with different branches according to the sign of the discriminant. This
sign is determined by ξlim = (972/16)1/6 	 1.9827. If ξ < ξlim (ξ = 0 represent the quartic oscillator) we are in the strong
coupling regime which is of particular interest in order to demonstrate the usefulness of the Gaussian effective potential.
Therefore, let us focus on this situation. In this case, the exact solution of Eq. (242) can be written as

Ω0 = m

[
3

2ξ3
− 1

27

√
27

(
972

16

1

ξ6
− 1

)]1/3

+ m

[
3

2ξ3
+ 1

27

√
27

(
972

16

1

ξ6
− 1

)]1/3

(245)

Together with Eq. (241), the above equation gives an excellent approximation for the ground state. For instance, if m = 1
and λ = 10, then ξ2 	 (1/20)2/3 	 0.1357 and Ω0 = 4. As a consequence, this gives V G(Φ0 = 0) 	 1.53, a result that is
accurate at 	 1.75% according to Ref. [58].

This simple example has shown that the Gaussian effective potential can be an efficient tool to calculate the ground state
of a quantum system even in a non-perturbative regime. Therefore, it appears as an interesting approach for the vacuum
energy problem. However, before turning to the calculation of the Gaussian effective potential in field theory, it is interesting
to compare it with the standard effective potential in more detail. This is the purpose of the next subsection.

6.2. Comparison with the one loop effective potential

In order to explain how the effective potential is obtained, we need to quickly return to the basics of quantum field
theory. In Eq. (96), we have defined the generating functional Z [ J ]. Let us now define another generating functional W [ J ]
by [16,17]

Z [ J ] = eiW [ J ] (246)

Following the procedure in Eq. (97), one can define new correlation functions G(n)
c according to

G(n)
c =

(
1

i

)n−1
δn W [ J ]

δ J (x1) · · · δ J (xn)

∣∣∣∣
J=0

(247)

As is well known, these functions represent in fact the connected n-points functions. Then, one introduces the classical
field Φc
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Φc ≡ δW [ J ]
δ J (x)

∣∣∣∣
J=0

(248)

where we remind that J (x) is a source. This definition can be easily justified. Indeed, from Eqs. (96) and (246), one sees
that

Φc = 1

i Z [ J ]
δZ [ J ]
δ J (x)

(249)

= N
∫
DΦ exp{i

∫
d4x [L+ J (x)Φ(x)]}Φ(x)

N
∫
DΦ exp{i

∫
d4x [L+ J (x)Φ(x)]}

= 〈Ω|Φ(x)|Ω〉
〈Ω|Ω〉 (250)

Therefore, we see that the classical field is in fact the vacuum expectation value of the field operator in the vacuum state
of the theory. When the source vanishes, the classical field does not necessarily goes to zero, a typical and well-known
example being of course symmetry breaking.

The next step consists in introducing a new generating function, the so-called effective action, defined by

Γ [Φc] = W [ J ] −
∫

d4x J (x)Φc(x) (251)

Clearly, Γ [Φc] does not depend on the source since δΓ/δ J = 0. Let us now calculate the functional derivative of Γ with
respect with the classical field. This gives

δΓ [Φc]
δΦc(x)

= δW

δΦc(x)
−
∫

d4 y
δ J (y)

δΦc(x)
Φc(y)−

∫
d4 y J (y)

δΦc(y)

δΦc(x)
(252)

=
∫

d4 y
δW

δ J (y)

δ J (y)

δΦc(x)
−
∫

d4 y
δ J (y)

δΦc(x)
Φc(y)− J (x)= − J (x) (253)

In order to interpret these equations and to better understand their meaning, it is interesting to apply them to the case of
a free theory where all the calculations can be carried out explicitly. From Eq. (99), we immediately see that (the subscript
zero indicates that the calculation is performed for the free theory)

iW0[ J ] = −1

2

∫
d4x d4 y J (x)DF(x − y) J (y) (254)

Upon using Eq. (248), one obtains

Φc(z)= −1

i

∫
d4x DF(z − x) J (x) (255)

But iDF is the Green function of the Klein–Gordon operator. As a consequence, the above equation implies that(
ημν∂μ∂ν − m2)Φc(x)= J (x) (256)

i.e. the classical field obeys the classical equation of motion (hence its name). Then, using Eqs. (254) and (255) into the
definition (251), the effective action can be expressed as

Γ0[Φc] = 1

2i

∫
d4x d4 y J (x)DF(x − y) J (y) (257)

The next step is to use the equation of motion of the classical field (256) to rewrite the effective action as

Γ0[Φc] = 1

2i

∫
d4x d4 y DF(x − y)

(
ημν∂x

μ∂
x
ν − m2)Φc(x)

(
ημν∂

y
μ∂

y
ν − m2)Φc(y) (258)

where ∂
x,y
μ means a partial derivative with respect to the coordinates at point x and y. Then, integrating by part the x

dependent terms in the above integral leads to

Γ0[Φc] = 1

2i

∫
d4x d4 yΦc(x)

(
ημν∂x

μ∂
x
ν − m2)DF(x − y)

(
ημν∂

y
μ∂

y
ν − m2)Φc(y) (259)

Finally, using the fact that DF/i is the Green function satisfying −ημν∂μ∂νDF + m2 DF = δ, one obtains

Γ0[Φc] = 1
∫

d4xΦc(x)
(
ημν∂μ∂ν − m2)Φc(x)= −1

∫
d4x
(
ημν∂μΦc∂νΦc + m2Φc

)
(260)
2 2
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and one recovers the action of a free scalar field theory. In presence of interactions, Γ [Φc] will no longer agree with the
classical action. The quantum corrections will transform it into a complicated non-local functional. In this situation, one
typically expects an expression that can be written as

Γ [Φc] = −
∫

d4x

[
1

2
A(Φc)η

μν∂μΦc∂νΦc + V eff(Φc)+ B(Φc)
(
ημν∂μΦc∂νΦc

)4 + · · ·
]

(261)

where A(Φc) and B(Φc) are functions (not functionals) of Φc and the dots represent higher derivative terms. Clearly, the
previous considerations justify the name “effective action” for Γ [Φc].

Another interesting aspect is that the effective action is also the generating functional of the irreducible correlation
functions Γ (n) (also known as proper vertices). In other words, one has

Γ (n)(x1, . . . , xn)= δnΓ [Φc]
δΦc(x1) · · · δΦc(xn)

∣∣∣∣
Φc=0

(262)

Equivalently, one can express the effective action as a Volterra expansion, namely

Γ [Φc] =
∞∑

n=0

1

n!
∫

d4x1 · · · d4xn Γ
(n)(x1, . . . , xn)Φc(x1) · · ·Φc(xn) (263)

which is nothing but another way to write the functional (261).
Now, suppose that we are interested in determining the effective action concretely. It is clear that this is a complicated

calculation. As a first step, it is worth calculating the effective potential in Eq. (261). It is true that it does not represent
all the information contained in the effective action but this would allow us to determine the location of the minimum of
the system in presence of quantum corrections. Therefore, this is an interesting quantity. For this purpose, it is sufficient to
consider a case where Φc is constant. Indeed, in this situation, the effective action reduces to Γ = −V V eff(Φc), where V is
the space–time volume. On the other hand, the Volterra expansion can be re-expressed as

Γ [Φc] =
∞∑

n=0

1

n!
∫

d4x1 · · · d4xn Γ
(n)(x1, . . . , xn)Φ

n
c (264)

This expression can be further simplified if one takes the Fourier transform of the proper vertex,

Γ (n)(x1, . . . , xn)=
∫

d4k1

(2π)4
· · · d4kn

(2π)4
Γ (n)(k1, . . . ,kn)e

−ik1·x1 · · · e−ikn·xn (265)

In fact, for convenience, we introduce the coefficients Γ (n)(k1, . . . ,kn) that are easier to manipulate. They are defined by the
following expression

Γ (n)(k1, . . . ,kn)≡ (2π)4δ(k1 + · · · + kn)Γ
(n)(k1, . . . ,kn) (266)

Then, we insert the Fourier expansion (265) into the expression (264) of the effective action. The integrals over space of the
exponentials lead to Dirac functions in momentum. As a consequence, one arrives at the following expression

Γ [Φc] = V
∞∑

n=0

1

n!Γ
(n)(ki = 0)Φn

c (267)

where, as already mentioned, V = (2π)4δ(0) is the space–time volume. One finally reaches the result that

V eff(φc)= −
∞∑

n=0

1

n!Γ
(n)(ki = 0)Φn

c (268)

Therefore, in order to calculate the effective potential, one just has to evaluate the proper vertices with vanishing momenta.
At one loop, this gives rise to the following sum

V eff = + + · · · (269)

It turns out that this series can be summed up as we are now going to show.
In order to see how it works, let us calculate the second diagram in the above expansion. For this purpose, we start with

the following diagram
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D = (270)

According to the Feynman rules (105) and (106), this diagram is equivalent to the expression

D = (−iλ)2
∫

du dv D(t1 − u)D(t2 − u)D2(u − v)D(v − t3)D(v − t4) (271)

where u and v denotes the two internal vertices. Upon using Eq. (154), this expression takes the form (here, we use the
quantum-mechanical theory introduced in Section 5.1 where the “mass” is denoted ω)

D = (−iλ)2
∫

du dv

∫
dE1

2π

dE2

2π

dE3

2π

dE4

2π

dE

2π

dẼ

2π

ie−iE1(t1−u)

E2
1 −ω2

ie−iE2(t2−u)

E2
2 −ω2

ie−iE3(v−t3)

E2
3 −ω2

× ie−iE4(v−t4)

E2
4 −ω2

ie−iE(u−v)

E2 −ω2

ie−i Ẽ(u−v)

Ẽ2 −ω2
(272)

The integrals over u and v are easily performed and leads to two Dirac functions. Then, a further integration over Ẽ can be
performed and we are left with the expression

D = (−iλ)2(2π)2δ(E1 + E2 − E3 − E4)

∫
dE1

2π

dE2

2π

dE3

2π

dE4

2π

dE

2π

ie−iE1t1

E2
1 −ω2

ie−iE2t2

E2
2 −ω2

ie−iE3t3

E2
3 −ω2

ie−iE4t4

E2
4 −ω2

× i

E2 −ω2

i

(E3 + E4 − E)2 −ω2
(273)

In order to compute the expression (269) (or rather the contribution of the second diagram to this expression), we have
seen that we must amputate the diagram by appending the external leg propagators. This amounts to ignore the factors
i/(E2

i −ω2) in the above expression. Moreover, since the graph is given by the Fourier transform of D, this means that only
the expression inside the above quadruple integrals over Ei should be considered. Finally, the “momentum” (in the present
context the energy) of the external legs should be put to zero (i.e. we require all the Ei ’s left in the expression of D to
vanish) and we must factorize out a Dirac function expressing energy conservation [times (2π)2 since we are considering a
0 + 1 theory]. This means that Eq. (273) takes the following form

= (−iλ)2
∫

dE

2π

i

E2 −ω2

i

E2 −ω2
(274)

The fact that the propagator appears squared is of course not fortuitous. It comes from the fact that we have two “double
legs” attached to the loop. For n “double legs”, it is clear that we would have the propagator to the power n and an overall
factor (−iλ)n . As a consequence, at one loop, Eq. (268) can be expressed as

V eff(Φc)= −
∞∑

p=1

Φ
2p
c

2p

(
λ4!
2

)p ∫ dE

2π

1

(E2 −ω2)p
(275)

where we have taken into account a symmetry factor and where we have noted n = 2p, p being the number of external
points. The sum can now be performed and we obtain

V eff(Φc)= −1

2

∞∫
−∞

dE

2π
ln

(
1 + 12λΦ2

c

E2 −ω2

)
(276)

= 1

2

(
ω−
√

12λΦ2
c −ω2

)
(277)

= h̄

2

(−m +
√

m2 + 12λΦ2
c
)

(278)

where we have re-established h̄ and where we have taken into account the sign difference for ω (or m) due to the fact that
we work with a (− + ++) signature, see the remark after Eq. (220). This expression should be compared to Eq. (240). In
fact the first term just comes from the fact that the method of the effective potential assumes that V eff(0)= 0. Therefore, in
order to compare with the Gaussian effective potential, one must ignore this rescaling. As a consequence, the total potential
(including the leading order in h̄0) reads

V eff(Φc)= 1
m2Φ2

c + h̄
√

m2 + 12λΦ2
c (279)
2 2
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One sees that the vacuum energy is predicted to be V eff(0) = h̄m/2 a result which is not realistic in the non-perturbative
regime.

In fact the comparison can be made in an even more explicit manner if one remembers that the one loop Gaussian
effective potential consists in retaining the dominant term is a systematic expansion in h̄. As a consequence, one should
ignore the h̄2 term in Eq. (238) and the h̄ term in Eq. (239). In particular, this last approximation leads to the following
explicit solution for the gap equation

Ω2 = m2 + 12λΦ2
0 = d2 V

dΦ2
0

(280)

If we then use Eq. (240) and neglects the h̄2 term in that equation, one obtains

V G(Φ0)= V (Φ0)+ h̄

2

√
d2 V

dΦ2
0

+O
(
h̄2) (281)

= 1

2
m2Φ2

0 + h̄

2

√
m2 + 12λΦ2

0 + · · · (282)

that is to say exactly Eq. (279). We conclude that the effective potential is in fact contained in the Gaussian effective
potential approach. It just consists in neglecting higher power of h̄ since this is a one loop approach. As a consequence, the
effective potential cannot be reliable in the non-perturbative regime where the quantum effects are strong.

Having demonstrated that the Gaussian effective potential approach is an efficient tool, we now need to study how it
works in quantum field theory. Then, we will able to use it in order to calculate the energy density of the vacuum state.

6.3. The Gaussian effective potential in field theory and the vacuum energy

We now turn to the main question of this section, namely the calculation of the Gaussian effective potential in quan-
tum field theory [59,60,63,65]. For this purpose, we now consider a model similar to the one considered in the previous
subsections, namely a free model plus a quartic self-interaction

H = 1

2
Φ̇2 + 1

2
δi j∂iΦ∂ jΦ + 1

2
m2

BΦ
2 + λBΦ

4 (283)

where mB and λB are the bare mass and coupling constant, respectively. Then, we write the field operator as (we work in d
space–time dimensions)

Φ(t, x)=Φ0 + 1

(2π)(d−1)/2

∫
dd−1k√
2ωΩ(k)

(
cke−iωt+ik·x + c†

keiωt−ik·x) (284)

with

ωΩ(k)≡
√

k2 +Ω2 (285)

The quantity Φ0 represents a classical and constant field. The parameter Ω denotes the mass of the excitations around this
classical value. The idea at the basis of the calculation is the same as before, namely minimizing the energy with respect
to the parameter Ω . Using the properties of the creation and annihilation operators, it is straightforward to calculate the
mean value of the Hamiltonian in the vacuum state. We find

〈H〉(Ω,Φ0)= I1(Ω)+ 1

2

(
m2

B −Ω2)I0(Ω)+ 1

2
m2

BΦ
2
0

+ λBΦ
4
0 + 6λBΦ

2
0 I0(Ω)+ 3λB I2

0(Ω) (286)

where we have defined the integrals I p(Ω) by

I p(Ω)= 1

(2π)d−1

∫
dd−1k

2ωΩ(k)
ω

2p
Ω (k) (287)

Of course, the integrals I p(Ω) can be divergent and this signals, as usual in field theory, the need for renormalization. In
fact, these integrals can be performed exactly and one is led to

I p(Ω)= 1

2(4π)(d−1)/2

Γ [(2 − d − 2p)/2]
Γ [(1 − 2p)/2] Ωd+2p−2 (288)

It is clear that, for some values of d and p, the above expression does not exist and is only formal.



J. Martin / C. R. Physique 13 (2012) 566–665 599
As already mentioned, in order to calculate the Gaussian effective potential, one must vary 〈H〉 with respect to Ω . Upon
using Eq. (286) and dI p/dΩ = (2p − 1)Ω I p−1, one arrives at the following “gap” equation, the field theory counterpart of
Eq. (239):

Ω2 = m2
B + 12λB

[
Φ2

0 + I0(Ω)
]

(289)

This is an algebraic equation for Ω . Its solution can be written as Ω =Ω(Φ0;mB, λB), that is to say it depends on Φ0 and
on the bare parameters (in the following we no longer write the dependence on the bare parameters). Then, the Gaussian
effective potential is defined by inserting this solution into Eq. (286). This leads to

V G(Φ0)≡ 〈H〉[Ω(Φ0),Φ0
]

(290)

Upon using the gap equation, one can also find a more compact expression, namely

V G(Φ0)= I1
[
Ω(Φ0)

]− 3λB I2
0

[
Ω(Φ0)

]+ 1

2
m2

BΦ
2
0 + λBΦ

4
0 (291)

At this level, this expression is in fact still formal because of the divergences of the integrals I p . Therefore, we must first
tame those divergences. This is done by means of a renormalization of the parameters appearing in the Lagrangian of the
model.

Renormalization consists in parametrizing the physical quantities in terms of new, observable parameters, different from
the bare parameters that appear in the Lagrangian. We now define the renormalized mass by

m2
R = d2 V G

dΦ2
0

∣∣∣∣
Φ0=0

(292)

Upon using Eq. (291) and the following relation [which comes from differentiating Eq. (289)]

dΩ

dΦ0
= Φ0

Ω

12λB

1 + 6λB I−1(Ω)
(293)

one finds that

d2 V G

dΦ2
0

= m2
B + 12λB

[
Φ2

0 + I0(Ω)
]− (12λBΦ0)

2 I−1(Ω)

1 + 6λB I−1(Ω)
(294)

As a consequence, putting Φ0 = 0 in the above equation, the renormalized mass can be expressed as

m2
R = m2

B + 12λB I0(Ω0) (295)

where Ω0 denotes the solution of the gap equation (289) when Φ0 = 0, i.e. Ω2 = m2
B + 12λB I0(Ω). It is obvious that Ω0 is

not a function of Φ0 but depends only on mB and λB. In fact, this can also been seen from Eq. (289) since it tells us that
m2

R =Ω2
0. As a consequence, the above equation can be re-written as

m2
B = m2

R − 12λB I0(mR) (296)

We are now in a position where we can calculate the Gaussian effective potential in terms of the renormalized mass. For
this purpose, we restart from Eq. (290) and substitute the expression (296). One obtains

V G(Φ0)= I1(Ω)+ 1

2

(
m2

R −Ω2)I0(Ω)+ 1

2
m2

RΦ
2
0 + λBΦ

4
0 + 6λB

[
I0(Ω)− I0(mR)

]
Φ2

0

+ 3λB I2
0(Ω)− 6λB I0(Ω)I0(mR) (297)

However, at this stage, the expression of the Gaussian effective potential is not yet a function of the renormalized mass only
as one still needs to express I0(Ω) and I1(Ω) in terms of I0(mR) and I1(mR). There are several ways to do it, see Ref. [59].
Here we choose to use a method where a cut-off is temporarily introduced. We work in d = 4 dimensions to simplify the
calculations. Let us exemplify the method with I0. We have

I0(Ω)= 1

2(2π)3

∫
d3kω−1

Ω (298)

= 1

4π2

M∫
0

dk k2(k2 +Ω2)−1/2
(299)

where we have performed the angular integrals and where we have introduced a cut-off M to regulate the otherwise
divergent integral. This gives
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I0(Ω)= 1

4π2

[
M

2

√
Ω2 + M2 − Ω2

2
ln
(
M +
√
Ω2 + M2

)+ Ω2

2
lnΩ

]
(300)

As a consequence, one can write

I0(Ω)− I0(m)= 1

2

(
m2 −Ω2)I−1(m)+ 1

4π2

[
M

2

√
Ω2 + M2 − M

2

√
m2 + M2 + Ω2

2
ln

(
M + √

m2 + M2

M + √
Ω2 + M2

)

+ Ω2

2
lnΩ − m2

2
lnm + 1

2

(
m2 −Ω2)( M√

m2 + M2
+ lnm

)]
(301)

where we have used

I−1(Ω)= 1

4π2

[ −M√
Ω2 + M2

+ ln
(
M +
√
Ω2 + M2

)− lnΩ

]
(302)

an expression which can be obtained with the same method as described above. Then we take the limit M → +∞ and
Eq. (301) becomes

I0(Ω)− I0(m)= −1

2

(
Ω2 − m2)I−1(m)+ m2

16π2

[
x ln x − (x − 1)

]
(303)

where x ≡ Ω2/m2. Notice that, at this stage of the calculation, there is no need to write x in terms of Ω and/or mR. The
above expression is valid for any Ω and m. Following Ref. [59], we call the function between the square brackets in the
above equation L2(x). Exactly in the same manner, one can also show that

I1(Ω)− I1(m)= 1

2

(
Ω2 − m2)I0(m)− 1

8

(
Ω2 − m2)2 I−1(m)+ m4

32π2
L3(x) (304)

with L3(x)= [2x2 ln x − 2(x − 1)− 3(x − 1)2]/4. Then, upon using Eqs. (303) and (304) in Eq. (297), one obtains

V G(Φ0)= I1(mR)− 3λB I2
0(mR)+ 1

2
m2

RΦ
2
0 + λBΦ

4
0 + m4

R

32π2
L3(x)+ 3

4
λBm4

R(x − 1)2 I2−1(mR)

+ 1

8
I−1(mR)m

4
R(x − 1)

{
(x − 1)− 3λB

2π2

[
L2(x)+ 16π2

m2
R

Φ2
0

]}

− m4
R

32π2
L2(x)

{
(x − 1)− 3λB

8π2

[
L2(x)+ 32π2Φ

2
0

m2
R

]}
(305)

with x ≡Ω2/m2
R. Finally, the gap equation (289) can also be re-written in terms of the renormalized mass. The correspond-

ing expression reads

(x − 1)
[
1 + 6λB I−1(mR)

]= 3λB

4π2

[
L2(x)+ 16π2Φ

2
0

m2
R

]
(306)

We see that the dependence on Φ0 of the Gaussian effective potential is quite complicated. Indeed, solving the gap equation
provides us with x = x(Φ0) that we must then insert in Eq. (305).

We shall now discuss the renormalization of the coupling constant λB. It is defined by

λR = 1

4!
d4 V G

dΦ4
0

∣∣∣∣
Φ0=0

(307)

Proceeding in the same manner as before, one obtains the following equation for the quantity λR

λR = λB
1 − 12λB I−1(mR)

1 + 6λB I−1(mR)
(308)

The renormalization of the coupling constant has been discussed at length in Refs. [59,63] and we will not repeat all
the details since, here, our main concern is the vacuum energy. In fact we will focus on the case named “precarious” in
Ref. [59]. Let us return to Eq. (308); one can invert this expression and express the bare coupling constant in terms of the
renormalized one. One obtains

λB = 1 − 6λR I−1(mR)

24I−1(mR)

{
1 ±
√

1 − 48λR I−1(mR)

[1 − 6λR I−1(mR)]2

}
(309)
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Then, from Eq. (302), we see that I−1(mR) is in fact a logarithmically divergent quantity when the cut-off M is sent to
infinity. Therefore, we must treat I−1(mR) as an arbitrarily large quantity. In this limit, if one chooses the plus sign in
Eq. (309), one obtains

λB = −1

2
λR +O

[
1

I−1(mR)

]
(310)

As shown in Ref. [59], this case is not viable. Intuitively, it is clear that a large negative coupling constant leads to a potential
which is not bounded from below. Therefore, we are left with the minus sign for which one finds that

λB = − 1

6I−1(mR)

{
1 + 1

2λR I−1(mR)
+O
[

1

I2−1(mR)

]}
(311)

In passing, it is worth signaling that this equation can be re-expressed in a different manner as follows. Let us first introduce
the new characteristic scale MC (not to be confused with the cut-off M discussed before) defined by

1

λR
≡ − 1

4π2
ln

(
m2

R

M2
C

)
(312)

Then, if we use the fact that

I−1(MC)− I−1(mR)= − 1

8π2
L1(x) (313)

where L1(x) = ln x (an expression which can be derived with the same method that has led to Eqs. (301) and (304)), the
bare coupling constant can be re-written as

λB = − 1

6I−1(MC)
(314)

Therefore, it has a negative but infinitesimal value which implies that the stability properties of the corresponding scenario
are much better compared to the case (310). As argued in Ref. [59], besides simplifying the expression of the renormalized
coupling constant, the scale MC plays an important role in a complete study of the precarious case (even if, in the present
context, this is not apparent since we focus on the vacuum energy only). Inserting the expression (311) (or Eq. (314)) into
Eq. (305), one can re-write the effective potential as

V G(Φ0)= I1(mR)− 3λB I2
0(mR)+ 1

2
m2

RxΦ2
0 + m4

R

32π2
L3(x)− m4

R

16λR
(x − 1)2

+O
[

1

I−1(mR)

]
(315)

while the gap equation (306) becomes

x − 1 = λR

4π2

[
L2(x)+ 16π2Φ

2
0

m2
R

]
(316)

Let us notice that, in Eq. (315), we have left the quantity λB into the field independent term I1(mR)− 3λB I2
0(mR) since it

represents the zero point energy that will be treated in detail in the next Section 6.4. Finally, if one uses the explicit form
of the functions L2 and L3, then the Gaussian effective potential takes the form

V G(Φ0)= I1(mR)− 3λB I2
0(mR)+ 1

2
m2

RxΦ2
0

+ m4
R

128π2

[
2x2 ln x − 2(x − 1)− 3(x − 1)2 − 2

4π2

λR
(x − 1)2

]
(317)

and the gap equation can be re-expressed as

(x − 1)

(
1 + 4π2

λR

)
− 16π2Φ

2
0

m2
R

= x ln x (318)

The two equations (317) and (318) give a complete expression of the Gaussian effective potential for the renormalized
precarious “λΦ4” theory [59,63].

As we have done for the quantum mechanics case, it is interesting to compare the above result to the standard effective
potential approach. We know that this potential can be obtained from the Gaussian effective potential method by neglecting
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the terms proportional to h̄2. Therefore, we restart from Eq. (286) and neglect the term 3λB I2
0 since this corresponds to the

standard one loop method (i.e. it is of order h̄2). One obtains

〈H〉(Ω,Φ0)= I1(Ω)+ 1

2

(
m2

B −Ω2)I0(Ω)+ 1

2
m2

BΦ
2
0 + λBΦ

4
0 + 6λBΦ

2
0 I0(Ω)+O

(
h̄2) (319)

As a consequence, this leads to the new following gap equation

Ω2 = m2
B + 12λBΦ

2
0 (320)

Clearly, this relation is the exact counter-part of Eq. (280). Then, one has to calculate the renormalized mass and coupling
constant. One arrives at

m2
R = m2

B + 12λB I0(mB), (321)

λR = λB
[
1 − 18λB I−1(mB)

]
. (322)

These equations should be compared to Eqs. (296) and (308). We notice that it is now mB that appears in the argument
of the integrals rather than mR as in Eqs. (296) and (308). This is because Eq. (320) implies that Ω(Φ0 = 0)= mB and not
Ω(Φ0 = 0)= mR as before. The final step consists in using the two previous equation in Eq. (319). One obtains

V G(Φ0)= I1(mB)+ 1

2
m2

RΦ
2
0 + λRΦ

4
0

+ m4
B

64π2

[(
1 + 12λB

Φ2
0

m2
B

)2

ln

(
1 + 12λB

Φ2
0

m2
B

)
− 12λB

Φ2
0

m2
B

− 216λ2
B
Φ4

0

m4
B

]
+ · · · (323)

the dots corresponding to the higher order terms in h̄. If one neglects those terms, then V G reduces to V eff. The correspond-
ing expression is nothing but the Coleman–Weinberg potential. The previous analysis confirms that the effective potential
is indeed a particular case of the Gaussian effective potential approach. An even more detailed comparisons of the two
methods can be found in Refs. [59,63]. Here, we do not pursue this issue and now come to the question of the vacuum
energy problem.

6.4. Vacuum energy and Gaussian effective potential

We are now in a position where the main problem of this section can be addressed. From Eqs. (305) and (315), we see
that the vacuum energy density predicted by the Gaussian effective potential method (i.e. the term left after having taken
Φ0 = 0 in those expressions) can be expressed as

ρvac = I1(mR)− 3λB I0(mR) (324)

As we have already stressed many times, it is important to remember that this result is a priori non-perturbative. Using the
expression of the precarious coupling constant (311), one obtains

ρvac = I1(mR)+ 1

2

I0(mR)

I−1(mR)

[
1 + 1

2λI−1(mR)

]
I0(mR) (325)

The expressions of the integrals I p have been given in Eqs. (287) and (288). The three integrals that appear in the above
expression are all divergent. Nevertheless, the ratio I0/I−1 is finite and reads

I0(mR)

I−1(mR)
= m2

R

2 − d
(326)

Nevertheless, even after having inserted the above ratio into Eq. (325), this expression still contains singular terms. Explicitly,
one has

ρvac = m4
R

4(2 − d)

[
−md−4

R
4 − d

2
√
π(4π)(d−1)/2

Γ

(
−d

2

)
+ 1

λR(2 − d)

]
(327)

However, writing this expression for d = 4 + ε and taking the limit ε → 0, we have the remarkable result that a second
cancellation occurs and that the final expression is in fact finite. It can be expressed as

ρvac = m4
R

128π2

[
1 − 2 ln

(
m2

R

M2
C

)]
(328)

where we have used Eq. (314). Even more remarkable is that the above equation is very similar to Eq. (95). In particular,
the vacuum energy is proportional to fourth power, not of the cut-off, but of the mass of the corresponding particle and the
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scale MC is present as a logarithmic correction. Therefore, we conclude that our analysis based on the Gaussian effective
potential has totally confirmed the results presented in the previous sections. We end this section by noticing that the
vacuum energy predicted by the Coleman–Weinberg potential is, see Eq. (323), ρvac = I1(mB) and is therefore different from
the one obtained before, see Eq. (328). Moreover, it seems that this expression remains divergent.

7. Contribution from other fields

So far, for simplicity, we have only treated the case of a scalar field. However, in order to be more realistic, it is clear that
one must also evaluate the vacuum energy for other type of fields. This question is the purpose of the present section. As
we will see, the corresponding calculations are in fact very similar. In fact, the important question is the dependence of the
overall coefficient which multiplies ρvac with the spin of the particle. As is well known, this is at the origin of a remarkable
cancellation which leads to the concept of super-symmetry. Therefore, in the following, we will pay special attention to this
issue.

7.1. Fermion fields

We start with the case of a Dirac spinor field describing a spin 1/2 particle [16–22]. For convenience, we quickly recall
basics fact about the quantum field theory of a spin 1/2 field. Then, we turn to the calculation of ρvac.

The Lagrangian of the free model is [we treated the mass-less case in Eq. (35)]

LDirac = −Ψ (iγ μ∂μ − m
)
Ψ (329)

where γ μ are matrices satisfying{
γ μ,γ ν

}= −2gμν (330)

The above equation is in fact valid for any metric tensor. Here, we just consider the flat space–time case and, therefore,
we will always consider that gμν = ημν . The quantity Ψ (t, x) represents a four components Dirac spinor and Ψ ≡ Ψ †γ 0

(this definition was already mentioned just after Eq. (33)). Here, we use the Dirac representation which means that the γ μ

matrices can be taken to be equal to [recall that, in Eq. (31), we used the chiral representation]

γ 0 =
(
I2 0
0 −I2

)
, γ i =

(
0 σ i

−σ i 0

)

γ 5 =
(

0 I2
I2 0

)
(331)

where σ i are the standard two-dimensional Pauli matrices. The equation of motion for the spinor Ψ is easily obtained from
Eq. (329). Varying the Dirac Lagrangian, it is straightforward to show that(

iγ μ∂μ − m
)
Ψ = 0 (332)

which is of course nothing but the Dirac equation. Then, as we have done for the scalar field case, we now expand the Ψ

operator in Fourier modes according to

Ψ (t, x)= 1

(2π)3/2

∫
dk√

2ω(k)

2∑
r=1

[
br

ku(k, r)e−iωt+ik·x + (dr
k

)†
v(k, r)eiωt−ik·x] (333)

As appropriate for a spinor field, the operators br
k and dr

k satisfy anti-commutation rules. The index r represents the two
polarization states. Inserting the expansion (333) into the Dirac equation (332) leads to two equations, namely(

γ 0ω− γ iki − m
)
u(k, r)= 0 (334)(

γ 0ω− γ iki + m
)

v(k, r)= 0 (335)

Upon using the explicit form (331), the first equation can be re-written as(
(m −ω)I2 σ iki

−σ iki (m +ω)I2

)
u(k, r)= 0 (336)

In order to have a non-trivial solution, the determinant of this matrix should vanish and this leads to

w(k)=
√

k2 + m2 (337)

where we have used the following properties of the Pauli matrices, σ ikiσ
jk j = k2. On the other hand, Eq. (336) also implies

that
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u(k, r)=
(

ψ
σ iki

m+ωψ

)
(338)

where ψ is an arbitrary two components spinor. Choosing the solution to be an eigenstate of the spin operator along the
z-direction (in the rest frame of the particle), the two components of u(k, r) can be expressed as

u(k,1)= √
m +ω

( (
1
0

)
σ iki

m+ω
(

1
0

)
)

(339)

and

u(k,2)= √
m +ω

( (
0
1

)
σ iki

m+ω
(

0
1

)
)

(340)

It is easy to check that this spinor is normalized according to

u(k, r)u(k, s)= 2mδsr (341)

In the same manner, the solution v(k, r), corresponding to the other branch of the Fourier expansion, can be written as

v(k,1)= √
m +ω

( σ iki
m+ω
(

1
0

)
(

1
0

)
)

(342)

and

v(k,2)= √
m +ω

( σ iki
m+ω
(

0
1

)
(

0
1

)
)

(343)

The normalization of this spinor satisfies a relation almost identical to that of u(k, r) except for the presence of a minus
sign

v(k, r)v(k, s)= −2mδsr (344)

Finally, we also have

u(k, r)v(k, s)= 0 (345)

which can easily be obtained from the above expressions.
All the previous considerations are standard textbooks calculations. We now turn to our main goal, namely the calcula-

tion of the vacuum energy. Therefore, the next step consists in calculating the energy–momentum tensor. Either using the
Noether procedure or a variation of the action with respect to vierbeins lead to the equation

Tμν = − i

4
(Ψ γμ∂νΨ +Ψγν∂μΨ − ∂μΨγνΨ − ∂νΨ γμΨ ) (346)

Of course, this expression is symmetric in μ and ν as it should. Endowed with this formula, one can now evaluate the
various components of the stress–energy tensor in the vacuum state. Let us first calculate the energy density. One has

〈ρ〉 = − i

4
〈0|(−2Ψ †∂0Ψ + 2∂0Ψ

†Ψ
)|0〉 (347)

since γ 0 = −γ0 and (γ 0)2 = I4. Inserting the Fourier expansion (333) into the above expression, one arrives at

〈ρ〉 = − 1

(2π)3

1

2

∫
dk

2∑
s=1

v†(k, s)v(k, s) (348)

This equation can be further simplified. Upon using the explicit form of the spinors given above, one can show that

2∑
s=1

v†(k, s)v(k, s)= 4ω(k) (349)

and, therefore, we obtain the following expression for the vacuum energy

〈ρ〉 = − 1
3

4
∫

dkω(k) (350)

(2π) 2
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Several comments are in order at this point. From the above expression, we see that we find minus four times the corre-
sponding result for a scalar field, see Eq. (67). We have a factor four because we have two particles (the particle and its
anti-particle) with two polarization state each. Of course, the most striking aspect of the above equation is that 〈ρ〉 is neg-
ative. It is therefore interesting to understand the origin of the minus sign in more details. For this purpose, let us calculate
the Hamiltonian operator associated to the Dirac field

H =
∫

d3x T00. (351)

Inserting the Fourier expansion (333) of the spinor Ψ into the above equation, it is straightforward to arrive at2

H =
∫

dk
2∑

s=1

ω(k)
[(

bs
k

)†
bs

k − ds
k

(
ds

k

)†]
(352)

However, as we have already recalled, a spinor field is a quantity which anti-commutes and, therefore, one has {ds
k, (d

r
p)

†} =
δ(k − p)δrs. As a consequence, the Hamiltonian (352) can be re-written as

H =
∫

dk
2∑

s=1

ω(k)
[
Nb + Nd − δ(0)

]
(353)

where Nb ≡ (bs
k)

†bs
k and Nd ≡ (ds

k)
†ds

k are the particle and anti-particle number operators respectively. Of course, their mean
value vanishes in the vacuum state which contains no particle. The zero point energy is thus given by the formally infinite
term δ(0). Since this term appears with a minus sign in the Hamiltonian, the corresponding energy density is indeed
negative. The origin of this minus sign is the anti-commuting properties of the creation and annihilation operators. We
conclude that the vacuum energy density is negative because we deal with fermions which are anti-commuting objects.

Let us now turn to the calculation of the pressure. Upon using Eq. (346), one has

〈p〉 = 1

3
⊥μν Tμν (354)

= − i

6
g00(Ψ γ0∂0Ψ − ∂0Ψγ0Ψ )− i

6
gij(Ψ γi∂ jΨ − 2∂iΨγ jΨ )

− i

6
u0u0(Ψ γ0∂0Ψ − ∂0Ψγ0Ψ ) (355)

= − i

6
δi j(Ψ γi∂ jΨ − 2∂iΨγ jΨ ) (356)

From the above expression, we see that we have two terms to calculate. Using the definition of Ψ , the first one reads

〈0|Ψ †γ 0γ i∂iΨ |0〉 = − i

(2π)3

∫
dk√

2ω(k)
ki

2∑
s=1

v†(k, s)γ 0γ i v(k, s) (357)

while the second one takes the form

〈0|Ψ †γ 0γ i
i Ψ |0〉 = −〈0|∂iΨ

†γ 0γ iΨ |0〉 (358)

As a consequence, one finds that the vacuum pressure is given by the following expression

〈p〉 = −1

3

1

(2π)3

∫
dk√

2ω(k)

2∑
s=1

v†(k, s)γ 0γ iki v(k, s) (359)

One must now evaluate the sum present in the above integral. We have seen that the spinors v obeys the Dirac equation
(γ 0ω− γ iki + m)v(k, s)= 0. Using this last equation, one deduces that

2 For convenience, let us notice that the following relationships are useful for this calculation

u†(k, s)u(k, r)= 2ωδrs

v†(k, s)v(k, r)= 2ωδrs

v†(k, s)v(−k, r)= 0

These three equations are responsible for the fact that only the quantity ω(k) appears into the expression of the Hamiltonian (352).
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v†(k, s)γ 0γ iki v(k, s)=ωv†(k, s)v(k, s)+ v†(k, s)γ 0mv(k, s) (360)

Then, one can sum over the polarization and use the normalization of the spinors established before, see for instance
Eqs. (341), (344) and (345), to obtain that

2∑
s=1

v†(k, s)γ 0γ iki v(k, s)= 4ω2 +
2∑

s=1

v†(k, s)γ 0mv(k, s) (361)

On the other hand, with the explicit expressions (342) and (343), it is easy to directly check that
∑2

s=1 v†(k, s)γ 0mv(k, s)=
−4m2 from which one can establish that

2∑
s=1

v†(k, s)γ 0γ iki v(k, s)= 4ω2 − 4m2 = 4k2 (362)

which is exactly the sum needed to evaluate the pressure. Therefore, our final expression for 〈p〉 can be written as

〈p〉 = − 1

(2π)3

4

6

∫
dk

k2

ω(k)
(363)

We see that, again, we recover exactly the same result as for the scalar field but with the additional multiplicative factor
−4, see Eq. (69). This means that all the previous considerations discussed in the scalar field case also apply to the fermion
case. In particular, the regularization of the above divergent integrals would proceed in the same way. Introducing a cut-off
would break Lorentz invariance and would lead to an incorrect equation of state. On the other hand, using, say, dimensional
regularization produces the correct vacuum equation of state and leads to a regularized vacuum energy which is minus four
times the regularized scalar field vacuum energy. We do not need to repeat all these calculations here and we now move
to the case of a vector field.

7.2. Proca fields

Having treated the case of a spin 1/2 field in the previous subsection, we now turn to the case of a Proca field [16–22].
A Proca field Aμ(t, x) is a massive vector, spin 1, field. The corresponding action can be written as

S[Aμ] ≡ −
∫

d4x
√−g

(
1

4
Fμν Fμν + 1

2
m2 AμAμ

)
(364)

where Fμν ≡ ∂μAν − ∂ν Aμ and m is the mass of the particle. Again, we will restrict our considerations to flat space–time
and, therefore, we will take for the metric determinant g = η= 1.

Before turning to the calculation of the vacuum stress–energy momentum, we quickly remind some basics fact about the
quantization of this type of fields. Varying with respect to Aμ , one obtains the equation of motion

∂μFμν − m2 Aν = 0 (365)

Taking the derivative of this expressions and noting that ∂ν∂μFμν = 0 (since this is the contraction of a symmetric expres-
sion with an anti-symmetric one), one arrives at

∂ν Aν = 0, (366)

provided that m �= 0, which we assume in this section. As a consequence, the equation of motion of the vector field is given
by

∂ν∂
ν Aμ − m2 Aμ = 0 (367)

which is nothing but a Klein–Gordon equation for each component of Aμ . As usual, we Fourier expand the field in terms of
creation and annihilation operators. This leads to the following expression

Aμ(t, x)= 1

(2π)3/2

∫
dk√

2ω(k)

4∑
α=0

εαμ(k)
[
aαk e−iωt+ik·x + (aαk )†eiωt−ik·x] (368)

where, as usual, one has ω(k) = √
k2 + m2. Of course, the operators aαk satisfy commutation rules since a vector field is a

bosonic field. The sum over α is a sum over four vectors that span space–time and form a basis. At this point, Aμ satisfies
the equation of motion but not yet the constraint ∂ν Aν = 0. Working out this constraint, it is easy to show that this amounts
to εαμkμaαk = 0. If we now choose a frame where the wave-vector is aligned along the z-direction, then the basis can be
taken to be
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ε0
μ =
⎛
⎜⎝

−ω/m
0
0

k/m

⎞
⎟⎠ , ε1

μ =
⎛
⎜⎝

0
ε̂1

x

ε̂1
y

0

⎞
⎟⎠ (369)

ε2
μ =
⎛
⎜⎝

0
ε̂2

x

ε̂2
y

0

⎞
⎟⎠ , ε3

μ =
⎛
⎜⎝

−k/m
0
0

ω/m

⎞
⎟⎠ (370)

where ε̂1,2 are vectors perpendicular to the wave-vector (the time components of ε0 and ε3 carry a minus sign because we
show here the covariant vectors). But we have ε0

μkμ �= 0 despite the fact that this is the only choice such that ε0
με

μ3 = 0.

Therefore, the only possibility left in order to satisfy the constraint is to take a0
k = 0. As a consequence, the Fourier expansion

of the vector potential is now given by

Aμ(t, x)= 1

(2π)3/2

∫
dk√

2ω(k)

3∑
α=1

εαμ(k)
[
aαk e−iωt+ik·x + (aαk )†eiωt−ik·x] (371)

where the three vectors appearing in this decomposition are still given in Eqs. (369) and (370).
Let us now come to our main subject and calculate the stress–energy tensor. There are several ways to carry out this

calculation. Here, we choose to return to Eq. (364) and to vary this action with respect to the space–time metric tensor.
Then, in order to work with the stress–energy tensor in flat space–time, we will take gμν = ημν but, of course, only after
having performed the variation. Straightforward manipulations lead to the following expression

Tμν ≡ − 2√−g

δS[Aμ]
δgμν

(372)

= −gμν

(
1

4
gλα gκβ Fλκ Fαβ + 1

2
m2 gαβ Aα Aβ

)
+ gαβ Fμα Fνβ + m2 AμAν (373)

We are now in a position where we can compute the various components of Tμν . Let us start with the energy density. From
the above expression, one deduces that

T00 = 1

2
δi j F0i F0 j + 1

4
δi jδkl F ik F jl + 1

2
m2 A2

0 + 1

2
m2δi j Ai A j (374)

Then, in order to evaluate the above equation, we have to separately calculate the four terms that appear in this expression.
Let us first give the relevant results needed to calculate the first term. Upon using Eq. (371), it is easy to establish that

δi j〈0|∂0 Ai∂0 A j|0〉 = 1

(2π)3

∫
dk

2ω(k)
δi j

3∑
α=1

εαi ε
α
j ω

2 (375)

δi j〈0|∂0 Ai∂ j A0|0〉 = − 1

(2π)3

∫
dk

2ω(k)
δi j

3∑
α=1

εαi ε
α
0 ωk j (376)

and,

δi j〈0|∂i A0∂ j A0|0〉 = 1

(2π)3

∫
dk

2ω(k)
δi j

3∑
α=1

εα0 ε
α
0 kik j (377)

In the same manner, the second term, containing the space component of the field strength, can be expressed as

δi jδkl〈0|Fik F jl|0〉 = 2

(2π)3

∫
dk

2ω(k)
δi jδkl

3∑
α=1

(
εαk ε

α
l kik j − εαk ε

α
j kikl
)

(378)

The third term can be written as

〈0|A2
0|0〉 = 1

(2π)3

∫
dk

2ω(k)

3∑
α=1

εα0 ε
α
0 (379)

and, finally, the fourth and last term takes the form

δi j〈0|Ai A j|0〉 = 1

(2π)3

∫
dk

2ω(k)

3∑
δi jεαi ε

α
j (380)
α=1
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Having calculated the four terms appearing in the expression of T00, one must now combine them. Using the relationships
satisfied by the vector basis,3 one obtains the following expression for the vacuum energy density:

〈ρ〉 = 1

(2π)3

3

2

∫
dkω(k) (381)

Based on our experience with the calculation of the vacuum energy of a spin 1/2 field, this expression is totally expected.
As before, it is equal to the scalar field energy density times a multiplicative factor which takes into account the spin of the
particle. Here, for a massive vector field, there are three polarization states and, as a consequence, the multiplicative factor
is three.

In order to be exhaustive, let us now evaluate the pressure. The calculation proceeds exactly as before and it is easy to
show that

⊥μν Tμν = T00 + m2 A2
0 − m2δi j Ai A j (382)

from which, using the relations already established before, we immediately deduce that

〈p〉 = 1

(2π)3

3

6

∫
dk

k2

ω(k)
(383)

Of course, this is again the expected formula, namely the scalar field pressure times a multiplicative factor equals to three.
Clearly, there is no need to repeat the discussion about the regularization of the above divergent integrals. It proceeds
exactly as explained before.

7.3. Mass-less vector field

Finally, we consider the case where the vector field is mass-less, m = 0 [16–22]. This is of course necessary if we want to
realistically evaluate the vacuum energy density since we know that this type of field exists in Nature. If the mass vanishes,
this means that the dispersion relation is now given by

ω(k)= k (384)

as appropriate for photons. In that case, contrary to the massive case, we can no longer establish that ∂ν Aν = 0. Therefore,
the equation of motion takes the form

∂μ∂
μAν − ∂ν

(
∂μAμ

)= 0 (385)

At this stage, we need to fix a gauge. As is well known, it is convenient to work in the Coulomb gauge defined by the
following conditions:

A0 = 0, ∂i Ai = 0 (386)

In particular, the last condition implies that Ai(t, x) is a transverse field. As a consequence, its Fourier expansion can be
written as

Ai(t, x)= 1

(2π)3/2

∫
dk√

2ω(k)

2∑
α=1

εαi (k)
[
aαk e−iωt+ik·x + (aαk )†eiωt−ik·x] (387)

The two three-vectors ε1 and ε2 are perpendicular to the wave-vectors k. In the mass-less case, only two degrees of freedom
remain.

3 For convenience, let us give the two equations needed to complete the calculation. It involves simple combination of the polarization vectors. Using the
explicit representation given by Eqs. (369) and (370), one arrives at

δi j
3∑

α=1

εαi ε
α
j = 2 + ω2

m2

3∑
α=1

εα0 ε
α
0 = k2

m2

Then, these two expressions can be combined to lead to the following relation which is what is needed in order to simplify the expression of the vacuum
energy density

3∑
α=1

(
εαk ε

α
l kik j − εαk ε

α
j kikl
)= k2

(
2 + ω2

m2

)
− k2ω2

m2
= 2
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The calculation of the stress–energy tensor is now straightforward. Using the calculation of the previous section, in
particular the expression of the time–time component of the stress–energy tensor (374), one finds that

T00 = 1

2
δi j∂0 Ai∂0 A j + 1

4
δi jδkl F ik F jl (388)

and, since we now have,

δi j
2∑

α=1

εαi ε
α
j = 2 (389)

2∑
α=1

(
εαk ε

α
l kik j − εαk ε

α
j kikl
)= 2k2 (390)

one finally arrives at the following expression for the vacuum energy density:

〈ρ〉 = 1

(2π)3

2

2

∫
dkω(k) (391)

that is to say the scalar field energy density times two, as expected since there are two polarization states. For the pressure,
using the same approach, one immediately obtains

〈p〉 = 1

(2π)3

2

6

∫
dk

k2

ω(k)
(392)

where, as usual, the factor two in front of the whole expression originates from the two polarization states of a mass-less
vector particle.

We conclude by stating the main result established in this section. For any type of fields, the vacuum energy density can
be written as

〈ρ〉 = 1

(2π)3

s

2

∫
dkω(k) (393)

where s represents the number of polarization states (s = 1 for a scalar field, s = 4 for a spinor field, s = 3 for a massive
vector field and s = 2 for a mass-less vector field). The pressure is given by a similar expression. When these divergent
integrals are regularized, one can show that, again for any type of field, this leads to the Lorentz invariant form of the
vacuum equation of state, namely 〈p〉 = −〈ρ〉. In principle, the results of this section makes the accurate evaluation of the
vacuum energy density in the standard model of particle physics possible. However, before discussing this point, we need
to say something about the fact that ρvac is positive for bosons and negative for fermions.

7.4. Application: super-symmetry

7.4.1. Motivation
The fact that the sign of the zero-point energy density is different for fermions and bosons, see Eqs. (67) and (350),

suggests a very simple way of solving the cosmological constant problem. It is clear that one can design a theory where the
two contributions are equal in absolute value such that the final result is exactly zero. Let us see how it works in practice.
For this purpose, let us consider again the Lagrangian of a massive real scalar field, see also Eq. (6)

Lφ = −α

2
ημν∂μΦ∂νΦ − 1

2
m2Φ2 (394)

where we have introduced a constant α in front of the kinetic term. Before we took α = 1 and it is interesting to discuss
why we made this choice (after all, how do we know that α = 1?). As usual, see Eq. (60), one Fourier expands the scalar
field as

Φ(t, x)= 1

(2π)3/2

∫
dk√

2ω(k,α)

(
cke−iωt+ik·x + c†

keiωt−ik·x) (395)

with a new expression for the quantity ω, compare to Eq. (61), namely

ω(k,α)=
√

k2 + m2

α2
(396)

since this is the condition for Eq. (395) to be a solution of the “new” equation of motion (see also Eq. (59))

−αφ̈ + αδi j∂iφ∂ jφ − m2φ = 0 (397)
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The new dispersion relation can easily be understood. We see that the quantity α simply renormalizes the value of the
mass m. This makes sense since, if m = 0, we clearly see that the relativistic relation ω = k is not affected by the presence
of the constant α.

The next step is to derive the commutation relations for the creation and annihilation operators. Let us assume for the
moment that we have the standard relation (62)[

ck, c†
p
]= δ(k − p) (398)

Then, from the expression of the Lagrangian, one can calculate the conjugate momentum. It reads Π(t, x)= −αΦ̇(t, x). This
implies that the commutation relation between the field and its conjugate momentum now reads[

φ(t, x),π(t, y)
]= iαδ(x − y) (399)

an expression which reduces to the standard commutation relation only if α = 1. Therefore, if one wants to have [Φ,Π] =
iδ(x − y) and, at the same time, [ck, c†

p] = δ(k − p) there is no other choice that taking α = 1. It is worth noticing that
working with the two previous commutation relations (398), (399) and α �= 1 would lead to a different prediction for the
energy density of the vacuum. Indeed, the stress–energy tensor is now given by

Tμν = α∂μΦ∂νΦ − gμν

(
α

2
gαβ∂αΦ∂βΦ + 1

2
m2Φ2

)
(400)

which implies that

T00 = α

2
Φ̇2 + α

2
δi j∂iΦ∂ jΦ + 1

2
m2Φ2. (401)

From this expression, it is easy to show that

〈ρ〉 = α

(2π)3

1

2

∫
dkω(k,α) (402)

an expression that should be compared to Eq. (67).
Of course, one can also demonstrate that the consistency can be re-establish if the commutation relations for the creation

and annihilation operators are taken to be [ck, c†
p] = δ(k − p)/α. In this case the commutation relation of the field and its

conjugate momentum have the correct form. Moreover, one has

〈0|Φ̇2|0〉 = 1

(2π)3

∫
dk

2ω(k,α)

ω2(k,α)

α
(403)

〈0|δi j∂iΦ∂ jΦ|0〉 = 1

(2π)3

∫
dk

2ω(k,α)

k2

α
(404)

〈0|Φ2|0〉 = 1

(2π)3

∫
dk

2ω(k,α)

1

α
(405)

these formulas should be compared to Eqs. (63), (64) and (65), which implies that

〈ρ〉 = 1

(2π)3

1

2

∫
dkω(k,α) (406)

that is to say the “standard” result.
Therefore, in conclusion, the “1/2” coefficient in the expression of the vacuum energy density is only obtained if the

commutation relations and the normalization of the field are properly and consistently chosen. In particular, if one chooses
to work with a coefficient “1/2” in front of the kinetic term (canonical normalization), then there is no other choice than
working with [ck, c†

p] = δ(k − p). Or, in other words, the previous commutation relation implies that a “1/2” in front of the
kinetic term must be present.

We now apply the previous discussion to the cases of a complex scalar field and to a Majorana spinor. The Lagrangian
for a complex scalar field should be written as

L = −gμν∂μΦ
∗∂νΦ − m2Φ∗Φ (407)

with, this time, no “1/2” in front of the whole expression. Indeed, if one writes that

φ = 1√
2
(A1 + i A2) (408)

then the Lagrangian takes the form of the sum of two Lagrangian for the two real canonically normalized fields A1 and A2.
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The previous discussion has also important implications for the Lagrangian of a Majorana spinor. A Majorana spinor is a
spinor satisfying

Ψ c
M = ΨM (409)

where the charge conjugate spinor Ψ c is defined by

Ψ c ≡ CΨ T (410)

In this expression the symbol “T” denotes the transpose matrix. The matrix C is the charge conjugation operator that can be
represented by iγ 2γ 0 and satisfies Cγ T

μC−1 = −γμ . We have of course (Ψ c)c = Ψ . From a Dirac spinor Ψ one can always
write two Majorana spinors

ΨM1 = 1√
2

(
Ψ +Ψ c) (411)

ΨM2 = 1

i
√

2

(
Ψ −Ψ c) (412)

Of course, the above expressions can always be inverted and re-written as

Ψ = 1√
2
(ΨM1 + iΨM2) (413)

Ψ c = 1√
2
(ΨM1 − iΨM2) (414)

The two previous expression can be inserted in the Dirac Lagrangian (329) (taking m = 0). This leads to the following
expression

LDirac = − 1√
2
(ΨM1 − iΨM2)iγ

μ∂μ
1√
2
(ΨM1 + iΨM2)

= − i

2
ΨM1γ

μ∂μΨM1 − i

2
ΨM2γ

μ∂μΨM2 − i

2

(−iΨM2γ
μ∂μΨM1 + iΨM1γ

μ∂μΨM2
)

(415)

But, using partial integrations, one easily shows that

ΨM2γ
μ∂μΨM1 = −(∂μΨM2)γ

μΨM1 = +ΨM1γ
μ∂μΨM2 (416)

so that the last term vanishes. Therefore, one conclude that the Lagrangian for a Majorana spinor is given by

LMajorana = −1

2
ΨM
(
iγ μ∂μ − m

)
ΨM (417)

and that the expansion of a Majorana spinor operator in Fourier can be expressed as, see also Eq. (333)

ΨM(t, x)= 1

(2π)3/2

∫
dk√

2ω(k)

2∑
r=1

[
br

ku(k, r)e−iωt+ik·x + (br
k

)†
v(k, r)eiωt−ik·x] (418)

where we notice that only the operators br
k are present which reflects the fact that, for a Majorana spinor, the particle and

the anti-particle are the same. But the most important aspect is the coefficient “1/2” in Eq. (417). Clearly, it means that if
we perform the calculation of 〈ρ〉 again, we are going to find

〈ρ〉 = − 1

(2π)3

2

2

∫
dkω(k) (419)

that is to say an expression with an overall factor 2 instead of 4 for a Dirac fermion, see Eq. (350).
We are now in a position to address the main point of this section. Let us consider the following model described by a

complex scalar field and a Majorana spinor:

L = −gμν∂μΦ
∗∂νΦ − m2

Bφ
∗φ − 1

2
ΨM
(
iγ μ∂μ − mF

)
ΨM (420)

where mB is the mass of the bosonic field and mF is the mass of the fermionic field. From the above considerations, it is
obvious to calculate the vacuum energy density. It reads

〈ρ〉 = 1
3

2
∫

dk
√

k2 + m2
B − 1

3

2
∫

dk
√

k2 + m2
F (421)
(2π) 2 (2π) 2
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We have a factor two for the complex scalar field since we have seen that a complex scalar field is equivalent to two real
scalar fields and a factor −2 for the Majorana spinor as shown before. In general, the quantity 〈ρ〉 is not zero because
mB �= mF. But if we now assume that

mB = mF (422)

then the zero-point energy density exactly cancels out and we have solved the cosmological constant problem. The above
model is in fact nothing but the simplest super-symmetric model, the so-called Wess–Zumino model [19,70–74].

7.4.2. The vacuum energy in super-symmetry
Having motivated the idea of super-symmetry, we now study in more detail its implications. In particular, we would like

to check that the type of cancellation studied before is generic in super-symmetry. In order to simplify the discussion, we
start with considering the Lagrangian (420) with mB = mF = 0. We will now use the standard super-symmetric notation
with the dotted two-components Weyl spinors [19,74]. In this formalism, the Majorana spinor can be written as

ΨM =
(
Ψα
Ψ α̇

)
(423)

Then, using that the Dirac matrices can be expressed as

γ μ =
(

0 (σμ)αα̇
(σμ)α̇α 0

)
(424)

we find that the Lagrangian (417) can be re-written as

LMajorana = − i

2
Ψ α̇

(
σμ
)α̇α

∂μΨα − i

2
Ψα
(
σμ
)
αα̇
∂μΨ

α̇ (425)

where we used that (by definition) Ψ α̇ = (Ψα)
∗ and Ψα = (Ψ α̇)∗ . The next step consists in using the relation

Ψα(σμ)αα̇∂μΨ
α̇ = −∂μΨ α̇(σ

μ)α̇αΨα (the spinor components are Grassmann variables and, therefore, anti-commute, see
below) and, then, to transform the resulting expression by integration by part. In this way, one shows that the La-
grangian (425) is in fact twice the first term. As a consequence, the Wess–Zumino model is described by

LW−Z = −ημν∂μΦ†∂νΦ − iΨ α̇

(
σμ
)α̇α

∂μΨα (426)

Let us now consider a super-symmetric transformation. In order to understand what it really means, let us use the analogy
with a gauge transformation [19,74]. For definiteness, we consider a SU(2) transformation. Let v be a SU(2) doublet of
spinor fields. After an infinitesimal transformation, this doublet v becomes a new doublet v ′ such that

v ′ = eiε jσ j/2 v 	
(
I2 + iε j σ j

2

)
v (427)

or

δv = iε j σ j

2
v (428)

where σ j are the Pauli matrices, the generators of the group. The quantity ε j is a vector (or a collection of three parameters)
specifying the transformation. In super-symmetry, the transformation is characterized by a Weyl spinor ξα which, therefore,
plays the role of the quantity ε j . A super-symmetric transformation transforms a boson into a fermion and vice-versa. As a
consequence, one can write

δΦ = √
2ξαΨα (429)

δΨα = −i
√

2
(
σμ
)
αβ̇
ξ β̇∂μΦ (430)

where the factors i or
√

2 are introduced for future convenience. Before showing that the Wess–Zumino Lagrangian is indeed
invariant under a super-symmetric transformation, one needs to introduce a last result. We would like the Lagrangian to be
invariant without using the equation of motion (in other words, we would like the Lagrangian to be invariant “off-shell”).
In this case, one needs to add a term such that the new Lagrangian reads

LW−Z = −ημν∂μΦ†∂νΦ − iΨ α̇

(
σμ
)α̇α

∂μΨα − F † F (431)

where F is a complex scalar field. It is easy to see that this term is harmless since the corresponding equation of motion
is just F = 0. But this term is necessary if one wants to match the bosonic and fermionic degrees of freedom. A Weyl
spinor has two-complex components and we now have two complex scalar fields. Obviously, we also need to modify our
super-symmetric transformation and they now take the form
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δΦ = √
2ξαΨα (432)

δΨα = √
2ξα F − i

√
2
(
σμ
)
αβ̇
ξ β̇∂μΦ (433)

δF = i
√

2
(
∂μΨ

α
)(
σμ
)
αβ̇
ξ β̇ (434)

Our goal is now to show that the Lagrangian (431) is indeed invariant under the three transformations (432), (433)
and (434).

In fact, the key to show that the Lagrangian is invariant is to be able to evaluate the above transformations for the
complex conjugate quantities. We have

δΦ† = √
2
(
ξαΨα

)† = √
2(Ψα)

†(ξα)†
= √

2(Ψα)
∗(ξα)∗ = √

2Ψ α̇ξ
α̇

= √
2 ξ α̇Ψ

α̇ = −√
2 ξ α̇Ψ α̇ (435)

We cannot review here the complete dotted spinors formalism in detail, see Ref. [74], but in order to make the calculations
reasonably self-consistent, it is nevertheless interesting to recall a few things. The first point to discuss is the definition of
the dagger symbol for Grassmann variables. In fact, a very clear discussion can be found in p. 35 of Ref. [74] and there is
no need here to entirely repeat it. In brief, one needs to remember that we deal with quantum fields. Usually, the dagger
symbols means complex conjugation and transposition. For a scalar field, it simply amounts to take the complex conjugate
of the mode function and put (or remove) a dagger to the creation and annihilation operators. For the spinor component
Ψα , this is the same (here it is important to remember that one discusses one component only and not the spinor viewed
as a column and, therefore, we “cannot” take the transpose of the matrix – there is no matrix!) and one defines Ψ †

α as the
complex conjugate of the corresponding spinor component times the creation and annihilation operators with or without
the dagger symbol. However, the question arises as how to evaluate the Hermitian conjugate of a product of Grassmann
variables. Here, Ref. [74] shows that the most convenient way is to define (ξαΨα)† = Ψ

†
αξ

α†, that is to say something similar
to what we are used to in the case of two matrices even if, again, we do not deal with matrices here but with components
of Weyl spinors. This definition justifies the first step in the previous equation.

Then, it is also interesting to discuss how the two last equations are obtained. Let us write Ψ 1̇ = a, Ψ 2̇ = b and ξ 1̇ = c,

ξ 2̇ = d, where a, b, c and d are (complex) Grassmann variables. As a consequence, one has Ψ α̇ξ
α̇ = ac + bd. On the other

hand, ξ α̇ ≡ εα̇β̇ ξ
β̇ , where

εα̇β̇ =
(

0 1
−1 0

)
(436)

from which we deduce that ξ 1̇ = d and ξ 2̇ = −c. In the same manner, one has Ψ α̇ = εα̇β̇Ψ β̇ with

εα̇β̇ =
(

0 −1
1 0

)
(437)

from which one obtains ψ 1̇ = −b and ψ 2̇ = a. Using these results, one has ξ α̇Ψ α̇ = −db −ca = ac +bd = Ψ α̇ξ
α̇ , which is the

wanted result. But, using again the expressions of the components obtained above, one also notices that ξ α̇Ψ α̇ = −ξ α̇Ψ α̇

which is the last result used to establish the expression (435) of δΦ†. In a more compact notation, one has

ξ α̇Ψ
α̇ = εα̇β̇ξ

β̇Ψ α̇ = ξ β̇εα̇β̇Ψ
α̇ = −ξ β̇εβ̇α̇Ψ α̇ = −ξ β̇Ψ β̇ (438)

the key point being the fact that the matrix εα̇β̇ is anti-symmetric.

We now need the transformation of (δΨα)∗ = δΨ α̇ . One has

δΨ α̇ = √
2 ξ α̇ F † + i

√
2
[(
σμ
)
αβ̇

]∗
ξβ∂μφ

† (439)

= √
2 ξ α̇ F † + i

√
2
(
σμ
)
βα̇
ξβ∂μΦ

† (440)

Finally, following the same lines, the transformation of δF † can be expressed as

δF † = −i
√

2
(
ξ β̇
)†(

∂μΨ
α
)†[(

σμ
)
αβ̇

]∗
(441)

= −i
√

2ξβ
(
∂μΨ

α̇
)(
σμ
)
βα̇

(442)

We are now in a position where one can compute the variation of the super-symmetric Lagrangian. Collecting the above
results, one obtains
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δLW−Z = −ημν∂μδΦ†∂νΦ − ημν∂μΦ
†∂νδΦ − iδΨ α̇

(
σμ
)α̇α

∂μΨα − iΨ α̇

(
σμ
)α̇α

∂μδΨα − δF † F − F †δF (443)

= −i
√

2F †ξ α̇
(
σμ
)α̇α

∂μΨα − i
√

2F †(∂μΨ α
)(
σμ
)
α̇β
ξ β̇ − i

√
2Ψ α̇

(
σμ
)α̇α

ξα∂μF

+ i
√

2ξβ
(
σμ
)
βα̇

(
∂μΨ

α̇
)

F + √
2ημνξ α̇∂μΨ α̇∂νΦ − √

2
(
σμ
)α̇α(

σν
)
αβ̇
Ψ α̇ξ

β̇∂μ∂νΦ

− √
2ημνξα∂νΨα∂μΦ

† + √
2
(
σν
)
βα̇

(
σμ
)α̇α

ξβ∂μΨα∂νΦ
† (444)

Each term in this expression needs to be studied in detail. The first term is also equal to i
√

2F †∂μΨ
α(σμ)αα̇ξ

α̇ and,
therefore, exactly cancels the second one. The third one is, after integration by parts, i

√
2(∂μΨ α̇)(σ )

α̇αξα F , which is also
equal to −i

√
2ξα(σμ)αα̇(∂μΨ α̇)F . This cancels exactly the fourth term. As a consequence, all the term involving the field

F give a total derivative contribution only. It remains the four terms involving the scalar field Φ and Φ†. We first focus on
the terms involving Φ only. For this purpose, we use the following relation [19,74]:(

σμ
)α̇α(

σν
)
αβ̇

= ημνδα̇ β̇ + 2
(
σμν
)α̇

β̇ (445)

where

σμν ≡ 1

4

(
σμσν − σνσμ

)= −σνμ (446)

Therefore, the second term involving Φ [i.e. the sixth term in the above formula (444)] can be re-written as

−√
2
(
σμ
)α̇α(

σν
)
αβ̇
Ψ α̇ξ

β̇∂μ∂νΦ = −√
2
[
ημνδα̇ β̇ + 2

(
σμν
)α̇

β̇

]
Ψ α̇ξ

β̇∂μ∂νΦ

= −√
2ημνΨ α̇ξ

α̇∂μ∂νΦ (447)

the second term in this equation leading to a vanishing contribution since σμν is anti-symmetric. The next manipulation is
to integrate by part. This gives

−√
2
(
σμ
)α̇α(

σν
)
αβ̇
Ψ α̇ξ

β̇∂μ∂νΦ = −√
2ημνΨ α̇ξ

α̇∂μ∂νΦ = √
2ημν∂μΨ α̇ξ

α̇∂νΦ

= √
2ημνξ α̇∂μΨ

α̇∂νΦ = −√
2ημνξ α̇∂μΨ α̇∂νΦ (448)

Therefore, this term exactly cancels the first term involving Φ [or the fifth term in the formula (444)]. Clearly, this also
works for the two terms involving Φ†. We have thus shown, without using the equation of motion, that the variation of the
Wess–Zumino Lagrangian (431) is a total derivative. As a consequence, the Wess–Zumino model is indeed super-symmetric,
that is to say invariant under the super-symmetric transformations (432), (433) and (434).

We have seen before that the constant spinor ξα was the equivalent of the vector ε j in the case of the SU(2) transfor-
mation considered at the beginning of this section. But what is the equivalent of the generator σ j/2 for a super-symmetric
transformation? Moreover, we know that the generators obey the formula [σi/2, σ j/2] = iεi jkσk/2. What is the correspond-
ing equation satisfied by the super-symmetric generators? We now turn to these questions.

Using again the analogy with the SU(2) transformation, we expect that an infinitesimal super-symmetric transformation
to have the form

δξΦ 	 i
(
ξαQα + ξ α̇Q α̇

)
Φ (449)

Here Qα is the super-symmetric generator, the equivalent of σ j/2. Clearly, since ξαQα must be a scalar, Qα is a Weyl
spinor as the notation indicates.

In order to find the super-symmetric algebra, we first compute the quantity (δηδξ − δξ δη)Φ using Eqs. (432), (433) and
(434). It is straightforward to show that

(δηδξ − δξ δη)Φ = 2ξαηα F − 2iξα
(
σμ
)
αβ̇
ηβ̇∂μΦ

−2ηαξα F + 2iηα
(
σμ
)
αβ̇
ξ β̇∂μΦ (450)

= −2iξα
(
σμ
)
αβ̇
ηβ̇∂μΦ + 2iηα

(
σμ
)
αβ̇
ξ β̇∂μΦ (451)

since ξαηα = ηαξα . But, of course, we can evaluate the same commutator using the expression (449) for the infinitesimal
super-symmetric transformation. This leads to

(δηδξ − δξ δη)Φ = −(ηαQα + ηα̇Q α̇
)(
ξβ Q β + ξ β̇ Q β̇

)
Φ

+ (ξαQα + ξ α̇Q α̇
)(
ηβ Q β + ηβ̇ Q β̇

)
Φ (452)

Then, expanding this expression (carefully taking into account the fact that the spinor components are Grassmann variables),
we arrive at
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(δηδξ − δξ δη)Φ = ηα(QαQ β + Q β Qα)ξ
βΦ

+ ηα̇
(

Q α̇Q β̇ + Q β̇ Q α̇
)
ξ β̇Φ + ηα

(
QαQ β̇ + Q β̇ Qα

)
ξ β̇Φ − ξα

(
QαQ β̇ + Q β̇ Qα

)
ηβ̇Φ (453)

One must now compare Eq. (451) with Eq. (453). First of all, we notice that, in Eq. (451), there is no term with two undotted
or two dotted spinors ξ and η. This implies that

{Qα, Q β} = {Q α̇, Q β̇
}= 0 (454)

Then, a comparison of the first “cross-terms” leads to

{Qα, Q β̇}Φ = −2i
(
σμ
)
αβ̇
∂μΦ (455)

and a similar relation for the second cross-term. Remembering that Pμ = −i∂μ (the minus sign is in fact just a conven-
tion; the problem with super-symmetry is that the literature contains many different conventions; a nice treatment of this
question can be found in the first problem of Ref. [75], Appendix C), one arrives at

{Qα, Q β̇} = 2
(
σμ
)
αβ̇

Pμ (456)

This equation shows that two successive super-symmetric transformations are in fact equivalent to a space–time translation.
As we will see, this has far-reaching consequences. However, for the subject discussed here, the above formula has also very
important implications. Indeed, working it out explicitly, one has

Q 1 Q 1̇ + Q 1̇ Q 1 = 2P3 + 2P0 (457)

Q 2 Q 2̇ + Q 2̇ Q 2 = −2P3 + 2P0 (458)

from which we deduce

4P0 = Q 1 Q 1̇ + Q 1̇ Q 1 + Q 2 Q 2̇ + Q 2̇ Q 2 (459)

Therefore, since the Hamiltonian is nothing but the time translation generator P0, this implies that

〈0|H|0〉 = 1

4
〈0|Q 1 Q 1̇ + Q 1̇ Q 1 + Q 2 Q 2̇ + Q 2̇ Q 2|0〉� 0 (460)

We have learned two things: firstly, if the vacuum state is not super-symmetric, i.e. if super-symmetry is spontaneously
broken (the underlying theory is super-symmetric but the solution or the state in which the system is placed is not), then
the vacuum energy is necessarily positive. Secondly, another remarkable consequence of the above results is that, when the
vacuum state is super-symmetric, that is to say when

Qα|0〉 = 0 (461)

one has 〈0|H|0〉 = 0, i.e. the vacuum energy is automatically zero. We have thus proven that the cancellation discussed
at the beginning of this section is in fact not a coincidence. Moreover, we have identified under which conditions it is
valid: it is always true for a super-symmetric system. This is the reason why super-symmetry has the potential to solve the
cosmological constant problem. It gives a concrete example of a symmetry which forces the vacuum energy to vanish.

Unfortunately, we know that super-symmetry must be broken in the real world. This comes from the fact that each
boson (fermion) of the standard model is not observed to have a super-symmetric partner of the same mass. This means
that vacuum energy is now given by Eq. (421). Let us evaluate it with our “incorrect” method which consists in regularizing
the divergent integrals with a cut-off M , see Eq. (74). We find

〈ρ〉SUSY = M4

8π2

(
1 + m2

B

M2
+ · · ·
)

− M4

8π2

(
1 + m2

F

M2
+ · · ·
)

(462)

= M2

8π2

(
m2

B − m2
F

)
(463)

We see that, even if super-symmetry is broken, the most divergent part ∝ M4 of the energy density cancel out. If we now
properly estimate the energy density by means of dimensional regularization (95), one obtains that

〈ρ〉SUSY = m4
B

32π2
ln

(
m4

B

μ2

)
− m4

F

32π2
ln

(
m4

F

μ2

)
(464)

Therefore, roughly speaking, one can estimate that vacuum energy is now given by 	 M4
SUSY where MSUSY is the typical

difference between the mass of the super-partners, which is also the super-symmetric breaking mass.
A last remark is in order. In this section we have considered super-symmetry in flat space–time while the cosmological

constant problem is formulated in curved space–time. In order to be consistent, we should therefore treat super-symmetry
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in this last context. As is well known, this leads to super-gravity [19,75]. Regarding the vacuum energy question, super-
gravity presents important differences compared to super-symmetry. In particular, one loses the result that vacuum energy
is always positive. But, this also shows that discussing the zero-point energy density issue in curved space–time can bring
new aspects to the problem. This is the reason why, in the next section, we address this question.

8. The vacuum energy density in curved space–time

In the previous sections, we have computed the vacuum energy density in flat space–time. This may seem inappropriate
since we have argued that the problem occurs only in curved space–time. Here we show how to justify the previous
approach. Intuitively, this is justified because we deal with ultra-violet divergences for which the large scale structure of the
curved manifold should not play a too important role. In other words, in the ultra-violet regime, one only probes the local
properties of space–time and, locally, one cannot distinguish a curved manifold from the Minkowski space–time. However,
we need to put this intuitive reasoning on solid grounds. For this purpose, let us consider our toy model again where matter
is simply represented by a scalar field. The only difference with the previous sections is that, now, this quantum field lives
in a curved space–time. Therefore, in order to have meaningful Einstein equations, one must assume that the quantum
average of the stress–energy tensor sources the Einstein equations. In other words, we start from [53]

Rμν − 1

2
Rgμν +ΛB gμν = κ〈Tμν〉 (465)

Then, by analogy with Eq. (3), we define the effective action W to be

〈Tμν〉 = − 2√−g

δW

δgμν
(466)

The effective action can be written in term of the sourceless generating functional Z [0], namely

W = −i ln Z [0] (467)

where we recall that the explicit expression of Z [0] is given by, see also Eq. (96),

Z [0] =
∫

Dφ ei Smatter[φ] (468)

the quantity Smatter being the action of the scalar field. The above result can be proven in the following way. Varying Z [0],
one obtains

δZ [0] =
∫

Dφ iδSmatter ei Smatter[φ] (469)

= 〈0|iδSmatter|0〉 (470)

As a consequence,

− 2√−g

δW

δgμν
= − 2√−g

−i

Z [0]
δZ [0]
δgμν

(471)

= 1

Z [0]
〈
0

∣∣∣∣− 2√−g

δSmatter

δgμν

∣∣∣∣0
〉

(472)

= 1

Z [0] 〈0|Tμν |0〉 = 〈Tμν〉 (473)

since the mean value is defined by 〈· · ·〉 ≡ 〈0| · · · |0〉/〈0|0〉.
The next step is to calculate W explicitly in our case, i.e. for a scalar field. We now show that the effective action can

be expressed in terms of the Green function. The Green function is defined by the following expression [53]

(−gμν∇μ∇ν + m2)GF(x, y)= 1√−g
δ(x − y) (474)

It is easy to show that GF(x, y) = iDF(x − y), where the propagator has been defined in Eq. (100). Integrating by part the
action of the scalar field Φ(x), the generating function can be written as

Z [ J ] =
∫

DΦ exp

[
− i

2

∫
ddx

√−gΦ(x)
(−gμν∇μ∇ν + m2)Φ(x)+ i

∫
ddx

√−g J (x)Φ(x)

]
(475)

where we have considered the d-dimensional case for future convenience. This path integral is a Gaussian integral and,
therefore, can be evaluated using the standard techniques. For J = 0 one has
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Fig. 4. Sketch of the Riemann coordinates used in order to derive an approximate expression for the Green function, see Eq. (495). The plot aims at
illustrating the fact that the Riemann coordinates are a local concept. Since it is sufficient to establish the Green function locally (and not in the entire
curved manifold), one can always endow the neighborhood of a point x′ (denoted here by the region surrounded by the closed dotted line) with special
coordinates xμ such that the calculation is simplified. It is important to notice that this does not restrict the generality of the obtained results.

Z [0] = (2π)∞/2(det K )−1/2 (476)

= (2π)∞/2e
1
2 tr(ln K −1) (477)

where K is the following operator, appearing in Eq. (475),

K (x, y)≡ i
√−g

(−gμν∇μ∇ν + m2)δd(x − y) (478)

But the inverse of the operator K is in fact the propagator DF(x, y). A pedagogical, but simplistic, demonstration of this fact
is the following one. The generating functional can be written as

Z [0] =
∫
Πx dΦi e− 1

2

∑
x,y Φx KxyΦy (479)

where, in order to reproduce Eq. (478) (or, rather, to mimic this formula), the matrix Kxy is taken to be Kxy = Kδxy and the
“number K is defined” by K ≡ i

√−g(−gμν∇μ∇ν + m2). Then, the inverse of the matrix K must obey∑
z

Kxz K −1
zy = δxy (480)

that is to say, using the definition of Kxy ,

K K −1
xy = δxy (481)

But this equation is nothing but Eq. (474). This shows that, as announced, K −1
xy = (DF)xy . As a consequence, one can write

Z [0] = (2π)∞/2 e
1
2 tr(ln DF) (482)

or,

W = − i

2
tr(ln DF)− i ln

[
(2π)∞/2] (483)

We have reduced the evaluation of the effective action to the evaluation of the Green function (or the propagator) in curved
space–time. We now turn to this question.

For this purpose, we introduce the Riemann normal coordinates xμ with origin at the point x′ , see Fig. 4 and Refs. [76–
78]. As it will become gradually clear, the motivation for such a choice is as follows. Since we want to see how the Einstein
equations are modified, one only needs to evaluate the Green function locally. In this case, one can introduce coordinates
that drastically simplify the problem, i.e. the calculation. This is exactly the role played by the Riemann normal coordinates.
In these coordinates, the metric can be written as [76,77]

gμν = ημν − 1

3
Rμανβxαxβ − 1

6
Rμανβ;γ xαxβxγ +

(
− 1

20
Rμανβ;γ δ + 2

45
RαμβλRλγ νδ

)
xαxβxγ xδ + · · · (484)

Then, we insert this metric into the Green function equation (474) and retain terms with coefficients involving four deriva-
tives of the metric or fewer. A lengthy calculation leads to

ημν∂μ∂νG −
(

m2 − 1

6

)
G − 1

3
Rα

ν∂νG + 1

3
Rμα

ν
βxαxβ∂μ∂νG + 1

6
R;αxαG +

(
−1

3
Rα

ν ;β + 1

6
Rαβ

;ν
)

xαxβ∂νG

+ 1
Rμα

ν
β;γ xαxβxγ ∂μ∂νG + 1

R;αβxαxβG +
(

− 1
Rα

λRλβ + 1
Rκα

λ
β Rκλ + 1

RλμκαRλμκβ − 1
R;αβ
6 12 30 60 60 120
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+ 1

40
ημν∂μ∂ν Rαβ

)
xαxβG +

(
− 3

20
Rνα;βγ + 1

10
Rαβ

;ν
γ − 1

60
Rκα

ν
β Rκλ + 1

15
Rκαλβ Rκ

ν
γ
λ

)
xαxβxγ ∂νG

+
(

1

20
Rμα

ν
β;γ δ + 1

15
Rμαλβ Rλγ

ν
δ

)
xαxβxγ xδ∂μ∂νG = −δd(x) (485)

where all the indices are raised or lowered by the Minkowski metric and where we have defined a rescaled Green func-
tion according to GF(x, y) ≡ g−1/4G(x, y). The next step is to Fourier transform the above equation. In this way the local
expansion which, in real space, looks like an expansion in the coordinates xμ is transformed, in momentum space, as an
expansion in terms of the inverse of kμ , as appropriate for a local expansion. More precisely, defining

G
(
x, x′)= 1

(2π)d

∫
ddk eiηαβkαxβ G(k) (486)

we can expand the Green function as G(k) = G0(k) + G1(k) + · · · where Gi(k) is the quantity appearing in front of a
coefficient involving the i-th derivatives of the metric tensor [76,77]. Let us notice that the Green function is a function
of x′ in the sense that xμ represents the coordinates of a point x defined such x′ is at the origin. Another remark is
that we define the Fourier transform of the Green function with an overall factor (2π)−d such that the coefficient of the
Dirac function in the right-hand side of Eq. (485) is minus one and does not contain factors of π , thanks to the formula
δd(x)= 1/(2π)d

∫
ddk eikx .

Introducing this expansion into Eq. (485) and consistently identifying the terms of a given order leads to the desired
result. This iterative procedure gives

G(k)= 1

k2 + m2
+ R

6

1

(k2 + m2)2
+ i

6
R;α

1

k2 + m2

∂

∂kα

[(
k2 + m2)−1]+ R2

36

1

(k2 + m2)3

+ aαβ
1

k2 + m2

∂2

∂kα∂kβ

[(
k2 + m2)−1]+ · · · (487)

= 1

k2 + m2
+ R

6

1

(k2 + m2)2
+ i

12
R;α

∂

∂kα

[(
k2 + m2)−2]+ 1

3
aαβ∂

α∂β
[(

k2 + m2)−2]
+
(

R2

36
− 2

3
aλλ

)
1

(k2 + m2)3
+ · · · (488)

where the coefficient aαβ can be expressed as

aαβ = − 3

40
R;αβ − 1

40
ημν∂μ∂ν Rαβ + 1

30
Rα

λRλβ − 1

60
Rκα

λ
β Rκλ + 1

60
RλμκαRλμκβ (489)

Inserting this last expression into Eq. (486) leads to

G
(
x, x′)= 1

(2π)d

∫
dnk eiηαβkαxβ

[
1 + f1

(
x, x′)(− ∂

∂m2

)
+ f2
(
x, x′)(− ∂

∂m2

)2

+ · · ·
]

1

k2 + m2
(490)

with

f1
(
x, x′)= R

6
+ 1

12
R;αxα − 1

3
aαβxαβ (491)

f2
(
x, x′)= R2

72
− 1

3
aλλ (492)

The final step of the calculation consists in expressing the Green function in the so-called proper time formalism [76,77].
Firstly, we replace the quantity (k2 + m2)−1 with

1

k2 + m2
=

∞∫
0

i ds e−is(k2+m2) (493)

and, secondly, we make use of the result

1

(2π)d

∫
dnk eiηαβkαxβ−is(k2+m2) = i

(4π)d/2
(is)−d/2e−ism2+iσ/(2s) (494)

where σ = ηαβxαxβ/2. This leads to our final expression for the Green function, namely

G
(
x, x′)= i

(4π)d/2

∞∫
i ds

(is)d/2
e−im2s−σ/(2is)[1 + isf1 + (is)2 f2 + · · ·] (495)
0
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Of course, one could always push the expansion to higher orders in inverse of the momenta in order to obtain higher orders
in s. But, in the present context, this will not be necessary.

We now have all the tools to evaluate the effective action (483). We now seek an explicit expression for the quantity
ln(DF). As already mentioned, DF can be viewed as the inverse of the “continuous matrix” K which means that, formally,
one can write

DF =
∞∫

0

e−iK si ds (496)

where we have used again Eq. (493). This expression allows us to express the matrix element of e−iK s . Indeed, given that
DF = −ig−1/4G , a direct comparison of Eq. (495) with the previous relation leads to

(
e−iK s)

xx′ = g−1/4

(4π)d/2

e−im2s−σ/(2is)

(is)d/2

[
1 + isf1 + (is)2 f2 + · · ·] (497)

Now, let us consider the following integral

∞∫
λ

e−iK s i ds

is
= −

∞∫
iλK

e−t

t
dt = −γ − ln(iλK )−

∞∑
k=1

(−1)k+1(iλK )k

kk! (498)

In the limit λ→ 0, up to an infinite constant that can be ignored, only the logarithm survives. Therefore, we can define the
logarithm of the operator K as

− ln K = ln DF =
∞∫

0

e−iK s i ds

is
(499)

Then, using Eq. (497), one obtains

(ln DF)xx′ = g−1/4(x)

(4π)d/2

∞∫
0

e−im2s−σ (x,x′)/(2is)

(is)d/2

[
1 + isf1

(
x, x′)+ (is)2 f2

(
x, x′)+ · · ·] i ds

is
(500)

As a consequence, we have now an explicit expression for the effective action, namely

W = − i

2

∫
ddx

√−g lim
x′→x

(ln DF)xx′ (501)

or

W =
∫

ddx
√−g

{
− i

2

1

(4π)d/2

∞∫
0

e−im2s

(is)d/2

[
1 + isf1 + (is)2 f2 + · · ·] ids

is

}
(502)

In the coincident limit x′ → x, the determinant of the metric tensor has been taken to one since it is calculated in x′ , that is
to say for x = 0. For the same reason, we also have considered that σ = 0. The above expression can be evaluated explicitly
in terms of Euler function and one obtains

W =
∫

ddx
√−g

{
− i

2

1

(4π)d/2

(
m

μ

)d−4[
m4Γ

(
−d

2

)
+ m2 f1Γ

(
1 − d

2

)
+ f2Γ

(
2 − d

2

)
+ · · ·
]}

(503)

where we have introduced the scale μ in order to maintain the correct dimension of the effective action. The above expres-
sion can be analyzed in a dimensional regularization scheme. In this case, one is led to the following expression:

iW =
∫

ddx
√−g

{[
2

ε
− γ − ln

(
m2

4πμ2

)](
m4

64π2
− m2 f1

32π2
+ f2

32π2

)
+ · · ·
}

(504)

which is our final result. The i factor can be absorbed into a constant shift so we do not need to worry about it. If we
compare the effective action with the original Lagrangian (1), we see that the first divergent term in the above expression
can be absorbed into a redefinition of the cosmological constant (the second term can be viewed as a redefinition of the
Newton constant and the third term leads to the appearance of new terms in the action, see Ref. [53]). Explicitly, one has

Λeff =ΛB + κ
m4

2

[
2 − γ − ln

(
m2

2

)]
(505)
64π ε 4πμ
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that is to say exactly the same expression as before (except an unimportant factor 3/2), see for instance Eq. (94). As a
consequence in a MS scheme [16], we can remove the divergence and obtain exactly the same expression derived before,
see Eq. (95), namely

Λeff =ΛB + κ
m4

64π2
ln

(
m2

μ2

)
(506)

The calculations of this section justify our previous approach in flat space–time. Indeed, we have just proven that all the
results derived before in flat space–time are in fact valid in the more rigorous approach where the curvature of space–
time is properly taken into account. This confirms that the vacuum energy does not scale as the cut-off to the power
four, see Eqs. (74) and (77) but is in fact proportional to the mass of the particle to the power four times a logarithmic
factor depending on the renormalization scale. In some sense, the calculation in flat space–time can be considered as
a computational trick: it is sufficient to calculate the vacuum energy in this simple framework since, from the previous
considerations, we know that this is also the result that consistently emerges from an approach where the curvature of
space–time is properly included. Of course, physically, the reason for this success is not so surprising and was already
mentioned before. Since we deal with the ultraviolet behavior of the theory, a local analysis should necessarily lead to a
correct and consistent result.

It is also worth mentioning that Eqs. (95) and (506) recently attracted lot of attention, see Refs. [47,51]. In particular, as
we discussed at length in Section 4.1 and as was emphasized in these articles, these equations are the consequence of the
fact that the regularization scheme used to tame the divergence of the vacuum energy must respect Lorentz invariance. In
fact, these equations have been known for a long time, see in particular Eq. (6.50) of the standard textbook [53]. Therefore,
the fact that the cosmological constant is proportional to the mass of the particle to the power four, and not to the cut-off
to the power four as usually claimed, see again Eqs. (74) and (77), is in fact not a new result. Of course, it modifies a lot
our estimate of vacuum energy. For instance, the correct result gives zero for the photons while, for the same situation, the
result based on the wrong regularization scheme gives infinity. Clearly, this means that the correct regularization scheme
leads to a cosmological constant much smaller than the one obtained from the wrong approach. As a consequence, one
could hope that the cosmological constant problem is in fact just an artifact due to the use of an incorrect regularization
method. We turn to this question in the next section but, unfortunately, we will see that this is not the case.

9. The value of the cosmological constant

We are now in a position to conclude the first part of this review. The considerations of the previous sections lead to
the following expression for the vacuum energy [51]

ρvac =
∑

i

ni
m4

i

64π2
ln

(
m2

i

μ2

)
+ ρB + ρEW

vac + ρQCD
vac + · · · (507)

where ρB indicates the contribution coming from the bared cosmological constant and where the dots means that other
phase transition could contribute. Let us now evaluate the first term more precisely for the standard model of particles
physics [51]. In this case, one has one scalar field, the Higgs boson with nH = 1, mH 	 125 GeV, the six quarks (fermions) for
which nquarks = −4 and mt 	 171.2 GeV, mb 	 4.2 GeV, mc 	 1.27 GeV, ms 	 0.104 GeV, mu 	 0.24 GeV and md 	 0.48 GeV,
the leptons (fermions) with nleptons = 4 and me 	 0.511 MeV, mμ 	 105 MeV, mτ 	 1.77 MeV, the neutrinos (fermions)
the mass of which is so small that we can ignore them and, finally, the gauge bosons (massive vector fields), nZ = 3,
mZ 	 91 GeV and nW± = 3, mW± 	 80 GeV. Of course, we also have the photon but since mγ = 0, as already mentioned
before, it does not contribute to the vacuum energy. The only piece missing in order to calculate ρvac in Eq. (507) is
the renormalization scale μ. It was argued in Ref. [51] that, because we use the photons coming from the supernovae
to determine the cosmological constant and because these photons couple to the metric the expansion rate of which is
characterized by the Hubble constant, one should take μ ∼ √Eγ Egrav with Egrav 	 H0 	 3.7 × 10−41 GeV and with the
energy of the photons corresponding to the wavelength λ 	 500 nm. This leads to μ 	 3 × 10−25 GeV and implies that
Eq. (507) reads

ρvac 	 −2 × 108 GeV4 + ρB + ρEW
vac + ρQCD

vac + · · · (508)

If one does not want to estimate μ, one can simply plot ρvac as a function of μ as done in Fig. 5. Clearly, regardless of the
precise value of μ, we are very far from ρvac 	 1072 GeV4 always mentioned in the literature.

At this stage, Eq. (508) can be seen as the “prediction” of the standard model for the vacuum energy. At first sight, the
calculation is straightforward and, in order to obtain the number in Eq. (508), we have used techniques of regularization
that are known to work in similar contexts (i.e. when one computes a cross-section in particle physics) and to lead to a
very good agreement with experiments. Therefore, we now turn to the question of what is known experimentally about the
vacuum energy.
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Fig. 5. Evolution of the vacuum energy density [more precisely the first term in Eq. (507) versus the renormalization scale μ]. In the range considered here,
the vacuum energy density is negative. The “divergence” observed around log10 μ	 5 does not correspond to a new physical effect but just signal that ρvac

becomes positive.

10. Measuring the cosmological constant in cosmology

Having discussed how the vacuum energy can be calculated, we now address the question of how it is determined and/or
constrained experimentally/observationally. Here, we should distinguish the case of cosmology, treated in this section, and
the other experiments, treated in the following sections. The difference is that, in cosmology, one claims a detection of Λ
while, as we will see, the other experiments can only put an upper limit on its value. Moreover, in cosmology, there are
in fact many different and independent observables that can be used to measure the cosmological constant [23,24,79–82].
All these techniques are reviewed in other articles [40,41] and, therefore, it is not our purpose here to discuss this question
in details. However, for completeness and also because this has some impact on the theoretical status of the cosmological
constant problem, we now discuss how Λ can be determined. We will do so from a theoretical perspective leaving, as
mentioned before, the technical aspects to other articles [40,41].

10.1. The accelerating Universe

As is well known, the claim that vacuum energy has been measured (and not only constrained) was first established
from the discovery that the expansion of the Universe is accelerated (although one can find many claims about the value of
the cosmological constant in the history of cosmology) [23,24]. Since the above mentioned claim has clearly very important
consequences for physics, one needs to be very precise at this stage and this is why, in what follows, we will review the
exact origin of this result.

In order to construct a cosmological model we apply general relativity to the Universe as a whole [83]. The cosmological
principle implies that the Universe is, on large scales, homogeneous and isotropic. As a consequence, the metric is given by
the following expression

ds2 = −dt2 + a2(t)γ (3)
i j dxi dx j (509)

where γ
(3)
i j is the metric of the three-dimensional space-like sections and where a(t) is the scale factor. The expansion

is characterized by the Hubble parameter, H = ȧ/a where a dot means a derivative with respect to cosmic time. In the
standard model of cosmology, matter is assumed to be a collection of N perfect fluids (at least in the simplest version) and,
as a consequence, its stress–energy tensor is given by the following expression

Tμν =
N∑

i=1

T (i)μν = (ρT + pT)uμuν + pT gμν (510)

where ρT is the (total) energy density and pT the (total) pressure. These two quantities are related by the equation of state

pT = w(ρT) (511)

[in general, there is an equation of state per fluid considered i.e. pi = wi(ρi)]. The vector uμ is the four velocity and
satisfies the relation uμuμ = −1. In terms of cosmic time this means that uμ = (1,0). The fact that the stress–energy
tensor is conserved, ∇αTαμ = 0, amounts to

ρ̇T + 3
ȧ
(ρT + pT)= 0 (512)
a
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This expression is obtained when one takes μ = 0. The case μ = i does not lead to an interesting equation for the back-
ground. Moreover, if we assume that the fluids are separately conserved, then the above relation is in fact true for each
fluid, i.e. ρ̇i + 3H(ρi + pi)= 0.

We are now in a position to write down the Einstein equations (10) for the Universe. We arrive at the following non-
linear, second order, differential equations

ȧ2

a2
+ k

a2
= κ

3

N∑
i=1

ρi + Λeff

3
(513)

−
(

2
ä

a
+ ȧ2

a2
+ k

a2

)
= κ

N∑
i=1

pi −Λeff (514)

From the previous formulas, as already signaled in Eq. (11), we see that we can also define ρΛB by ρΛB = ΛB/κ and pΛB

by pΛB = −ρΛB = −ΛB/κ . In this case, the cosmological constant is described as fluid with a constant energy density and
pressure and with an equation of state pΛB + ρΛB = 0, i.e.

wvac ≡ pΛB

ρΛB

= −1 (515)

This is of course consistent with Eq. (5). It is worth noticing that the vacuum energy is described by a fluid with a negative
effective pressure.

Combining the two Einstein equations, one gets an equation which permits to calculate the acceleration of the scale
factor

ä

a
= −κ

6

N∑
i=1

(ρi + 3pi)+ 2

3
Λeff (516)

Let us notice that, in order to obtain the above formula, we have not assumed anything about the curvature k. This equation
is especially interesting because it gives the condition leading to an accelerated expansion, namely

ρT + 3pT < 0 (517)

Since the energy density of matter must be positive, we see that the above condition requires a negative pressure, i.e. some
exotic form of matter. But, this is of course exactly what happens when the vacuum energy is the dominant fluid in the
Universe. Then, Eq. (516) can be written as ä/a 	 2Λeff/3 which is positive for a positive effective cosmological constant.
Therefore, in the framework of the standard model described before, the discovery that ä > 0 means that a fluid with a
negative pressure is driving the expansion.

10.2. The Hubble diagram

In this section, we explain how the measurement of the Hubble diagram can be used to infer the value of the cosmo-
logical constant.

Let us first consider a source in flat space–time whose absolute luminosity is given by L (energy emitted per unit of
time). This quantity can be written as

L = nEh̄ν

�t
(518)

where nE is the number of photons emitted during the time interval �t . Suppose that we observe the source from a distance
dL using a telescope, the surface of the mirror being �S . The number of photons received is given by

nR = nE

(
�S

4πd2
L

)
(519)

On the other hand, the flux of photons (or apparent luminosity i.e. energy per unit of time and surface) through the
telescope is, by definition,

ΦR = nRh̄ν

�S�t
(520)

from which we deduce that

ΦR = L

4πd2
(521)
L
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We have just recovered the well-known fact that the apparent luminosity of a source decreases as the inverse squared of the
distance. On the other hand, we can use this relation as an operational definition of the distance, namely dL = √

L/(4πΦR).
The previous considerations can be used as a definition of distance in cosmology. For this purpose, let us now consider

the same situation but in a curved space–time with the following metric (a form more explicit than the one given in
Eq. (509))

ds2 = −dt2 + a2(t)
(
dr2 + r2 dΩ2

2

)
(522)

We assume that the source is located at the co-moving coordinate r1 while the observer is located at the origin of the
coordinates. In order to reproduce the above flat space–time calculation in this new situation, we first need to calculate the
surface of the sphere t = tR = const., r = r1 = const. surrounding the source. The surface is just given by the integral of the
covariant volume element, namely

S =
∫ √

g d2x =
π∫

0

2π∫
0

√
a4

Rr4
1 sin θ dθ dϕ = 4πa2

Rr2
1 (523)

This means that the number of photons received in the telescope can now be expressed as

nR = nE

(
�S

4πa2
Rr2

1

)
(524)

But we have also to take into account the two following phenomena. Firstly, the energy of the photons has changed during
the propagation from the source to the observer. If λ is the wavelength, we have λ = (2π/k)a(t) ∝ ν−1, from which we
deduce that ER/EE = νR/νE = aE/aR, that is to say we have the redshift due to the expansion. Secondly, if the photons are
emitted as a burst of duration �tE, they will be received as burst of duration �tR = �tEaR/aE. We are now in a position
where we can calculate the apparent luminosity. We obtain

ΦR = L

4πa2
Rr2

1

(
aE

aR

)2

= L

4πa2
Rr2

1

1

(1 + z)2
(525)

where z is the redshift of the source. Now if we use the operational definition of the luminosity distance (521), we find

dL(z)= aRr1(1 + z)= aR(1 + z)

tR∫
tE

c dτ

a(τ )
(526)

We see from the last expression that the distance of a source depends on the behavior of the scale factor between the time
of emission and the time of reception. On the contrary, if we measure the luminosity distance versus the redshift, we can
learn about this behavior. Measuring the apparent luminosity is quite easy and, clearly, the difficulty lies in estimating the
absolute luminosity of the source. It is also convenient to work in terms of the distance modulus, m − M , since the data are
often presented in this way. The quantity m (or sometimes mbol) is the apparent bolometric magnitude. It is related to the
apparent bolometric luminosity � by

�= 10−2m/5 × 2.52 × 10−5 erg/cm2 × sec (527)

For instance the Sun has an apparent bolometric magnitude of −26.85. On the other hand, the absolute bolometric magni-
tude M is the apparent bolometric magnitude that the source would have at a distance of 10 pc and is given by

L = 10−2M/5 × 3.02 × 1035 erg/sec (528)

For instance, the absolute bolometric magnitude of the Sun is 4.72. As a consequence, using these two definitions, the
distance modulus is defined by

dL(z)≡ c

H0
d̄L(z)≡ 101+(m−M)/5 × 10−6 Mpc (529)

such that d̄L is dimensionless and c/H0 = 3000 h−1 Mpc is of course nothing but the Hubble length (we have re-established
the speed of light for convenience). From the above expression, one immediately deduces that

μ(z)≡ m − M = 5 log10 d̄L(z)+ 25 + 5 log10

(
c

H0

)
(530)

where c is expressed in km × s−1, H0 in km × s−1 × Mpc−1 and dL in Mpc.
In practice we only have access to dL over a limited range of redshifts. Therefore, one can derive a general expression by

Taylor expanding the scale factor. For small redshifts, we have
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Fig. 6. Luminosity distance dL(z) (left panel) and distance modulus μ(z) (right panel) in a matter dominated Universe. The solid line corresponds to the
exact result. The dashed line is the linear law dL 	 cz/H0 and the dotted dashed line represents the approximated result at second order, see Eq. (536). We
have used h = 0.72.

a(t)= a(tR)+ ȧ(tR)(t − tR)+ 1

2
ä(tR)(t − tR)

2 + · · · = a(tR)

[
1 + HR(t − tR)− 1

2
H2

RqR(t − tR)
2 + · · ·

]
(531)

where q ≡ −aä/(ȧ)2 is the acceleration parameter. A positive acceleration parameter corresponds to a decelerating Universe
whether a negative one corresponds to an accelerating Universe. Using the previous expression, the luminosity distance
becomes

dL(z)= c(1 + z)

tR∫
tE

dτ

[
1 − HR(τ − tR)+ 1

2
H2

RqR(τ − tR)
2 + H2

RqR(τ − tR)
2 + · · ·

]
(532)

= c(1 + z)

[
−(tE − tR)+ 1

2
HR(tE − tR)

2 − 1

6
H2

RqR(tE − tR)
3 − 1

3
H2

RqR(tE − tR)
3 + · · ·

]
(533)

As expected the result only depends on the time of flight tE − tR. In order to obtain our final result, we must express this
time of flight in terms of the redshift. The redshift of the source is defined by z = a(tR)/a(tE)−1. Using the Taylor expansion
of the scale factor, we end up with

z = −HR(tE − tR)+ H2
R

(
1 + 1

2
qR

)
(tE − tR)

2 + · · · (534)

which can be easily inverted to give the expression of the time of flight, namely

tE − tR = − z

HR
+ 1

HR

(
1 + 1

2
qR

)
z2 + · · · (535)

The last step is to replace the above expression into Eq. (533). This gives

dL(z)= c

H0

[
z + 1

2
(1 − q0)z

2 + · · ·
]

(536)

where we have taken into account that the time of reception is the present time (denoted with the subscript “0”). We see
that the measurement of the luminosity distance versus the redshift allows us to determine the Hubble parameter today.
If one goes sufficiently far in redshifts, one can determine whether the Universe is accelerating or not via the accelerating
parameter q0. It is worth noticing that this last conclusion is independent of the underlying gravity theory (provided this
is a metric theory). The typical behavior of the luminosity distance and of the modulus is illustrated in Fig. 6 for a matter
dominated Universe. Let us also notice that the method that we have just presented for pedagogical reasons is, of course,
not used in practice because we have now measured up to redshifts of z 	 1.4 for which the Taylor expansion is not valid
(and, of course, in the real world the analysis is always more complicated that the simplified version discussed above). In
this case, one must use an exact expression, that is to say one must compute the integral in Eq. (526) exactly.

If we now use general relativity (i.e. a specific theory for gravity), one can go further and relates the value of the
acceleration parameter to the matter content of the Universe. The critical energy density ρcri, defined by ρcri ≡ 3H2/κ , is
used to evaluate the contribution of each species through the parameter Ωi ≡ ρi/ρcri where ρi is the energy density of the
species i at present time. Then, the Friedman equation can be re-written as
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N∑
i=1

Ωi = 1 + k

a2 H2
(537)

and the acceleration parameter can be re-expressed according to

q0 = 1

2

N∑
i=1

Ωi(1 + 3wi) (538)

The Universe contains pressure-less gas (cold dark matter and ordinary baryonic matter) for which w = 0 but also radiation
(w = 1/3) and, finally, vacuum energy (w = −1). In this case, one obtains

q0 = 1

2
Ωm +Ωγ −Ωvac (539)

Today, the contribution of radiation is negligible since we know from the measurement of the CMB that Ωγ h2 	 2.48 ×
10−5 [81]. Therefore, the acceleration parameter is in fact given by q0 	 Ωm/2 − Ωvac. On the other, we also know that
the Universe is spatially flat which means that Ωm + Ωvac 	 1 [81]. As a consequence, from the measurement of q0 	
−0.67 ± 0.25 [23,24], one can deduce the two quantities Ωm and Ωvac. On finds that Ωm 	 0.3 and Ωvac 	 0.7. This is how
one reaches the conclusion that our Universe is accelerating and that vacuum energy dominates the present energy content.
Remarkably, as announced at the beginning of this section, it is a detection and a measurement of ρvac. One finds

ρvac 	Ωvacρcri 	 10−47 GeV4 (540)

a number that should be compared with Eq. (508).
At this stage, several remarks are in order. Firstly, we notice the large mismatch between the theoretical expectation (508)

and the above, observationally determined, number (540), something like 54 orders of magnitude (but much less than the
122 orders of magnitude often quoted in the literature). This is, of course, nothing but the cosmological constant problem
although we will be more accurate with regards to its definition in the subsequent sections. Something is clearly wrong
but, as will be discussed, it is difficult to identify where the mistake is. Secondly, it is clear that the above conclusion
rests on many assumptions. For instance, we have assumed that the Universe is homogeneous and isotropic [42] and that
gravity is well described by general relativity. This means that, a priori, the cosmological constant problem is present in this
context only. Thirdly, we have also implicitly assumed that the reason for the accelerated expansion is vacuum energy. This
is clearly a natural idea since there is a term in our theory that must be present since it satisfies all the required properties
(covariance, energy conservation) and that precisely leads to the observed phenomenon. A priori, nothing more can be
asked to a new theoretical framework. But, given the mismatch discussed before, one can also doubt the identification
of the source of the accelerated expansion with vacuum energy. As a matter of fact, it is possible to construct models
where the Universe accelerates because of some new source of matter (often named “dark energy”). This is for instance
the case of quintessence and/or galileons [43] models where a scalar field is responsible for the acceleration. In this case,
one can no longer claim that we have detected the vacuum energy and that its value is given by Eq. (540). However, this
does not solve the cosmological constant problem because, even if the source of the acceleration is another fluid, we still
have the constraint ρvac < ρcri. Clearly, the number (508) does not satisfy this inequality which means that the problem
is still present. In this sense, the constraint deduced from cosmology is very important: even if dark energy is not the
cosmological constant, the observation that the energy density today is the critical energy density severely limits the value
of Λeff. Fourthly, in principle, it is possible to check experimentally whether the reason for the accelerated expansion is
vacuum energy or something else like quintessence [84–99] (more recently, in Ref. [100], the current acceleration was also
explained by a scalar field experiencing quantum fluctuations during inflation). Measuring the equation of state parameter
w is the clue since, if this is a constant equals to −1, then one can be sure that the source of the acceleration is the
cosmological constant. Unfortunately, this measurement is difficult [101].

One more general grounds, it is clear that it would be better to have constraints, or even a measurement, of vacuum
energy in an experimental context which is not cosmology where, as reminded before, measurements are difficult and
always subject to many biases and systematic errors. In the next sections, we explore whether this is possible.

11. Measuring the cosmological constant elsewhere than in cosmology?

In the previous section, we have written the Einstein equation in a homogeneous and isotropic Universe. Here, we
investigate the influence of the cosmological term in a spherically symmetric situation. This will allow us to study how the
presence of Λeff affects the motion of the planets in our solar system and how it modifies the energy levels of the Hydrogen
atom.

11.1. The static and spherically symmetric gravitational field in presence of a cosmological constant

Let us analyze the influence of the cosmological constant in a static and spherically symmetric situation [102]. This
means that, in spherical coordinates, one can write the metric tensor as [102]
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ds2 = −B(r)dt2 + A(r)dr2 + r2(dθ2 + sin2 θ dϕ2) (541)

where A(r) and B(r) are two free functions. We seek solutions of the Einstein equations (10) with a vanishing stress–energy
tensor. It is easy to show that these equations can be expressed as

Rμν −Λeff gμν = 0 (542)

The next step is to calculate the components of the Ricci tensor for the metric tensor given by Eq. (541). Straightforward
calculations lead to the following expressions

Rtt = B

A

(
1

2

B ′′

B
− 1

4

B ′2

B2
− 1

4

A′B ′

AB
+ 1

r

B ′

B

)
(543)

Rrr = −1

2

B ′′

B
+ 1

4

B ′2

B2
+ 1

4

A′B ′

AB
+ 1

r

B ′

B
(544)

Rθθ = 1

A

(
r

2

A′

A
− r

2

B ′

B
− 1

)
+ 1 (545)

Rϕϕ = Rθθ sin2 θ (546)

the other components being zero. In the above equations, a prime denotes a derivative with respect to the radial coordi-
nate r.

We are now in a position where one can determine the solution of the field equations. If we take the combination
Rtt/B + Rrr/A = −Λeff B/B +Λeff A/A = 0 [from the Einstein equations (542)], one obtains

1

r A

(
B ′

B
+ A′

A

)
= 0 (547)

which implies that B(r)= C/A(r), where C is a constant. Using this expression, one can re-express Rθθ as

Rθθ = B(r)

C

(
−r

B ′

B
− 1

)
+ 1 (548)

and, as a consequence, the corresponding Einstein equation now reads

rB ′(r)+ B(r)= C − CΛeffr
2 (549)

This equation can easily be integrated and one obtains

B(r)= D + C

r
− DΛeff

r2

3
(550)

where D is another integration constant. The constants C and D are fixed in such a way that, in absence of a cosmological
constant, one recovers the standard Schwarschild solution. This amounts to take D = 1 and C = 2GM , where M is the mass
of the central body and G the Newton constant. This completes our calculation since the two functions A(r) and B(r) are
now completely specified, namely

A(r)= 1

B(r)
, B(r)= 1 − 2GM

r
− Λeffr2

3
(551)

We can now compare this solution to the standard Schwarschild solution. The fact that the time–time component of the
metric tensor is inversely proportional to the r–r component is still true but the radial dependence of the function B(r) is
modified by the presence of a cosmological constant. In the Newtonian limit, we have gtt 	 1 + 2V (r), where V (r) is the
Newtonian potential. In the present context, this implies that

V (r)	 − GM

r
− Λeffr2

6
(552)

Therefore, we obtain the usual gravitational potential corrected by a term proportional to the cosmological constant. This
term looks like an inverted harmonic oscillator. This corresponds to a force felt by a test body of mass m given by

F = GMm

r2
u − mΛeffr

3
u (553)

where u is a vector directed towards the central body of mass M . The cosmological constant force is directed in the other
direction and can therefore be viewed as a kind of “anti-gravity force”. We also notice that it is proportional to r which
means that its effect will be more important on large scales. This last property is the clue to understand why measuring the
cosmological constant is more efficient on large scales (the best example being of course cosmology). This means that the
modification of the planet orbits and/or the energy levels of the atoms will certainly be a small effect. On the other hand,
we know that measurements in, say, atomic physics are extremely accurate and, a priori, there is the hope that this accuracy
could compensate the smallness of the effect. Unfortunately, as we are now going to study, this will not be the case.
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11.2. Planet orbits

Our goal in this section is to study how the planet orbits are modified by the presence of vacuum energy [103–105].
We will follow the treatment of Ref. [103]. We assume that the gravitational field created by the Sun and the cosmological
constant is given by Eqs. (541) and (551) with M = M� . The motion of a planet is represented by the motion of a test body
in this background gravitational field. The corresponding geodesic equation can be written as

d2xμ

dτ 2
+ Γ

μ
νλ

dxν

dτ

dxλ

dτ
= 0 (554)

where τ is an affine parameter (not necessarily the proper time). Then, after having evaluated the Christoffel symbols for
the metric (541), one can express these equations explicitly. One obtains

d2t

dτ 2
+ B ′

B

dt

dτ

dr

dτ
= 0 (555)

d2r

dτ 2
+ B ′

2A

(
dt

dτ

)2

+ A′

2A

(
dr

dτ

)2

− r

A

(
dθ

dτ

)2

− r sin2 θ

A

(
dϕ

dτ

)2

= 0 (556)

d2θ

dτ 2
+ 2

r

dr

dτ

dθ

dτ
− cos θ sin θ

(
dϕ

dτ

)2

= 0 (557)

d2ϕ

dτ 2
+ 2

r

dr

dτ

dϕ

dτ
+ 2

cos θ

sin θ

dθ

dτ

dϕ

dτ
= 0 (558)

Let us now solve these equations. Firstly, we can assume that the orbit stays in the θ = π/2 plane. This automatically solves
Eq. (557). Then, if we divide Eq. (555) by dt/dτ and Eq. (558) by dϕ/dτ , we obtain two new equations, namely

d

dτ

[
ln

(
dt

dτ

)
+ ln B

]
= 0 (559)

d

dτ

[
ln

(
dϕ

dτ

)
+ ln r2

]
= 0 (560)

The first equation can be used to define the affine parameter. We choose it such that it satisfies dt/dτ = 1/B . Then, the
second equation tells us that

r2 dϕ

dτ
= J (561)

where J is a constant. Finally, Eq. (556) can be re-written as

d2r

dτ 2
+ A′

2A

(
dr

dτ

)2

− J 2

Ar3
+ B ′

2AB2
= 0 (562)

If we multiply this last equation by 2A dr/dτ , one arrives at

d

dτ

[
A

(
dr

dτ

)2

+ J 2

r2
− 1

B

]
= 0 (563)

This means that the quantity inside the square brackets is a constant. Let us call this constant −E . Then, this gives an
equation expressing how the radial coordinate r varies with the angle ϕ ,(

dr

dϕ

)2

= r4

A(r)

[
1

J 2 B(r)
− 1

r2
− E

J 2

]
(564)

It is easy to express the constants E and J in terms of the aphelion and perihelion r+ and r− , which are the two points on
the orbit such that dr/dϕ = 0, see Fig. 7 (where the elements of the orbits are represented). This gives

1

J 2
= r−2+ − r−2−

B−1+ − B−1−
(565)

E = r2+/B+ − r2−/B−
r2+ − r2−

(566)

with B± defined by B± ≡ B(r±).
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Fig. 7. Sketch of the elliptic planet orbit with the aphelion and perihelion. The orbit is planar and the position of the planet can be characterized by the
coordinates (r,ϕ).

So far, we have been very general and we have never specified the function B(r). From now on, we are going to use the
explicit form of this function, see Eq. (551). Let us notice in particular that, in absence of a cosmological constant and in
the limit where GM/r � 1, the two above expressions reduce to

E − 1

2
	 GM

r+ + r−
, J 2 	 2GM D (567)

where D ≡ r+r−/(r+ + r−) (of course, not to be confused with the integration constant introduced in the previous subsec-
tion). As is shown in the following footnote, these are exactly the relations obtained in the Newtonian case. More generally,
Eq. (564) takes the form(

dr

dϕ

)2

= 1 − E

J 2
r4 + 2GM E

J 2
r3 − r2 + 2GMr + Λeffr4

3
+ EΛeffr6

3 J 2
(568)

Performing the standard change of variable, u ≡ 1/r and differentiating with respect to ϕ , we obtain4

4 It is interesting to compare this result with the Newtonian analysis. In this case, the Lagrangian is given by

L = m

2

(
ṙ2 + r2ϕ̇2)+ GMm

r

where a dot denotes a derivative with respect to time. Again we have chosen the orbit to be in the plane θ = π/2. This leads to the following equations of
motion

mr̈ − mrϕ̇2 + GMm

r2
= 0

mr2ϕ̈ + 2mrṙϕ̇ = 0

The second equation gives ϕ̇ = J/r2 while the first one can be re-written as

d

dt

(
ṙ2

2
+ J 2

2r2
− GM

r

)
= 0

The quantity between the parenthesis is a constant and we call it −E . Then, this equation can be re-expressed as

(
dr

dϕ

)2

= − 2E

J 2
r4 + 2GM

J 2
r3 − r2

From this equation one can deduce an expression for E and J in terms of the aphelion and the perihelion. One gets

E = GM

r+ + r−
, J 2 = 2GM D

Introducing the variable u = 1/r and differentiating once more with respect to ϕ , one arrives at

d2u

dϕ2
+ u = GM

J 2
(569)

This equation can easily be integrated. The solution reads

u(ϕ)= F cos(ϕ − ϕ0)+ GM

J 2
= GM

J 2
(1 − e cosϕ)

where F and ϕ0 are two arbitrary constants. Clearly, one can always take ϕ0 = 0. The above trajectory represents, as is well known, an ellipse with
eccentricity e.
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d2u

dϕ2
+ u = E

J 2
GM + 3GMu2 − E

J 2

Λeff

3u3
(570)

This is the differential equation that needs to be solved in order to find the trajectory of the planet. It should be compared
with its Newtonian counterpart, see Eq. (569). One can check that, in this regime (without a cosmological constant), the
two equations are indeed identical since according to Eq. (567), E → 1, Λeff = 0 and the term 3GMu2 can be neglected. The
relativistic term 3GMu2 is responsible for the precession of the perihelion and the last term represents the correction due
to the cosmological constant.

We now turn to the solution of Eq. (570). Let us first review how one calculates the precession of the perihelion without
a cosmological constant [102]. The idea is to restart from Eq. (568). For Λeff = 0, the polynomial on the right-hand side can
be written as

1 − E

J 2
r(r − r+)(r − r−)(r − ε) (571)

since we know it has to vanish at r = r± . The only quantity that remains to be determined in this expression is ε . Comparing
the above relation with Eq. (568), we deduce that

1 − E

J 2
r+r−ε = 2GM (572)

Using the expressions derived before, it is easy to show that ε = 2GM/(1 − 2GM/D). As a consequence, one can write

ϕ+ − ϕ− = J√
1 − E

r+∫
r−

1√
(r − r+)(r − r−)

1√
1 − ε/r

dr

r
(573)

There are several methods to evaluate this integral. As a matter of fact, it can be integrated exactly in terms of Elliptic
functions [48,49]. But, being given that ε is a small quantity, it is better to expand the result in this parameter. This
leads to easier calculations that are, moreover, more explicit. In addition, the method can be generalized to the case of a
non-vanishing cosmological constant, which is of course our main goal. In fact, if we restart from Eq. (564) and use that
B−1 	 1 + 2GM/r + · · · , we see that the term in the squared bracket in Eq. (564) is a quadratic function of 1/r which
vanishes at r = r± . This means that one necessarily has

1

J 2 B(r)
− E

J 2
− 1

r2
	 C

(
1

r
− 1

r−

)(
1

r
− 1

r+

)
(574)

Then, writing Eq. (564) in terms of u rather than r, one arrives at(
du

dϕ

)2

	 C

A(r)
(u − u−)(u − u+) (575)

Now, when Λeff �= 0, as is clear from Eq. (568), the term in the square bracket of Eq. (564) is no longer a quadratic function
of 1/r even if the expansion of the function B−1(r) is used. However, this term still vanishes at r = r± and the integral will
be dominated by the contributions coming from the vicinity of these points, see also Eq. (573). The idea is then to continue
to work with Eq. (574) and to take into account the cosmological constant in the definition of C [103]. This should provide
a reasonable approximation of ϕ+ − ϕ− . Using Eqs. (565) and (566), one can write

1

J 2 B(r)
− E

J 2
− 1

r2
= r2−[B−1(r)− B−1− ] − r2+[B−1(r)− B−1+ ]

r2+r2−(B−1+ − B−1− )
− 1

r2

	 C

(
1

r
− 1

r−

)(
1

r
− 1

r+

)
(576)

Then, if we differentiate both sides twice with respect to u, this gives

C = (u+ − u−)(u+ − u−)A′′(u)
2(u+ − u−)A′(u)

− 1 (577)

	 −1 + u A′′

A′

∣∣∣∣
u=L−1

(578)

where L ≡ 2D is the semilatus rectum. In the above expression, we have used A+ − A− 	 (u+ − u−)A′(L−1). So far, the
method is completely general provided that A−1 = B . We now use the explicit form of A−1. Expanding everything in GMu
and in Λeff, one obtains [103]
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C 	 −1 + 4GM

L
+ ΛeffL3

GM
+ 4ΛeffL3

3
+ · · · (579)

The final step consists in using the above expression in Eq. (575). One finds [103]

ϕ+ − ϕ− 	
u+∫

u−

A1/2(u)du

[C(u − u+)(u − u−)]1/2
= π

(
1 + 3

2

2GM

L
+ ΛeffL3

2GM
+ · · ·
)

(580)

where we have expanded A1/2C−1/2 and where we have used the fact that
∫ u+

u− du/[(u − u+)(u − u−)]1/2 = ln(u+ − u−)−
ln(u+ − u−)+ 2iπ/2, the complex i being exactly cancel by the i coming from the fact that C , which appears in a square
root, is negative [its expansion starts with −1, see Eq. (579)]. As a consequence, we obtain

�ϕ ≡ 2(ϕ+ − ϕ−)− 2π 	 6π
GM

L
+�ϕΛ (581)

where the first term is the standard relativistic perihelion precession while [103]

�ϕΛ 	 πΛeffL3

GM
(582)

is the contribution due to the cosmological constant. The above equation is the main result of this subsection. It gives the
perihelion precession due to the presence of vacuum energy. Let us notice that the scaling �ϕΛ ∝ L3 indicates that the
precession is larger for planets that are far from the Sun. It is of course totally consistent with the fact that the effect of the
cosmological constant is more important on large scales.

We now use the above result to constrain the amount of vacuum energy present in our Universe. For this purpose, let us
now calculate this perihelion shift for, say, Mercury (as mentioned before, the effect is larger for other planets but this does
not modify the conclusions obtained below; estimates for Venus, Earth and Mars can be found in Ref. [105]). In this case, we
have r+ 	 68.8×106 km and r− 	 46×106 km. This implies that D 	 27.7×106 km. We also have GM 	 2.95 km. Finally, it
is interesting to calculate in terms of the vacuum energy density observed in cosmology, see Eq. (540). For the cosmological
constant, this leads to the following number Λobs 	 8.81h2 × 10−48 km−2. This leads to the following expression:

�ϕΛ 	 1.6h2 × 10−24
(

Λ

Λobs

)
rad/revolution (583)

or, since Mercury completes 415 revolutions each century and there are 360 × 60 × 60/(2π) arc-seconds per radian,

�ϕΛ 	 2.7h2 × 10−16
(

Λ

Λobs

)
arc-second/century (584)

which is, of course, completely unobservable. The reason for such a result has already been mentioned. The solar system
has a characteristic scale (say a few astronomical units) which is too small for the cosmological constant to leave a sizable
imprint. However, even if one cannot measure the vacuum energy density with this method, it can nevertheless be used to
constrain its value. Indeed, the uncertainty in the precession of the perihelion of Mercury is about 0.1′′ par century, which
means that

�ϕΛ 	 2.7h2 × 10−16
(
ρΛ

ρcri

)
< 0.1 (585)

implying that

ρvac � 1015ρcri 	 3 × 10−32 GeV4 (586)

Of course, this limit is not competitive with what one has obtained in cosmology. However, when compared to Eq. (508),
it leads to an interesting piece of information which allows us to define what the cosmological constant problem is more
accurately. Indeed, we see that there is a contradiction between the theoretical expectation (508) and the observations of the
planet trajectories in our solar system. In other words, the predictions of Eq. (508), if true, would lead to orbits drastically
different from what we observe. Therefore, even without the cosmological observations and only from the motion of the
planets in the solar system, one sees that our calculation of vacuum energy must be incorrect. Put it differently, it would
be incorrect to say that the cosmological constant problem originates only from the recent astrophysical observations. In
some sense, the problem is much worse. Only by observing the planets in the solar system, a class of observations which
seems to be much more straightforward than the cosmological observations, we know that our regularization method of
the vacuum energy must be flawed.
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11.3. Modifications of atomic levels

We have just seen that observing the motion of planets in our solar system can tell us something about the value
of the vacuum energy. A priori, another possibility to observe the influence of the cosmological constant is through the
modification of the atomic energy levels that its presence would cause. In this section, we investigate this question in
the case of the Hydrogen atom since this is technically simple [106–111]. We will follow the treatment of Ref. [106]. In
particular, since the problem is still spherically symmetric, one can use the metric tensor (541) obtained before.

The motion of an electron around the nucleus, living in a static and spherically symmetric manifold, is described by the
following Dirac equation(

Γ μDμ + m
)
Ψ = 0 (587)

where Ψ is a Dirac spinor, see Section 7.1 and m the mass of the electron. In the above equation, Γμ are the Dirac matrices
satisfying the relation{

Γ μ,Γ ν
}= 2gμν (588)

Let us notice that we have already presented this formula, see Eq. (330). Here, we slightly change the notation and now
denote the Dirac matrices in curved space–time by Γ μ (notice that we have also included a factor i in the definition of
Γ μ). The matrices Γ μ are related to the Dirac matrices in flat space–time, γ μ , by Γμ = eαμγα , where eαμ are the vierbein
fields such that gμν = eαμeβνηαβ . The symbol Dμ denotes the covariant derivative acting on the spinor, namely

DμΨ = (∂μ −ωμ)Ψ (589)

where the spinorial connection can be expressed as

ωμ ≡ −1

4
γαγβeαν gνλ

(∇μeβλ
)+ iq Aμ (590)

with ∇μeβλ ≡ ∂μeβλ − Γ σ
μλeβσ and Aμ is the vector field describing the electromagnetic field acting on the electron (q is

the charge). The Dirac equation can also be re-written as

i∂0Ψ = HΨ (591)

where the effective Hamiltonian is given by

H = −i
(

g00)−1
Γ 0Γ i(∂iΨ −ωiΨ )+ iΓ0Ψ − i

(
g00)−1

Γ 0mΨ (592)

In this case, the Dirac equation looks like an effective Schrödinger equation.
It is clear that the typical dimension of an atom is very small in comparison to the typical curvature scale of the

manifold. Therefore, as was done for the calculation of the Green function in Section 8, one can perform a local analysis.
For this purpose, we now use the Fermi normal coordinates [78]. In these coordinates, the metric tensor takes the form

g00 = −1 − R0�0mx�xm + · · · (593)

g0i = −2

3
R0�imx�xm + · · · (594)

gij = δi j − 1

3
Ri� jmx�xm + · · · (595)

where the dots indicate higher order terms. This implies that the vierbein fields can be expressed as

eα0 = δα0 − 1

2
Rα�0mx�xm (596)

eα i = δα i − 1

2
Rα�imx�xm (597)

and the Christoffel symbols can be written as

Γ 0
i j = 1

3
(R0i jm + R0 jim)x

m (598)

Γ 0
0i = R0iomxm (599)

Γ i
jk = 1

3
(R jikm + Rkijm)x

m, Γ 0
00 = 0 (600)

Γ i = R0mjix
m, Γ i = R0i0mxm (601)
0 j 00
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Using the above results, this finally leads to the following expression for the spinorial connection [106]

ω0 = 1

2
γ0γ j R j

00mxm + 1

4
γkγ j Rkj

0mxm + iq A0 (602)

ωi = 1

4
γ0γ j R0 j

imxm + 1

8
γkγ j Rkj

imxm + iq Ai (603)

The above formulas will allow us to calculate the effective Hamiltonian (592) explicitly. But before reaching this stage, we
must also determine vector field Aμ . The Lagrangian of the corresponding gauge field is given by, see also Eq. (364)

S = −
∫

d4x
√−g

(
1

4
gαβ gμν Fμα Fνβ − jμAμ

)
(604)

from which we deduce that the equations of motion read

gμν∇μ∇ν Aγ − Rσ γ Aσ = − jγ (605)

At first order in the curvature, these equations can be expressed as [106]

δi j∂i∂ j A0 + 1

3
Ri� jmx�xm∂ i∂ j A0 + 5

3
Ri00mxm∂ i A0 + 2Rk

i0mxm∂ i Ak − 2

3
Rimxm∂ i A0 = − j0 (606)

δi j∂i∂ j Ak + 1

3
Ri� jmx�xm∂ i∂ j Ak + 2

3
δi j(Rαkim + Rα ikm

)
xm∂ j Aα − 2

3
Rσ k Aσ − 1

3
R p

00k Ap

− 1

3
Ri00mxm∂ i Ak − 2

3
R pmxm∂ p Ak = jk (607)

For a one electron atom with a nucleus of charge Ze, one can take

j0 = −Zeδ(r), jk = 0 (608)

In what follows, we determine the vector perturbatively in the curvature. At zeroth order, in flat space–time, the equation
for the time component reduces to

δi j∂i∂ j A0 = Ze δ(r) (609)

whose solution is, of course,

A(0)0 = − Ze

4π

1

r
(610)

Then, we write A0 = A(0)0 + δA0, where δA0 is first order in the curvature. By inserting this expression into the full equa-
tion (606) and using the zeroth order solution (610), one arrives at [106]

δi j∂i∂ jδA0 + 1

3

Ze

4πr3

(
3R0

�0m − R�m
)
x�xm = 0 (611)

The solution of the above equation reads [106]

δA0 = 1

12

Ze

4π
(R + 4R00)r + 1

12

Ze

4π

(
3R0

�0m − R�m
) x�xm

r
(612)

In the same manner, one can determine the space component. Obviously, at zeroth order, one has A(0)k = 0. The first order
perturbation δAk obeys the equation [106]

δi j∂i∂ jδAk + 2

3

Ze

4π
R0

k
1

r
+ 2

3

Ze

4π
R0

ikm
xi xm

r3
= 0 (613)

whose solution can be written as [106]

δAk = 1

2

Ze

4π
R0kr + 1

6

Ze

4π
R0

lkm
x�xm

r
(614)

This completes our calculation of the electromagnetic field.
Having determined the vierbeins fields (i.e. the quantities describing the gravitational force) and the gauge field (i.e. the

quantity describing the electromagnetic force), we are now in a position where we can calculate the Hamiltonian (592).
In order to make contact with the usual treatment of the Hydrogen atom, it is more convenient to introduce the standard
Dirac matrices αi and β related to the flat space–time Dirac matrices by
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γ0 = iβ, γi = −iβαi (615)

As is well known, they satisfy

αiα j + α jαi = 2δi j (616)

αiβ + βαi = 0, β2 = 1 (617)

Then, we use the expressions of the spinorial connections (602), of the gauge field (610), (614) and of the Dirac matrices in
Eq. (592) of the Hamiltonian. This leads to the following expression:

H = −iαi∂i + mβ − ζ

r
− i

2
R0�0mx�xmαi∂

i − i

6
Ri� jmx�xmα j∂ i − i

6
R0� jmx�xmα jαi∂i − i

2
R0�imx�xm∂ i

+ i

8
αiα jαk R jkimxm + i

4
αiα j R0 jmix

m + i

4
αiα j R0mijx

m − i

2
α j R0 j0mxm + 1

6
ζ R0�mix

�xm α
i

r
+ 1

2
ζ R0iα

ir

+ 1

12
ζ(R + 4R00)r − 1

12
ζ(R�m + 3R0�0m)

x�xm

r
− m

6
Ri�0mx�xmβαi + m

2
R0�0mx�xmβ (618)

In this expression we have defined ζ ≡ Ze2/(4π) and we have taken q = −e. The three first terms are the usual Dirac
Hamiltonian. The other terms represent the correction due to space–time curvature. Since the above expression is quite
complicated, it is interesting to estimate the order of magnitude of each term. The curvature is given by D−2 where D is
a typical distance. Each xi is typically of the order of the Bohr radius, i.e. xi 	 a0 	 m−1e−2 	 m−1ζ−1. As a consequence,
∂i is of order mζ . This also means that the typical velocity is given by mζ/m 	 ζ . Of course the matrices αi and β are
dimensionless but, in the non-relativistic limit αi∂i must reduce to 	 mv2 which implies that αi 	 v 	 ζ . In the following
we consider that ζ = Zα where α is the fine structure constant is a small number. Then, the dominant term in the above
expression is the last one, which means that the Hamiltonian can be approximated as

H = H0 + H int 	 α · p + mβ − ζ

r
+ 1

2
mR0�0mx�xmβ (619)

where we have used pi = −i∂i . If we use the following representation for the Dirac matrices

αi =
(

0 σ i

σ i 0

)
, β =

(
I2 0
0 −I2

)
(620)

and write the Dirac spinor as

Ψ = eiEx0
(
φ

χ

)
(621)

then the Dirac equation reduces to two equations that can be expressed as

α · pχ +
(

m − ζ

r
+ 1

2
mR0�0mx�xm

)
φ = Eφ (622)

α · pφ −
(

m + ζ

r
+ 1

2
mR0�0mx�xm

)
χ = Eχ (623)

From the second relation we can express χ in terms of α · pφ and then we can insert this expression into the first equation.
This leads to(

E + m + ζ

r
+ 1

2
mR0�0mx�xm

)−1

(α · p)2φ +
(

m − ζ

r
+ 1

2
mR0�0mx�xm

)
φ = Eφ (624)

or, using α · p φ = p2 φ and expanding the denominator of the first term in the above equation[
1 − 1

E + m

ζ

r
− m

2(E + m)
R0�0mx�xm

]
p2

E + m
φ −
(
ζ

r
− 1

2
mR0�0mx�xm

)
φ = (E − m)φ (625)

But, if we now perform an additional expansion assuming non-relativistic velocities for the electron (which, in practice, is a
good approximation), one arrives at the following expression for the term p2/(E + m)

p2

E + m
= p

m + m + p2/(2m)+ · · · 	 p2

2m
+ · · · (626)

As a consequence, we conclude that the non-relativistic limit is given by

HNRφ = (E − m)φ (627)
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where the non-relativistic Hamiltonian can be written as [106]

HNR = H0 + H int = p2

2m
− ζ

r
+ 1

2
mR0�0mx�xmβ (628)

This is our final result. Endowed with this equation, one can calculate, by means of perturbations theory, the modification
of the ground state due to the presence of a cosmological constant. This leads to (the arguments of E indicates the value of
the quantum numbers n and �)

�E(1,0)= 1

2
mR0�0m〈1s|x�xm|1s〉 (629)

= 1

2
mR0�0m

1

3
δ�m〈1s|r2|1s〉 (630)

= 1

6
mR00〈1s|r2|1s〉 (631)

The ground state wave function is given by (at this order of perturbations theory, there is no need to take into account the
modification on the wave-function; one can use the standard one)

|1s〉 = 1√
πa3

0

e−r/a0 (632)

where we recall that a0 is the Bohr radius. This implies that

〈1s|r2|1s〉 = 4π

πa3
0

∞∫
0

r4e−r/a0 dr = 4π

πa3
0

3a5
0

4
= 3a2

0 (633)

The vacuum Einstein equations are, see Eq. (542), Rμν = Λeff gμν and, therefore, at first order in the cosmological con-
stant one R00 = −Λeff (here, of course, we only compute the corrections due to the cosmological constant and not those
originating from the Earth gravitational field). This means that

�E(1,0)= −1

2
mc2Λeffa

2
0 (634)

where we have re-established the speed of light for convenience. In fact, this result could have been anticipated from the
Newtonian approach. Indeed, we have seen that the Newtonian potential, in presence of a cosmological constant, is given
by −Λeffmc2r2/6, see Eqs. (552) and (553). Using the perturbation theory with this potential exactly leads Eq. (634). Let us
now evaluate the correction. Using that the reduced mass of the atom is essentially the electron mass, m 	 9.1 × 10−31 kg
and that the Bohr radius is a0 = 0.52 × 10−10 m, one obtains

�E(1,0)= −6 × 10−69h2
(

Λ

Λobs

)
eV (635)

a quantity completely unobservable, probably forever. For comparison the Lamb shift is of the order 10−6 eV. At this stage
this does not come as a surprise. As discussed in the case of planet orbits, the size of the system is so small that the
influence of the cosmological constant is negligible. However, requiring that the shift due to the cosmological constant be
smaller than the Lamb shift leads to

ρvac � 1.6 × 1062ρcri 	 1.3 × 1016 GeV4 (636)

This result is less good than the one obtained from planet motion by about 50 orders of magnitude. Moreover, the theoretical
expectation (508) satisfies this inequality. Let us notice in passing that the result based on the wrong regularization scheme,
ρvac 	 M4

Pl does not satisfy the previous bound.
We now have a clearer view of what the cosmological constant problem is. On one hand, one can calculate the vacuum

energy density by means of, apparently, well-known techniques of regularization. These techniques usually lead very robust
results, fully consistent with the observations. For instance, the radiative corrections to the calculation of cross-sections have
proven in very good agreement with various high energy physics experiments. One the other hand, various observational
results (and not only in cosmology) indicate that the previous calculation is not correct. The theoretical expectation value
for the vacuum energy density is so large that it should have already be seen by many experiences. Moreover, in cosmology,
under a certain number of hypothesis, one even measures ρvac which is found to be many orders of magnitude smaller
than the number derived from the theory. Since, as mentioned before, the theoretical framework seems to be robust (let us
recall again that it involves calculations that can be found in the first pages of any textbook on quantum field theory) and
since the observations seem to be convincing, we are facing a genuine mystery. However, before accepting this conclusion,
it is worth checking that no loophole is present in the previous reasoning. This will be the goal of the next sections. A first
question that can be asked is whether the zero-point fluctuations that are at the origin of the problem are a real physical
phenomenon or just an artifact of the formalism of quantum field theory. We turn to this issue in the next section.
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12. Do vacuum fluctuations really exist?

We have seen in the previous sections that the zero-point fluctuations manifest themselves as the vacuum energy. Since
this leads to conclusions that seem to be in contradiction with observations, it is legitimate to ask whether these fluctuations
really exist in Nature. In particular, we want to investigate whether the zero-point fluctuations could manifest themselves
in other physical phenomena. The answer to this question is usually positive and one experiment which is considered as
a proof that the vacuum fluctuations are real is the measurement of the Lamb shift [18,112]. In the next subsection, we
discuss this phenomenon.

12.1. The Lamb shift

Let us consider the “motion” of an electron in an atom. Its “location” is described by the vector r. The vector r is going
to fluctuate because of the interaction between the electron and the zero-point fluctuations of the electromagnetic field.
This interaction will slightly modify the position of the atomic levels leading to the Lamb shift. Let us study in details how
this effect can be derived. Let V (r) be the Coulomb potential which determines the properties of the atom. At the point
r + δr, the potential can be Taylor expanded according to

V (r + δr)= V (r)+ ∂V

∂xi
δxi + 1

2

∂2 V

∂xi∂x j
δxiδx j + · · · (637)

Then, if we time average the previous expression, one obtains

〈
V (r + δr)

〉	 V (r)+ ∂V

∂xi
〈δxi〉 + 1

2

∂2 V

∂xi∂x j
〈δxiδx j〉 + · · · (638)

and, because the problem is spherically symmetric, we have 〈δxi〉 = 0 and 〈δxiδx j〉 = 〈δr2〉δi j/3. The first term in Eq. (638) is
the unperturbed Coulomb potential and the last one (since the second one vanishes) can be viewed as a small perturbation
of the Hamiltonian, namely

�H = 1

6

∂2 V

∂xi∂x j

〈
δr2〉δi j (639)

In an atom with atomic number Z , the Coulomb potential is given by

V = − Zα

r
(640)

where α 	 1/137 is the fine structure constant. This means that δi j∂
2 V /(∂xi∂x j)= 4π Zαδ(r).

Let now us assume that the atom is placed in the quantum state |�,m〉. As we have already discussed in Section 11.3, at
first order, the time-independent perturbations theory tells us that the correction to the energy of the level (�,m) is given
by [57]

�E(n, �)= 〈�,m|�H|�,m〉 (641)

Using Eq. (639), one obtains the following expression for the energy displacement

�E(n, �)= 2π

3
Zα
∣∣Ψn�(0)

∣∣2〈δr2〉 (642)

where Ψn� is the wave-function in the corresponding quantum state. Since the wave-function at the origin can be expressed
as [57]

∣∣Ψn�(0)
∣∣= 1

π1/2

(
mZα

n

)3/2

δ�0 (643)

where m is the electron mass (m 	 0.511 MeV) one finally arrives at [18]

�E(n, �)= (2mZα)3

12

Zα

n3

〈
δr2〉δ�0 (644)

Therefore, we have reduced the problem to the calculation of the quantity 〈δr2〉. In order to evaluate this quantity, we must
now evaluate the displacement of the electron. The electron “moves” under the influence of the electric field within the
atom and, as a consequence, δri obeys the following equation

m
d2

2
δri = eEi (645)
dt



636 J. Martin / C. R. Physique 13 (2012) 566–665
where Eμ ≡ uν Fμν = − Ȧi is the electric field (or, rather, its vacuum fluctuating component). Using the usual expansion of
the vector potential in terms of creation and annihilation operators, see Eq. (387), one can write

Ei(t, x)= −1

(2π)3/2

∫
dk√

2ω(k)

2∑
α=1

εαi (k)
[−iωaαk e−iωt+ik·x + iω

(
aαk
)†

eiωt−ik·x] (646)

In the same manner, one has to Fourier expand δri which is considered as an operator in this context. One obtains

δri(t, x)= 1

(2π)3/2

∫
dk

2∑
α=1

εαi (k)
[
δr(k, t)aαk eik·x + δr∗(k, t)

(
aαk
)†

e−ik·x] (647)

The Fourier amplitude of the displacement operator can be calculated from the equation of motion (645). This leads to the
following expression

δr(k, t)= e

m

1√
2ω3

e−iωt (648)

From this expression, one can now evaluate the quantity 〈δr2〉. One finds

〈
δr2〉= 〈0|δi jδriδr j|0〉 = 1

(2π)3

∫
dk

2∑
α=1

δi jεαi ε
α
j δr(k, t)δr∗(k, t) (649)

= 2α

m2π

∞∫
0

dω

ω
(650)

where we have used α = e2/(4π). Therefore, inserting the above formula into Eq. (644), one obtains the following equation
for the energy shift [18]

�E(n, �)= 4mZ 4α5

3πn3

∞∫
0

dω

ω
δ�0 (651)

This equation is the main result of this section. It gives the energy levels displacement due to the presence of the electro-
magnetic zero-point fluctuations.

As usual this expression is divergent and needs to be regularized. In a simplified treatment, one simply assumes, see
Ref. [18], that the wavelengths in the above sum must be larger than the Compton wavelength of the electron, which
implies ω <ωmax 	 m and that ω >ωmin 	 1/a0 	 1/[1/(αm)] 	 mα, where a0 is the Bohr radius. In this case, the previous
results reduces to

�E(n, �)	 4mZ 4α5

3πn3
ln

(
1

α

)
δ�0 (652)

Let us now evaluate this quantity for the Hydrogen atom. Clearly, there is no effect for n = 1. But for n = 2 and �= 0, one
has

�E(2,0)	 4mα5

3π8
ln

(
1

α

)
δ�0 	 668 MHz (653)

where we have used m 	 0.511 MeV = hν with h = 4.135 × 10−15 eV × s.
This shift has been experimentally observed and is usually taken as a proof that the zero-point fluctuations are real

since they lead to an observed physical phenomenon. Based on this result, it now seems difficult to argue that the zero-
point fluctuations are just an artifact of the formalism of quantum field theory. Moreover, there exists another experiment,
the Casimir effect, where the effects of the vacuum fluctuations can be observed. In the next section, we investigate this
case.

12.2. The Casimir effect

In this section, we study the Casimir effect [113–119]. Since its discovery, this effect has been studied in great details
and it is clear that, here, one cannot review all the literature. We will give a description of this phenomenon in a simplified
context only and will refer to Refs. [113–115] for readers interested in learning more about this interesting subject.
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Fig. 8. Sketch of a Casimir cavity of width L.

12.2.1. The Casimir force
Let us consider an experimental situation where we have two conducting plates in the (x, y) plane separated by a

distance L long the z direction, see Fig. 8. For simplicity, instead of considering the electromagnetic field in the cavity (which
is the case in the real world, especially when measurements are performed), we will just treat the case of a real massive
scalar field Φ(t, x). This field obeys the Klein–Gordon equation already studied and solved before, see Eq. (59), except that
now the boundary conditions are modified by the presence of the two plates. Let us write Φ(t, x) = X(x)Y (y)Z(z)T (t).
Then, inserting this anzatz into the Klein–Gordon equation, one obtains

− T̈

T
+ 1

X

d2 X

dx2
+ 1

Y

d2Y

dy2
+ 1

Z

d2 Z

dz2
− m2 = 0 (654)

where m is the mass of the scalar particle. Clearly, one can separate the variables and, as a consequence, the above equation
can be split into four differential equations, namely

− T̈

T
− m2 = C2 (655)

1

X

d2 X

dx2
= k2

x (656)

1

Y

d2Y

dy2
= k2

y (657)

1

Z

d2 Z

dz2
= k2

z (658)

where the constants C , kx , ky and kz are related by

C − k2
x − k2

y − k2
z = 0 (659)

The solution in the x and y direction can be expressed in terms of standard plane waves, X(x) = Axeikxx + Bxe−ikxx and
Y (y)= A yeiky y + B ye−iky y . The quantities Ax,y and Bx,y are just integration constants. Of particular interest is of course the
solution along the z-axis. It can also be written as

Z(z)= Azeikz z + Bze−ikz z (660)

where Az and Bz are two integration constants. But the difference with the case of a free field is that the boundary
conditions “feel” the presence of the two plates. These boundary conditions are given by Z(0) = 0 and Z(L) = 0. The first
one implies that Az = −Bz while the second one gives

2i sin(kz L)= 0 (661)

or, equivalently,

kz = n
π

L
(662)

where n is an integer. Finally, the equation for the function T (t) can also be easily solved and the solution reads
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T (t)= Ateiωt + Bte−iωt (663)

where ω2 = C2 + m2. Therefore, upon using Eq. (659), the frequency ω takes the form

ω=
√

k2
x + k2

y + n2π
2

L2
+ m2 (664)

In this expression, kx and ky take continuous values.
Based on the previous considerations, one can now write the field operator as an expansion in terms of creation and

annihilation operators. But this expansion encodes the fact that, along the z-axis, the wave-number is discrete. Concretely,
we have

Φ(t, x)=
∫

dkx

(2π)1/2

∫
dky

(2π)1/2

∞∑
n=1

√
2

L

1√
2ω

sin

(
n
π

L
z

)(
ckx,ky ,ne−iωt+ikxx+iky y + c†

kx,ky ,n
eiωt−ikxx−iky y) (665)

The operators ckx,ky ,n and c†
kx,ky ,n

obey the usual commutation relations for bosons. It is interesting to check that the above

expansion is indeed consistent with the commutation relations between the field and its conjugate momentum. For this
purpose, let us compute the following quantity:

∫
dx

∫
dy

L∫
0

dzΦe−ipxx−ip y y sin

(
m
π

L
z

)

=
∫

dkx

(2π)1/2

∫
dky

(2π)1/2

∞∑
n=1

∫
dx

∫
dy

√
2

L

1√
2ω

(
ckx,ky ,ne−iωt+ikxx+iky y

+ c†
kx,ky ,n

eiωt−ikxx−iky y)e−ipxx−p y y

L∫
0

dz sin

(
m
π

L
z

)
sin

(
n
π

L
z

)
(666)

Using the fact that
∫ L

0 dz sin(nπ z/L) sin(mπ z/L)= (L/2)δmn (as can be checked directly) and
∫

dx ei(kx−px)x = (2π)δ(kx − px)

one arrives at

∫
dx

∫
dy

L∫
0

dzΦ(t, x)e−ipxx−ip y y sin

(
m
π

L
z

)
= 2π

2

√
L

ω

(
cpx,p y ,me−iωt + c†

−px,−p y ,meiωt) (667)

In the same manner, one can also evaluate the following integral involving the conjugate momentum Π(t, x) = Φ̇(t, x) (a
dot means a derivative with respect to time):

∫
dx

∫
dy

L∫
0

dzΠ(t, x)e−ipxx−ip y y sin

(
m
π

L
z

)
= 2π

2
iω

√
L

ω

(−cpx,p y ,me−iωt + c†
−px,−p y ,meiωt) (668)

From the two above expression, one can deduce a formula expressing the creation and the annihilation operators in terms
of the field operator and its conjugate momentum. One obtains

cpx,p y ,m =
√
ω

L

eiωt

2π

[∫
dx dy

L∫
0

dzΦ e−ipxx−ip y y sin

(
m
π

L
z

)
+ i

ω

∫
dx dy

L∫
0

dzΠ e−ipxx−ip y y sin

(
m
π

L
z

)]

c†
px,p y ,m =

√
ω

L

e−iωt

2π

[∫
dx dy

L∫
0

dzΦ eipxx+ip y y sin

(
m
π

L
z

)
− i

ω

∫
dx dy

L∫
0

dzΠ eipxx+ip y y sin

(
m
π

L
z

)]

We are now in a position where we can compute the commutator of a creation and an annihilation operators. It can be
written as

[
cpx,p y ,n, c†

qx,qy ,m
]= ei(ωp−ωq)t

(2π)2

√
ωpωq

L

∫
dx dy

L∫
0

dz

∫
dx dy

L∫
0

dz̄

[
Φ(t, x)e−ipxx−ip y y sin

(
n
π

L
z

)

+ i

ω
Π(t, x)e−ipxx−ip y y sin

(
n
π

L
z

)
,Φ(t, x)eiqxx+iqy y sin

(
m
π

L
z

)

p
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− i

ωq
Π(t, x)eiqxx+iqy y sin

(
m
π

L
z

)]
(669)

Then, we make use of the canonical relation [Φ(t, x),Π(t, y)] = iδ3(x − y) in the previous formula. This leads to the
following complicated expression:

[
cpx,p y ,n, c†

qx,qy ,m
]= ei(ωp−ωq)t

(2π)2

√
ωpωq

L

∫
dx dy

L∫
0

dz

∫
dx dy

L∫
0

dz

{
− i

ωq
e−ipxx−ip y y+iqxx+iqy y sin

(
n
π

L
z

)

× sin

(
m
π

L
z

)[
Φ(t, x),Π(t, x̄)

]
+ i

ωp
e−ipxx−ip y y+iqxx+iqy y sin

(
n
π

L
z

)
sin

(
m
π

L
z

)[
Π(t, x),Φ(t, x)

]}
(670)

= ei(ωp−ωq)t

(2π)2

√
ωpωq

L

(
1

ωq
+ 1

ωp

)∫
dx dy

L∫
0

dz e−i(px−qx)x−i(p y−qy)y sin

(
n
π

L
z

)
sin

(
m
π

L
z

)

= ω

L

2

ω
δ(px − qx)δ(p y − qy)

L

2
δmn = δ(px − qx)δ(p y − qy)δmn (671)

We have thus reached our goal, namely we have shown that the canonical commutation relation between the field and its
conjugate momentum implies the usual commutation relation between the creation and the annihilation operator.

We are now in a position where we can evaluate the energy density of the field in the Casimir cavity. It is of course
given by the same expression as in the free case, see Eq. (66). This means that one should first calculate the three terms
that participate in the expression of T00, see Eqs. (63), (64) and (65). Let us start with 〈0|Φ̇2|0〉. Using the Fourier expansion
of the field and the commutation relations established above, one obtains

〈0|Φ̇2|0〉 =
∫

dkx

2π

∫
dky

2π

∞∑
n=1

2

L

ω2

2ω
sin2
(

n
π

L
z

)
(672)

and, if we integrate over the cavity volume∫
Cavity

dx 〈0|Φ̇2|0〉 = D2

2

∫
dkx

2π

∫
dky

2π

∞∑
n=1

ω (673)

where D2 is the area of the plates (of course, the two parallel plates have the same surface). In the same manner, one finds∫
Cavity

dx〈0|δi j∂iΦ∂ jΦ|0〉 = D2

2

∫
dkx

2π

∫
dky

2π

∞∑
n=1

1

2ω

(
k2

x + k2
y + n2π

2

L2

)
(674)

Finally, the last relevant term reads∫
Cavity

dx 〈0|Φ2|0〉 = D2

2

∫
dkx

2π

∫
dky

2π

∞∑
n=1

1

2ω
(675)

Putting everything together and using the definition (66), the expression of the energy of the field within the empty cavity
takes the form∫

Cavity

dx 〈0|T00|0〉 (676)

=
(

D

2π

)2 ∫
dkx

∫
dky

∞∑
n=1

ω

2
(677)

=
(

D

2π

)2 ∫
dkx

∫
dky

∞∑
n=1

1

2

√
k2

x + k2
y + n2π

2

L2
+ m2 (678)

Of course, this expression has exactly the expected form. Roughly speaking it can be written as “
∑ 1

2ω”, see Eq. (664), the
only difference being that, along the z-axis, the sum takes into account the fact that the momentum is discrete. Another
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common point with our previous considerations is that the above number is actually divergent and must be regularized. In
the following, we assume m = 0 for simplicity and use dimensional regularization. Therefore, the expression of the energy
can now be written as

E =
(

D

2π

)d ∫
ddk⊥

∞∑
n=1

1

2

√
k2⊥ + n2π

2

L2
(679)

=
(

D

2π

)d ∫
dk⊥ kd−1

⊥ dd−1Ω

∞∑
n=1

1

2

√
k2⊥ + n2π

2

L2
=
(

D

2π

)d 2πd/2

Γ (d/2)

∫
dk⊥ kd−1

⊥
∞∑

n=1

1

2

√
k2⊥ + n2π

2

L2
(680)

where d is the “dimension” of the plates (i.e. d = 2 in the real world) and k⊥ denotes the wave-vector living in the sub-
manifold defined by the plates. Then using the change of variables y = Lk⊥/(nπ) and the following definition [48,49] of the
Euler’s integral of first kind:

B(x, y)= 2

∞∫
0

t2x−1

(1 + t2)x+y
dt = Γ (x)Γ (y)

Γ (x + y)
(681)

the energy can be re-expressed as

E =
(

D

2π

)d
πd/2

2

(
π

L

)d+1
Γ (−d/2 − 1/2)

Γ (−1/2)

∞∑
n=1

nd+1 (682)

The above formula can be expressed in term of the Riemann zeta function defined by the following expression:

ζ(s)≡
∞∑

n=1

n−s (683)

Moreover, upon using the two following equations:

ζ(−1 − d)= 2−1−dπ−2−d sin

[
π

2
(−1 − d)

]
Γ (2 + d)ζ(2 + d) (684)

Γ

(
−d

2
− 1

2

)
sin

[
π

2
(−1 − d)

]
= π

Γ (d/2 + 3/2)
(685)

one can re-write the energy as

E

Dd
= − 1

Ld+1

Γ (1 + d/2)

2d+2πd/2+1
ζ(2 + d) (686)

The Casimir force arises because of a shift in the vacuum energy when the plates are present compared to the situation
where they are absent. So the relevant quantity is in fact �E/Dd ≡ (E − E0)/Dd where E0/Dd is the above quantity in the
limit L → +∞. As a consequence, for d = 2, one arrives at

�E

D2
= − π2

1440L3
(687)

where we have used ζ(4)= π4/90. Therefore, the corresponding force is given by [113–116]

F = − ∂

∂L

(
�E

D2

)
= − π2

480L4
(688)

which is one half the result obtained in the case of the electromagnetic field since we have only one state of polarization
instead of two. We notice that the force is attractive (this could change in the case of more complicated geometries).

It is also interesting to check that the final result is independent from the regularization scheme used to obtain it. In
order to test this idea in the simplest situation (i.e. where the calculations are easy), let us consider again the energy of a
Casimir cavity but, this time, with d = 0. In this case, our zeta-function regularized result reads

E

D0
= −1

L

Γ (1)ζ(2)

4π
= − π

24L
(689)

since Γ (1)= 1 and ζ(2)= π2/6. One the other hand, we can return to the expression of E in Eq. (682). In the case d = 0,
the energy density ρ(L)= E/L reads
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ρ(L)= π

2L2

∞∑
n=1

n (690)

In order to regularize this divergent quantity, we now proceed differently and introduce an exponential cut-off such that
(previously, we argued that introducing a cut-off was not a good method because this breaks Lorentz invariance. Here, of
course, this objection is no longer valid as the presence of the two plates along the z-axis obviously breaks translation
invariance; as a consequence working with a cut-off seems legitimate in the present context)

ρ(L,α)= π

2L2

∞∑
n=1

ne−nα/L (691)

The sum is easy to perform and one obtains

ρ(L,α)= π

8L2
sinh−2

(
α

2L

)
(692)

	 π

2α2
− π

24L2
+ · · · (693)

Now, the regularized Casimir energy is the shift energy in the vacuum after having sent the cut-off to zero; in other words

E = L lim
α→0

[
ρ(L,α)− lim

L→∞ρ(L,α)
]

(694)

= − π

24L
(695)

that is to say exactly the same expression obtained with another regularization scheme. It is reassuring to notice that the
final result is independent of the regularization method used.

12.2.2. The Casimir stress–energy tensor
In this section, we aim at calculating the stress–energy tensor of a scalar field in a Casimir cavity [113–116,119]. Our

goal is of course to compare this tensor with the vacuum stress–energy tensor Tμν = −ρvac gμν . Here, we use a method
based on the calculations of the Green function. This is yet another method of calculation of the Casimir effect, different
from the two ones exposed before and, therefore, it will be interesting to compare this approach with the treatments used
previously.

Let us start with the calculation of the Green function. It obeys the following equation

−ημν∂μ∂νG(x, x)= δ(4)
(
xμ − xμ

)
(696)

It is interesting to compare the above formula with Eq. (474). It is clear that this is the same equation but with gμν = ημν
(flat space–time) and m = 0 (mass-less field). In order to solve this equation, it is convenient to Fourier transform G(x, x) in
frequency and transverse momentum. Explicitly, one writes

G(x, x)=
∫

dω

2π

dk⊥
(2π)2

e−iω(t−t)+ikx(x−x)+iky(y−y)

× g(z, z;ω,kx,ky) (697)

Inserting this expression into the Green equation (696), one obtains

−
(

d2

dz2
+ λ2
)

g(z, z)= δ(z − z) (698)

where we have defined

λ2 ≡ω2 − k2⊥ =ω2 − k2
x − k2

y (699)

Our goal is now to determine explicitly the Green function. Let us start with the solution within the plates, i.e. 0 < z, z < L.
When z �= z, the solution can be written

g(z, z)= A(z) cos(λz)+ B(z) sin(λz) (700)

where A(z) and B(z) are two unknown function of z. We must now take into account the boundary conditions. If z < z,
the condition g(z = 0, z) = 0 implies that A = 0 and therefore g = B sin(λz) (for z < z). On the other hand, if z > z, the
condition g(z = L, z)= 0 means that

g = A cos(λz)− A
cos(λL)

sin(λz), z > z (701)

sin(λL)
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We have two unknown quantities and, therefore, we need two equations. One is provided by writing the continuity of the
Green function when z = z. The other is obtained by integrating Eq. (698) from z − ε to z + ε . This gives

−
z+ε∫

z−ε

d2 g

dz2
dz − λ2

z+ε∫
z−ε

g dz =
z+ε∫

z−ε
δ(z − z)dz (702)

which leads to

−
[

dg

dz
(z + ε)− dg

dz
(z − ε)

]
= 1 (703)

Therefore, taking the limit ε → 0, the solutions of these two equations (i.e. the one expressing the continuity of the Green
function and the one we have just derived) read

A(z)= 1

λ
sin(λz) (704)

B(z)= 1

λ
cos(λz)− cos(λL)

sin(λL)
A(z) (705)

As a consequence, the Green function between the plates can be expressed as [116]

g(z, z)=

⎧⎪⎪⎨
⎪⎪⎩

sin(λz) sin(λL − λz)

λ sin(λL)
, z < z

sin(λz) sin(λL − λz)

λ sin(λL)
, z > z

(706)

The same method can be used to determine the Green function outside the cavity. Let us apply it for z and z larger than L,
i.e. on the right-hand side of the cavity. In this case, it is more convenient to re-write the general solution (700) as

g(z, z)= C(z)eiλz + D(z)e−iλz (707)

When z > z, we require only one branch to be present which amounts to take D = 0. For z < z, the boundary condition is
still g(L, z)= 0. Then, straightforward manipulations lead to [116]

g(z, z)=
{

1
λ

eiλ(z−L) sin(λz − λL), z < z
1
λ

eiλ(z−L) sin(λz − λL), z > z
(708)

which completes our determination of the Green function. The calculation of the Green function outside the cavity, but on
the left-hand side, proceeds exactly in the same way. The corresponding expression is obtained from the one above with
L = 0, reflecting the fact that the boundary condition is now g(0, z)= 0.

Endowed with the Green function of the problem, one can now turn to our main goal, namely the calculation of the
stress–energy tensor. We have already seen that, see also Eq. (100),

G(r, r)= i〈0|T [Φ(r)Φ(r)]|0〉 (709)

But we know that the T00 component of the stress–energy tensor can be expressed as, see Eq. (7),

T00 = 1

2

[
(∂0Φ)

2 + (∂xΦ)
2 + (∂yΦ)

2 + (∂zΦ)
2] (710)

Therefore, if we apply the following operator to the Green function in Eq. (709)

1

2
[∂0∂0 + ∂x∂x + ∂y∂y + ∂z∂z] (711)

where ∂μ means a derivative with respect to xμ , to G(r, r) and, then, take the space–time points to be the same r = r, one
should obtain an expression for 〈T00〉. Using Eqs. (697) and (699), the result reads

〈T00〉 = 1

2i

∫
dω

2π

dkx dky

(2π)2

(
ω2 + k2

x + k2
y + ∂z∂z

)
g(z, z)

∣∣∣∣
z=z

(712)

Then, we use the expression of the Green function inside the plates (706) and one arrives at

〈T00〉 = 1

2i

∫
dω

2π

dkx dky

(2π)2

1

λ sin(λL)

[(
ω2 + k2

x + k2
y

)
sin(λz) sin(λL − λL)− λ2 cos(λz) cos(λL − λz)

]
(713)

= − 1
∫

dω dkx dky
2

1 [
ω2 cos(λL)− k2 cos(2λz − λL)

]
(714)
2i 2π (2π) λ sin(λL)
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In order to evaluate this integral, we perform the two Wick rotations ω→ iζ and λ→ iκ . This leads to

〈T00〉 = −1

2

∞∫
0

dζ

2π

∫
dkx dky

(2π)2

1

κ sinh(κ L)

[
ζ 2 cosh(κ L)+ k2 cosh(2κz − κ L)

]
(715)

Then, we introduce polar coordinates in the plane (ζ,k), i.e. ζ = κ cos θ and k = κ sin θ . This gives

〈T00〉 = − 1

4π2

∞∫
0

dκκ

π/2∫
0

dθκ2 sin θ

sinh(κ L)

[
cos2 θ cosh(κ L)+ sin2 θ cosh(2κz − κ L)

]
(716)

= − 1

12π2

∞∫
0

dκκ3
[

cosh(κ L)

sinh(κ L)
+ 2

cosh(2κz − κ L)

sinh(κ L)

]
(717)

Finally, writing that

cosh(κ L)

sinh(κ L)
= 1 + 2

e2κ L − 1
(718)

the expression of 〈T00〉 can be re-expressed as

〈T00〉 = − 1

6π2

∞∫
0

dκκ3
[

1

e2κ L − 1
+ 1

2
+ e2κz + e2κ(L−z)

e2κ L − 1

]
(719)

The last step of the calculation consists in evaluating the last term [we call it g(z) in what follows; not to be confused with
the Green function] of the above equation. One has

g(z)= − 1

6π2

1

16L4

∞∫
0

dy y3 ey/L + ey(1−z/L)

ey − 1
(720)

= − 1

6π2

1

16L4

∞∑
n=1

∞∫
0

dy y3[ey(z/L−n) + ey(1−n−z/L)] (721)

where we have expanded the denominator in a geometric series. The two above integrals can be expressed in terms of the
Hurwitz zeta function defined by [48,49]

ζ(s,a)≡
∞∑

m=0

1

(m + a)s
(722)

and this leads to

g(z)= − 1

16π2L4

[
ζ

(
4,

z

L

)
+ ζ

(
4,1 − z

L

)]
(723)

If we use the fact that
∫ +∞

0 κ3/(e2κ L −1)dκ = π4/(240L4), one arrives at our final expression for the time–time component
of the stress–energy tensor, namely

〈T00〉 = − π2

1440L4
− 1

6π2

∞∫
0

dκ
κ3

2
+ g(z) (724)

Of course we notice that the first term in the above equation is similar to Eq. (687).
Let us now evaluate 〈T00〉 outside the cavity. The calculation proceeds along the same lines but we now need to use the

Green function given by Eq. (708). Straightforward manipulations lead to

〈T00〉 = − 1

6π2

∞∫
0

dκ
κ3

2
− 1

16π2

1

(z − L)4
(725)

We obtain the same structure as inside the cavity, namely a divergent term and a surface divergence term, i.e. a term
which is divergent only on the plate. As explained in Ref. [116], this type of terms can be removed by restoring conformal
invariance.
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Let us now calculate the quantity 〈T zz〉 inside the cavity. Clearly, following the previous considerations, it can be written
as

〈T zz〉 = 1

2i

∫
dω

2π

dkx dky

(2π)2
(∂t∂t − ∂x∂x − ∂y∂y + ∂z∂z)g(z, z)

∣∣∣∣
z=z

. (726)

Following exactly the same procedure as before, we arrive at

〈T zz〉 = −3
π2

1440L4
− 3

6π2

∞∫
0

dκ
κ3

2
(727)

Let us now calculate 〈T zz〉 outside the plates. As we did for the time component, we must now use the Green function (708).
This gives

〈T zz〉 = 1

2i

∫
dω

2π

kx dky

(2π)2

eiλ(z−L)

λ
λ2[sin(λz − λL)+ i cos(λz − λL)

]
(728)

= − 3

6π2

∞∫
0

κ3

2
dκ (729)

Of course, this quantity is divergent.
Finally, in order to complete the determination of the stress–energy tensor, one must calculate 〈Txx〉 = 〈T yy〉. It can be

expressed as

〈Txx〉 = 1

2i

∫
dω

2π

dkx dky

(2π)2
(∂t∂t + ∂x∂x − ∂y∂y − ∂z∂z)g(z, z)

∣∣∣∣
z=z

(730)

= 1

2i

∫
dω

2π

dkx dky

(2π)2

1

λ sin(λL)

[(
ω2 + k2

x − k2
y

)
sin(λz) sin(λL − λz)+ λ2 cos(λz) cos(λL − λz)

]
(731)

A first step consists in dealing with the terms proportional to k2
x − k2

y . In fact these terms are of the form
∫

dk⊥(k2
x −

k2
y)F(k⊥), where F(k⊥) represents the other terms in the integral which are function of k2

x + k2
y only. Therefore,

one can evaluate them by going to polar coordinates in the plane (kx,ky). This leads to an expression of the form∫
dk⊥dψk2⊥(cos2 ψ − sin2 ψ)F(k⊥) = 0, which shows that the corresponding contribution vanishes. Then, following the

same steps as before, one reduces the above expression to

〈Txx〉 = 1

12π2

∞∫
0

dκ
κ3

sinh(κ L)

[
cosh(2κz − κ L)+ 2 cosh(κz) cosh(κ L − κz)

]= −〈T00〉 (732)

where we have used that 2 cosh(κz) cosh(κ L − κz)= cosh(κ L)+ cosh(2κz − κ L). Of course, as already mentioned, this also
shows that 〈T yy〉 = −〈T00〉. All the other components being zero, this completes our calculation of the stress–energy in
the cavity. Only the calculations of 〈Txx〉 = 〈T yy〉 outside the plates remains to be done and we now turn to this question.
Considering again Eq. (730), we have

〈Txx〉 = 1

2i

∫
dω

2π

dkx dky

(2π)2

eiλ(z−L)

λ

[
ω2 sin(λz − λL)− iλ2 cos(λz − λL)

]= −〈T00〉 (733)

We are now in a position where we can write the full stress–energy tensor. Inside the cavity, it takes the form

〈Tμν〉inside = (ρvac + ρCasimir)

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 3

⎞
⎟⎠+ g(z)

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎠ (734)

where we have defined the two quantities ρvac and ρCasimir by

ρvac = − 1

6π2

∞∫
0

dκ
κ3

2
, ρCasimir = − π2

1440L4
. (735)

Outside the cavity (more precisely on the right-hand side), the results derived above imply that
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〈Tμν〉outside = ρvac

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 3

⎞
⎟⎠− 1

16π2(z − L)4

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎠ (736)

As discussed in Ref. [116], the terms proportional to g(z) and (z − L)−4 are surface divergent terms. They can be removed
in the case where conformal invariance is re-established and, for that reason, are not present in electromagnetism, i.e. when
one considers an electric field inside the cavity rather than a scalar field. In this case, we see that the difference between
the stress–energy tensors inside and outside the cavity reads

�〈Tμν〉 = ρCasimir

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 3

⎞
⎟⎠ (737)

which is a finite result. The infinite part has been removed by subtraction. Finally, the stress–energy tensor can be written
in a covariant form, namely [119]

�〈Tμν〉 = ρCasimir
(
4ẑμ ẑν − gμν

)
(738)

where ẑμ in the unit vector in the z direction.
At this point, several comments are in order. Firstly, we notice in Eqs. (737) and (738) that the energy density (i.e. the

time–time component) is similar to the expressions already derived in Section 12.2.1 by other methods. This confirms that
this calculation is independent of the regularization scheme used to obtain the result. Secondly, it is clear that the stress–
energy tensor (738) is not similar to the cosmological constant stress–energy tensor Tμν = −ρvac gμν . This illustrates the
difference between the Casimir case and the cosmological constant case. In the latter case, one measures the absolute value
of the vacuum energy while, in the former case, one is only sensitive to the difference of vacuum energy from one side of
the plates to the other.

Thirdly, the Casimir Force has been observed in the laboratory and this is usually taken as another evidence in favor of
the existence of the zero-point fluctuations. After all, since we observe the Casimir force and since this force is due to a
change in the structure of the vacuum that is perturbed by the presence of the plates, the fact is that the vacuum must
exist as a real physical phenomenon and is not an artifact of the quantum field theory formalism. In addition, this also
validates the methods of regularization used to calculate ρvac. In the context of the Casimir effect, these methods seem to
work very well and to lead to predictions that are in agreement with the experiments. Therefore, why would the very same
techniques, used in a similar context, fail to regularize the cosmological constant?

Fourthly, the claim that the calculation and the observation of the Casimir force are evidences in favor of the reality of
vacuum fluctuations has been challenged in Refs. [120,121]. It is indeed possible to derive the expression of the Casimir
force without referring at all to zero point fluctuations, by means of the “source theory” approach to quantum field theory.
However, to our knowledge, there is no attempt to do the same for the Lamb shift (but this would certainly be an interesting
exercise). Therefore, it seems that zero-points fluctuations are nevertheless necessary to quantum field theory even if the
above remark should lead us to tone down the claim that they have been seen in the laboratory. Let us also notice that, very
recently, another situation where the vacuum fluctuations can lead to an observable effect has been studied in Ref. [122].
This article investigates whether the quantum zero point fluctuations could cause the rotation of a small nano device. This
“rotational vacuum effect” has in fact a similar origin than the Casimir effect.

Finally, it should be clear that, if the Lamb shift and the Casimir effect seem to indicate that the vacuum fluctuations
are real, they do not say anything with regards to their gravitational properties. In other words, they do not say how the
vacuum fluctuations weigh (it is worth noticing here that the gravitational properties of a Casimir cavity have been studied
in Refs. [123–129]). It is clear that there exists the possibility that the zero-point fluctuations do exist but have non-standard
gravitational properties, i.e. that they abnormally weigh. It is therefore interesting to investigate if there is an experiment
which measures whether this is true or not. In the next section, we turn to this question.

13. Do the quantum fluctuations gravitate?

In this section, we study the gravitational property of the Lamb shift [12,130]. We will follow the treatment of Ref. [130].
In Section 12.1, we showed that the interaction of the electron with the “vacuum electric field” inside the atom leads to a
shift of the atomic levels. In some sense, this means that the zero-point fluctuations affect the mass (energy) of the atom.
Therefore, by studying how the atom falls down, one can put constraints on the gravitational properties of the vacuum
fluctuations. This is the idea that we pursue in this section. However, since the corresponding effect is small for an atom
and is larger for a nucleus (of course, the Lamb shift also exists in this case), it is better to study the latter case. For this
reason, we start with recalling some basics facts about nuclear models.

The main idea is that the interaction between a given nucleon and the other A − 1 nucleons can be mimicked by a
Woods–Saxon potential given by
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V WS(r)= −V 0

[
1 − exp

(
r − R

a

)]
(739)

where a describes how abrupt the potential is while R is the radius of the nucleus. As is well known one can take R =
r0 A1/3 where r0 	 1.3 × 10−15 m = 1.3 fm. The quantity V 0 represents the depth of the potential and can be taken to
be V 0 	 45 MeV. In fact, in order to have a reasonable model, one must add to the Woods–Saxon potential a spin orbit
interaction term which can be expressed as

V L,s = − f (r)L · s (740)

where L is the angular momentum of the nucleon and s its spin. With a good approximation, one can write f (r) 	
24A−2/3 MeV. Then, the Hamiltonian of the nucleus can be written as

H =
A∑

j=1

[ p2
j

2m j
+ V WS(r j)− f (r j)L j · s j

]
(741)

The total wave-function can be taken as the product of the individual wave functions (in fact, more precisely, one should
consider a Slater determinant in order to take into account the fact that the total wave function must be anti-symmetrized),
that is to say

Ψ (r1, . . . , r A)=
A∏

j=1

Ψ j(r j) (742)

Each individual wave-function can be obtained from a Schrödinger equation given by (for the moment, one ignores the spin
orbit term since it can be treated as a perturbation)[

− h̄2

2μ
∇2 + V WS(r j)

]
Ψ j(r j)= E jΨ j(r j) (743)

where μ is the reduced mass,

1

μ
≡ 1

mp
+ 1

(A − 1)mp
(744)

or μ	 mp(A − 1)/A 	 mp 	 1.6 × 10−27 kg, mp being the proton mass. Unfortunately, the Schrödinger equation cannot be
solved analytically for the Woods–Saxon potential and, therefore, we are forced to make approximations. The simplest one
is just to describe the Woods–Saxon potential with a parabola, i.e.

V WS(r)	 −V 0

(
1 − r2

R2

)
= −V 0 + 1

2
μω2

0r2 (745)

with ω0 ≡√2V 0/(μR2). In this case, the question becomes solvable. We can use the spherical symmetry of the problem
and write the wave function as

Ψ j(r j)= un,�(r j)

r j
Y�m(θ j,ϕ j) (746)

where Y�m is a spherical harmonics [48,49]. The radial function un� is controlled by the equation[
− h̄2

2μ

d2

dr2
j

+ �(�+ 1)

2μr2
j

+ 1

2
μω2

0r2
]

un,� = (E j + V 0)un,� (747)

which can be solved in terms of Laguerre polynomials Lαn [48,49]. Explicitly, one has

Ψ (r j)= Cr�j e
−μω0r2

j /(2h̄)L�+1/2
n−1

(
μω0

h̄
r2
)

Y�m(θ j,ϕ j) (748)

where C is a normalization constant to be determined. In the above expression, one has n � 1 and �� 0. The energy levels
are given by the expression

E(n, �)= −V 0 + h̄ω0

[
2(n − 1)+ �+ 3

2

]
(749)

The factor 3/2 = 3 × 1/2 originates from the fact that we have a three-dimensional harmonic oscillator. The quantum
numbers have been chosen so that the ground state is n = 1, �= 0 which allows the spectroscopic notation “1s”, see Fig. 9.
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Fig. 9. Energy levels of the nucleus. On the left-hand side are represented the levels in the approximation where the Woods–Saxon potential is approximated
by a parabola. In this case, each level (which includes a series of sub-levels) is separated by the energy h̄ω. On the right-hand side are represented the
levels where the spin orbit interaction (740) is taken into account. This breaks the degeneracy of the sub-levels and reproduces the magic numbers.

The only thing which remains to be done is to determine the constant C . Obviously, this is done by normalizing the
wave-function, i.e.

|C |2
∞∫

0

dr j r2
j
|un,�|2

r2
j

∫
dΩ j Y�m = 1 (750)

Using the solution obtained above and performing the change of variable ρ = (μω0/h̄)r2, the previous condition reduces to

|C |2
2

(
μω0

h̄

)−�−3/2 ∞∫
0

ρ�+1/2e−ρ L�+1/2
n−1 (ρ)L�+1/2

n−1 (ρ)= 1 (751)

Then, using Eq. (7.414.3) of Ref. [49], one obtains

|C |2 = 2(n − 1)!
(
μω0

h̄

)�+3/2

Γ −1
(

n + �+ 1

2

)
(752)

We are now in a position where we can compute the value of the wave-function at r j = 0 for �= 0. This gives

∣∣Ψ (0)∣∣2 = |C |2[L1/2
n−1(0)

]2 1

4π
(753)

Using the fact that L1/2
n−1(0)=

(
n−1/2

n−1

)
= Γ (n + 1/2)/[√π(n − 1)!/2], one obtains

∣∣Ψn,�=0(0)
∣∣2 = 2

π2

Γ (n + 1/2)

(n − 1)!
(
μω0

h̄

)3/2

(754)

This completes the first part of the calculation.
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We have established on very general grounds that the shift in energy due to the interaction of a charged particle (in
Section 12.1, the electron in the atom, here the proton in the nucleus) is given by Eq. (642). The means value of the square
of the displacement has been calculated in Eq. (650). Applying these formulas to the case of the protons in the nucleus, one
obtains [130]

�E(n,0)	 4α2

3m2
p

∑
i

Z (i)
∣∣Ψ (i)

n,�=0(0)
∣∣2 ∞∫

0

dω

ω
(755)

As usual, this infinite integral must be regularized and usually leads to logarithmic corrections, see for instance Eq. (652).
We will ignore this factor in what follows since this does not affect too much the final result. As explained in Ref. [130],
the sum over “(i)” runs only over s-wave since this is the only way to get Ψn,�(0) �= 0. Moreover, still following Ref. [130],
it is reasonable to approximate the field experienced by a proton by a field produced by the other protons in inner shells.
This is why Z (i) represents the total number of protons present in shells inner than the proton “(i)” under consideration.

Our goal is now to test how the vacuum fluctuations weigh. For this purpose, we write the gravitational mass of a given
nucleus as [130]

mg = mi − η�E (756)

where mi is the inertial mass. The parameter η is a priori a free parameter which controls to which extent the weak
equivalence principle would be violated. If η= 0, there is no violation of the universality of free fall. A convenient measure
of potential violations of the weak equivalence principle is given by the Eötvös ratio

η(1,2)≡ mg(1)

mi(1)
− mg(2)

mi(2)
(757)

for two bodies 1 and 2. Using the previous calculations, this ratio can be expressed as

η(1,2)= η
4α2

3m3
p

[
1

A1

∑
i

Z (i)1

∣∣Ψ (1,i)
n,�=0(0)

∣∣2 − 1

A2

∑
i

Z (i)2

∣∣Ψ (2,i)
n,�=0(0)

∣∣2], (758)

where we have used mi ∼ Amp, a relation valid since we work at first order in the parameter η. Then, we use the fact that

(μω0)
3/2 =

(
2mp V 0

r2
0

)3/4 1

A1/2
(759)

to express the Eötvös ratio as [130]

η(1,2)= η
4α2

3

(
2V 0

m3
pr2

0

)3/4 2

π2

[
1

A3/2
1

∑
i

Z (i)1
Γ (n + 1/2)

(n − 1)! − 1

A3/2
2

∑
i

Z (i)2
Γ (n + 1/2)

(n − 1)!
]

(760)

Let us evaluate this number for aluminum (Z = 13, A = 27) and platinum (Z = 78, A = 195). In the case of aluminum,
since we only have 13 protons, the only s-shell protons are on the 1s1/2 level (in fact, we have two protons in 1s1/2, four
protons in 1p3/2, two protons in 1p1/2 and five protons in 1 d5/2, see Fig. 9). As a consequence, there is no inner protons
for those protons (since, obviously, there is no inner level than the ground state 1s1/2) and the corresponding contribution
in the Eötvös ratio vanishes. In the case of platinum, all the levels are filled up until the level 1h11/2 which contains height
protons, see Fig. 9. Therefore, we have two protons on 1s1/2, two protons on 2s1/2 and two on 3s1/2, see again Fig. 9. This
means that the 3s1/2 protons see four inner protons and the 2s1/2 protons see two inner protons. As a consequence, one
can write

η(Al,Pt)	 −η4α2

3

(
2V 0

m3
pr2

0

)3/4 2

π2

1

A3/2
Pt

[
2

(2 − 1)!Γ
(

2 + 1

2

)
+ 4

(3 − 1)!Γ
(

3 + 1

2

)]
(761)

Using the values of V 0 and r0 chosen previously this leads to

η(Al,Pt)	 −5.6 × 10−10 η (762)

Given the fact that |η(Al,Pt)| � 10−12 [131,132], we reach the conclusion that

η� 1.7 × 10−3 (763)

Therefore, the vacuum fluctuations seem to have standard gravitational properties to a very good accuracy.
The conclusion of this section is that it seems difficult to argue that the zero-point fluctuations do not gravitate. Clearly,

this makes the cosmological constant problem more acute. However, the results obtained here are by no means a final
proof. For instance, it seems reasonable to assume that the stress–energy tensor of the Lamb shift is not of the cosmological
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Fig. 10. Representation of the Colella, Overhauser and Werner (COW) interferometer. The interferometer is placed in a vertical gravitational field (represented
by the green arrow) and is rotated around the axis AB .

constant type. Therefore, the fact that a nucleus falls down normally does not necessarily imply that the cosmological
constant weighs according to the Einstein equations. Nevertheless, no sign of inconsistency appears in the above situation
and one is obviously tempted to assume that zero-point fluctuations couple to gravity as any other type of matter. Again,
this makes the cosmological constant problem more mysterious.

14. The weak equivalence principle in quantum mechanics

In the previous sections, we have argued that the zero-point fluctuations seem to be real and seem to gravitate normally.
Therefore, these two reasons cannot be invoked to avoid the cosmological constant problem. However, there is another
(but related) issue that it is interesting to investigate. When we consider the vacuum stress–energy tensor in the Einstein
equations, we implicitly assume that the zero-point fluctuations obey the weak equivalence principle, i.e. that they “fall”
in a gravitational field as any other type of matter. Clearly the zero point fluctuations are of quantum-mechanical origin.
The weak equivalence principle is well established (and tested) in classical physics and general relativity is based on this
principle. But what is the status of this principle in quantum mechanics? If it is not valid in quantum mechanics, maybe we
do not have the right to couple the quantum zero point fluctuations in the standard way in the Einstein equations? Could it
be a way to avoid the problem? In order to discuss this issue, we will consider two situations, the Colella, Overhauser and
Werner experiment (COW) and the quantum Galileo experiment.

14.1. The Colella, Overhauser and Werner (COW) experiment

The COW experiment [133–135] consists in sending neutrons in an interferometer placed in a weak gravitational field,
see Fig. 10. The presence of the gravitational field affects the wave-function of the neutrons and changes the relative phases
between the two beams. When the interferometer is rotated, the gravitational phase shift is modified because the height
difference between the two arms is changed. This effect can then be detected (and was detected) in the interference pattern.
The COW experiment is conceptually very important. This was the first experiment to measure the effect of the gravitational
field on the wave-function. In fact, it shows that the gravitation is just an ordinary force as far as the Schrödinger equation
is concerned.

Let us now describe the experiment in more detail. The neutron interferometer is represented in Fig. 10. Let us assume
that, along one of the two paths, a phase shift �ϕ is introduced. Our first goal is to evaluate the intensity seen by the
detectors O 2 and O 3. After diffraction, the wave function of the neutron takes the form

Ψ (r)=ΦT (θ)eik0·r +ΦD(θ)e−ikG·r (764)

where k0 is the incident wave-number and kG the wave number after Bragg diffraction (which, therefore, must satisfy the
Bragg condition). The quantity Φ is the amplitude of the incident wave and T = T (θ) (for “transmitted”) and D = D(θ) (for
“diffracted”) are two coefficients describing the amplitude of the two branches of the wave-function after the neutron has
emerged from the crystal. Let us now consider the path AB D O 3. At point B , the wave function is given by (the origin of
the coordinates is chosen to be at point A)
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Ψ (AB)=ΦT (θ)eik0·rB (765)

since the wave was just transmitted. Then, at point B , we have a diffraction and, therefore, the wave-function at point D
reads

Ψ (AB D)=ΦT (θ)eik0·rB D(θ)eikG·(rD−rB) (766)

Finally, at point D , we have another diffraction but this time with opposite angle. The leads to

Ψ (AB D O 3)=ΦT (θ)eik0·rB D(θ)eik0·(rD−rB)D(−θ)eikG·(r−rD) (767)

We also assume that, along that path, there is a phase shift �ϕ that we do not specify for the moment. As a consequence,
the total wave function can be written as

Ψ (AB D O 3)=ΦT (θ)eik0·rB D(θ)eik0·(rD−rB)D(−θ)ei�ϕeik0·(r−rD) (768)

where we have introduced the factor ei�ϕ .
It is straightforward to follow the same procedure and to establish the expression for Ψ (AC D O 3). This gives the expres-

sion of the wave function at detector O 3, namely Ψ (O 3)= Ψ (AB D O 3)+Ψ (AC D O 3),

Ψ (O 3)=Φ
[
T (θ)eik0·rB D(θ)eik0·(rD−rB)D(−θ)ei�ϕ + D(θ)eik0·rC D(−θ)eik0·(rD−rC)T (θ)

]
eik0·(r−rD) (769)

Using this expression, one can calculate the expected intensity. Straightforward manipulations leads to the following expres-
sion

I(O 3)= ∣∣Ψ (O 3)
∣∣2 = α(1 + cos�ϕ) (770)

where α is a constant that can be determined from the above expression and which depends on the incident flux and the
crystal structure. Then, one can repeat the same analysis and determine the wave function at detector O 2. It reads

Ψ (O 2)=Φ
[
T (θ)eik0·rB D(θ)eikG·(rD−rB)T (−θ)ei�ϕ + D(θ)eikG·rC D(−θ)eik0·(rD−rC)D(θ)

]
eikG·(r−rD) (771)

The intensity at detector O 2 can be computed along the same lines and one is led to

I(O 2)= β − α cos�ϕ (772)

where α and β are just constants that do not play an important role in what follows (of course, the constant α is the same
as in Eq. (770)).

Having estimated the form of the signal expected for any phase shift �ϕ , we now turn to its calculation in the case of
the COW experiment. For this purpose, we return to the Schrödinger equation which can be written as

∇2Ψ +ω2Ψ = 0 (773)

with

ω2 = 2m

h̄2
(E − V ) (774)

Now, let us assume that the potential is given by

V = V 0 +�V (r) (775)

where V 0 is a constant and �V a small space-dependent small perturbation, i.e. �V � V 0. If the perturbation does not
change abruptly, the Wentzel–Kramers–Brillouin (WKB) wave-function

Ψ ∝ exp

[
i

∫
ω(r)dr

]
(776)

is a very good approximation to the actual solution. Introducing the notation k0 = 2m(E − V 0)/h̄2 and using that p = mv =
h̄k0, an expansion of the phase in �V /V 0 leads to the following expression

Ψ ∝ exp

(
ik0 · r − 1

h̄

∫
P

�V dt

)
(777)

where the subscript “P” indicates that one integrates along the non-perturbed path. From the above equation, we conclude
that
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Fig. 11. Representation of the COW interferometer in the plane of the two beams.

�ϕ = −1

h̄

∫
P

�V dt (778)

The same result can also be expressed differently. Using energy conservation, on can write

p2

2m
+ V 0 +�V = E (779)

and, since p = p0 + δp, one obtains

p2
0

2m
+ p0

m
· δp + V 0 +�V = E (780)

or,

v0 · δp = −�V (781)

As a consequence, the phase shift can be re-written as the following expression

�ϕ = 1

h̄

∫
P

δp · dr (782)

where the integral should again be calculated along the path of the neutron.
Let us now determine the phase shift for the COW experiment. Let us consider two point P1 and P2 that correspond to

one beam transmitted and one beam diffracted in the interferometer, see Fig. 11. The potential difference between those
two points is given by

V (P2)− V (P1)= mgd sinψ (783)

where d can be expressed as d = A P1 cos(π/2 − 2θ). Given that the quantity x in Fig. 11 can be written as x = A P1 cos θ ,
one deduces that d = 2x sin θ . As a consequence,

V (P2)− V (P1)= 2mgrav gx sin θ sinψ (784)

where we have now carefully written that the mass which appeared in the above expression is the gravitational mass (since
this is the “coupling constant” to the gravitational field). This implies that the phase shift can be written as

�ϕ = −2

h̄

L∫
2mg g0x sin θ sinψ

dx

cos θ
(785)
0
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where we have taken into account the fact that the line P1 P2 is “moving” with a speed v cos θ . The factor two in front of
the whole expression comes from the fact that the phase shift accumulates and is, along the total path, twice its value in
the fist part of the interferometer. The integration over the variable x is easily done and we obtain

�ϕ = −2
mg g0

h̄v
L2 tan θ sinψ (786)

Finally, noticing that the total area of the interferometer is nothing but A ≡ 2L2 tan θ and that the de Broglie relation is
v = h/(minλ), where min is the inertial mass and λ the wavelength of the incident beam, we arrive at [133–135]

�ϕ = −2π

h2
mgravmin g0Aλ sinψ (787)

This expression is quite remarkable as it involves the gravitational and the inertial mass together with the Planck constant.
Moreover, we deal with an observable quantity which does not depend on the ratio of the gravitational mass to the inertial
mass, as is usually the case, but on the product of these quantities. We also see that the intensity of the signal at detectors
O 2 and/or O 3 depend on the orientation of the interferometer ψ .

However, in practice, one must deal with two other effects [133–135]. The first one is the Sagnac effect due to the
rotation of Earth. Classically, the Hamiltonian of a neutron is given by

H = p2

2min
+ mgrav g · r − ω · L (788)

where L = r × p is the angular momentum of the neutron and ω the angular velocity of Earth. Upon using the Hamilton
equations, this implies that

p = min ṙ + min ω × r (789)

Therefore, one obtains a Sagnac phase shift which can be expressed as

�ϕSagnac = min

h̄

∮
(ω × r) · dr (790)

where we have used Eq. (782). Using Stokes theorem, this can also be written as

�ϕSagnac = 4πmin

h
ω ·A (791)

where A is the vector associated to the interferometer area. If Γ is the incident neutron beam west of due south and δ the
co-latitude, the Sagnac phase shift takes the form

�ϕSagnac = 4πmin

h
ωA(cosψ cos δ + sinψ sinΓ sin δ) (792)

The COW experiment is such that the incident beam is directed due south which implies that Γ = 0. In the case, one
obtains

�ϕSagnac = 4πmi

h
ωA cos δ cosψ (793)

a dependence in ψ which is different from the gravitational phase shift, see Eq. (787).
Finally, there is a shift due to the fact that the interferometer bends and/or warps under its own weight. The COW

experiment claim that this effect can be described by the following equation

�ϕbend = −qbend sinψ (794)

This expression can be justified by noticing that the bending effect depends on the rotation angle. Clearly, this effect is
difficult to estimate from first principles.

Therefore, the total phase shift expected in the COW experiment is the sum of the three contributions discussed before,
namely the gravity, Sagnac and bending shifts. This leads to the following expression

�ϕ = −qgrav sinψ + qSagnac cosψ − qbend sinψ (795)

where, in order to take into account Eqs. (787) and (793), we have defined qgrav ≡ −2πmgravmin g0Aλ/h2 and qSagnac =
4πminωA cos δ/h. The above expression can be re-written as

�ϕ = q sin(ψ −ψ0) (796)

where q2 = (qgrav + qbend)
2 + q2

Sagnac and tanψ0 = qSagnac/(qgrav + qbend). In practice, the Sagnac effect is only 2.5% of the
gravitational effect but we see it leads to a global shift of the oscillatory pattern.
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Fig. 12. Sketch of a quantum “Peres” clock. The clock is coupled to the particle traveling from the point x = 0 to the point x = L. When the particle crosses
x = 0, the clock changes its state and starts running. When the particle reaches x = L, the clock stops and a comparison of the two clock states permits a
measurement of the time of flight of the particle.

Let us now describe the result of the experiment. According to the previous considerations, the intensity observed at
detector O 3 is

I(O 3)= α
{

1 + cos
[
q sin(ψ −ψ0)

]}
(797)

By Fourier transforming this signal, one can extract the frequency qgrav of this oscillations. If one repeat this procedure for
different wavelengths, one can fit the dependence of qgrav with λ which allows us to determine the product mgravmin. Let us
recall that the neutron mass is usually obtained by mass spectroscopy on the deuteron which leads to the following value:

mn = mD − mp + Eγ
c2

= 1.6747 × 10−24 g (798)

where Eγ is deuteron binding energy. On the other hand, the COW experiment has found [133]

(mgravmin)
1/2 = (1.675 ± 0.003)× 10−24 g (799)

This shows that the weak equivalence principle seems to be satisfied even in a purely quantum mechanical situation. This
also shows that gravity can be “coupled” to the Schrödinger equation in a standard way. The COW experiment is therefore
very important since this was the first time that this was demonstrated. Moreover, if we consider that mn = min then the
two previous equations show that the COW experiment proves that min = mgrav even in the quantum domain.

14.2. The quantum Galileo experiment

It is well known that, classically, the motion of a body in a constant gravitational field only depends on the ratio
mgrav/min (which is measured to be unity). However, if one writes the Schrödinger equation for the same situation, namely

ih̄
∂Ψ (t, z)

∂t
= − h̄2

2min

∂2Ψ (t, z)

∂z2
+ mgrav gzΨ (t, z) (800)

it is apparent that min and mgrav no longer cancel out. Therefore, it is interesting to study how the universality of the free
fall is recovered in quantum mechanics. We investigate this point in the following sections.

14.2.1. The Salecker–Wigner–Peres clock
In this section, we present a simple model of a quantum clock, the so-called “Salecker–Wigner–Peres clock” [136–140].

We introduce this system because we want to study how a quantum particle falls down in a constant gravitational field.
One way to do that is to measure the time of flight of the particle and to compare it with its classical analogue. Hence the
question of how to define the time of flight becomes important. As is well known, the measurement of time (or, to be more
accurate, of time of arrival) is problematic in quantum mechanics [141–145]. In particular, there is no time operator because
time is not a dynamical variable. One way out is to introduce a quantum system, the “clock”, that is coupled to the particle
and changes its state when the particle crosses the starting and the ending points along its “trajectory”, see Fig. 12. Reading
these two states then gives information about the time of flight. We now study how this general idea works in practice.

We assume that the clock has an odd number N = 2 j + 1 of states. The Hamiltonian of the clock is given by

Hclock =ω J = −ih̄ω
∂

∂θ
(801)

where the quantity θ can be viewed as describing the position of the clock’s hand. The corresponding states of the clock
are represented by the following wave-function

un(θ)= 1√ einθ (802)

2π
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that are eigenfunction of Hclock since Hclockun(θ)= nh̄ωun(θ). It is also easy to show that

e−iHclockt/h̄un(θ)= un(θ −ωt) (803)

which gives the time evolution of the system.
It is also convenient to introduce another basis vs(θ) defined by (s = 0, . . . ,N − 1)

vs(θ)= 1√
N

n= j∑
n=− j

e− 2iπ sn
N un(θ) (804)

= 1√
2πN

sin[N(θ − 2π s/N)/2]
sin[(θ − 2π s/N)/2] (805)

If N is large enough, these functions peak at θ = 2π s/N and this corresponds to the hand of the clock pointing to the s-th
hour with an angle uncertainty of ±π/N (hence, as expected, if N is large, the accuracy is good). Moreover, using Eq. (803),
we have

e−iHclockt/h̄ vs(θ)= vs(θ −ωt) (806)

This means that if we evaluate the above equation for a time τ such that ωτ = 2π/N , then one obtains

e−iHclockτ/h̄ vs(θ)= vs+1 (mod N)(θ) (807)

which confirms the interpretation given before.
Let us now consider a free particle traveling along the x-axis. We want to measure the time of flight between x = 0 and

x = L, see Fig. 12. In order for the clock to record this time, we must of course couple it to the particle. Following Ref. [137],
we assume that the Hamiltonian of the total system “particle + clock” can be written as

H = p2

2m
+P(x)Hclock (808)

where P(x) is the projector operator which is one if 0 < x < L and zero otherwise and m is the mass of the particle. We
write the eigenwave-functions of the system as

Ψ (t, x, θ)=ψ(x, θ)e−iEt/h̄ = 1√
N

n= j∑
n=− j

ψn(x)un(θ)e
−iEt/h̄ (809)

and inserting this form into the Schrödinger equation, one obtains

n= j∑
n=− j

[
− h̄2

2m

d2ψn

dx2
+ nh̄ωP(x)ψn(x)− Eψn(x)

]
un(θ)= 0. (810)

Therefore, we just have to solve the time-independent Schrödinger equation in presence of a rectangular barrier. Of course,
this exercise is solved in any textbooks on quantum mechanics, see for instance Ref. [57]. It is straightforward to show that

ψn(x)=
⎧⎨
⎩

Aeikx + Be−ikx, x < 0

Ceipx + De−ipx, 0 < x < L

Eeikx, x > L

(811)

where we have defined

k =
√

2mE

h̄
(812)

p =
√

2m(E − nh̄ω)

h̄
= k

√
1 − ε (813)

with ε ≡ nh̄ω/E , a quantity which measures how the clock perturbs the particle. The quantities A, B , C , D and E are
integration constants that are fixed by requiring the wave-function and its derivative to be continuous at the barrier. Notice
that, after the barrier there is only one branch; this is of course because we assume that the particle is coming from the
left, see Fig. 12. Matching ψn and dψn/dx at x = 0 and x = L, one obtains

A = 1

4p

[
(k + p)ei(k−p)L − (k − p)ei(k+p)L]E + 1

4k

[
(k + p)ei(k−p)L + (k − p)ei(k+p)L]E (814)

B = 1 [
(k + p)ei(k−p)L − (k − p)ei(k+p)L]E − 1 [

(k + p)ei(k−p)L + (k − p)ei(k+p)L]E (815)

4p 4k
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Fig. 13. Measurement of an out-and-back time of flight. An observer, located at x = −L sends a particle towards a square potential step located at x = 0. The
physicist turns on the clock when the particle leaves and turn it off when the reflected wave (i.e. the reflected particle) comes back and reaches x = −L.

Then, we assume that the clock does not perturb the particle too much and, as a consequence, that ε � 1. In this case,
B 	 0 and A 	 ei(k−p)L E . Indeed, we have p = k

√
1 − ε which, at leading order, simply gives k 	 p (but, of course, one

should use the next to leading order when one estimates the argument of the exponentials, see below). Then, initially, this
means that the wave-function can be written as, see Eq. (809)

ψ(x, θ)= 1√
N

n= j∑
n=− j

Aeikxun(θ)= Aeikx v0(θ), x � 0 (816)

because k does not depend on n, see Eq. (812). We see that, initially, the clock points to zeroth hour, as expected. After the
barrier, using the previous considerations, the expression of the wave-function can be written as, see Eq. (809)

ψ(x, θ)	 A√
N

eikx
n= j∑

n=− j

e−i(k−p)Lun(θ), x � L (817)

where we have used Eq. (804). But we have

p 	 k

(
1 − ε

2

)
	 k − nω

(2E/m)1/2
(818)

which implies that (for x � L)

ψ(x, θ)= A√
2πN

eikx
n= j∑

n=− j

einθ−inωL/(2E/m)1/2
(819)

= Aeikx v0

(
θ − ωL√

2E/m

)
(820)

This means, see Eq. (806), that the clock now indicates the time

t = L

(2E/m)1/2
= L

vclas
(821)

where vclas ≡ (2E/m)1/2 is the classical velocity. Therefore, the clock has measured a time of flight which is nothing but the
classical time of flight L/vclas [137].

We now consider the situation represented in Fig. 13, see Ref. [140]. An observer, located at x = −L, sends a particle
towards a reflecting barrier of height V 0 located at x = 0. When the particle leaves the Peres clock is turned on. Then the
particle bounces back and when it comes back at the observer position, the Peres clock is turned off. With this experimental
set up, one can measure the out-and-back time of flight. Following the same approach as before, the wave-function can be
written as

ψn(x)=
{

Aeikx + Be−ikx, x < 0

Ce−px, x > 0
(822)

where we now have

k =
√

2m(E − nh̄ω)

h̄
=

√
2mE

h̄

√
1 − ε (823)

p =
√

2m(V 0 + nh̄ω− E) =
√

2m(V 0 − E)
(

1 + E
ε

)1/2

(824)

h̄ h̄ V 0 − E
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Then, we have to match the wave-function and its derivative at x = 0. This gives

B = k − ip

k + ip
A ≡ R A (825)

C = 2k

k + ip
A (826)

As before, we assume that, initially, the clock was is a given state, here v0(θ). Therefore, the wave-function in the region
x < 0 can be expressed as, see Eq. (809)

ψ(x, θ)= A√
N

n= j∑
n=− j

(
eikx + Re−ikx)un(θ) (827)

But |R| = 1 and its phase is given by −2 arctan(p/k). As a consequence, one has

ψ(x = −L, θ)= A√
N

n= j∑
n=− j

[
e−ikL + e−2i arctan(p/k)eikL]un(θ) (828)

The next step is similar to the case of a free particle, namely we expand the phases of the two wave-function branches in
terms of the parameter ε . This gives

ψ(x = −L, θ)= A√
2πN

n= j∑
n=− j

exp

[
− iL

h̄

√
2mE + in

(
θ + ωL

vclas

)]

+ exp

[
−2i arctan

(√
V 0 − E

E

)
+ iL

h̄

√
2mE + in

(
θ − ωL

vclas
− h̄ω√

E(V 0 − E)

)]
(829)

= A√
N

exp

(
− iL

h̄

√
2mE

)
v0

(
θ + ωL

vclas

)

+ A√
N

exp

[
−2i arctan

(√
V 0 − E

E

)
+ iL

h̄

√
2mE

]
v0

(
θ − ωL

vclas
− h̄ω√

E(V 0 − E)

)
(830)

and this allows us to directly read the time indicated by the clock. For the first branch, it is −L/vclas while for the second
one, it is given by L/vclas + h̄/

√
E(V 0 − E). As a consequence, the time of flight of the particle can be expressed as

�t = 2L

vclas
+ h̄√

E(V 0 − E)
(831)

Therefore, the time of flight is the classical one, 2L/vclas, but, this time, there is an additional contribution. This one can be
understood as follows. The quantity �t can be re-written as [140]

�t = 2(L + d)

vclas
(832)

where d = 1/p, see Eq. (824) (evaluated at ε = 0) is the penetration depth into the potential step. This means that there is
an additional delay due to the tunnel effect and the fact that the particle has a non-vanishing probability to be below the
barrier [140]. In this regime, the “velocity” is nevertheless given by its classical value vclas [140].

This concludes this section on the Peres clock. We have seen that this is a useful device to measure times of flight. We
now use it to study the motion of a quantum particle in a uniform gravitational field.

14.2.2. The gravitational case
In this section, we study the status of the weak equivalence principle and of the universality of the free fall in quantum

mechanics [139,140,146–150].
Following Ref. [140], let us consider the situation where a particle is sent upwards in a uniform gravitational field, see

Fig. 14. If z denotes the vertical coordinate, the corresponding classical situation is described by the following Lagrangian

L(ż, z)= min

2
ż2 − mgrav gz (833)

where g is the gravitational field and where we have made the difference between the inertial mass min and the gravita-
tional mass (the “gravitational charge”) mg. The solution to the classical equation of motion reads

z(t)= −1 mgrav
gt2 + v init + L (834)
2 min
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Fig. 14. Sketch of a quantum particle in a uniform gravitational field. The particle is sent upward, the initial time being recorded by a quantum Peres clock.
The particle reaches a maximum altitude and then falls back to the detector at z = L where the Peres clock measures this return time.

where z = L is the initial altitude (at t = 0) and v ini is the initial velocity, related to the energy E of the particle by the
following expression

v ini =
√

2g
mgrav

min

(
E

mgrav g
− L

)1/2

(835)

Of course, the motion of the particle only depends on the ratio mgrav/min. The maximum altitude, zmax, reached by the
particle, see Fig. 14, is given by

zmax = E

mgrav g
(836)

which means that, from its initial position to zmax, the particle can rise a distance of E/(mgrav g)− L. After having reached
zmax, the particle falls back and the up-to-down classical time of flight reads

�t = 2

√
2

g

(
min

mg

)1/2( E

mgrav g
− L

)1/2

(837)

If mgrav = min, this equation can also be written as �t = 2v ini/g .
Then, we would like to consider the same situation but from a quantum-mechanical point of view [140]. In particular,

we would like to measure the quantum time of flight. Given the discussion of the previous section, it is clear that we must
couple the quantum particle to a Peres clock located at z = L. Then, the next step is, of course, to solve the Schrödinger
equation. Following the previous considerations, we just have to consider the equivalent of Eq. (810), but for the case of a
uniform gravitational field. It reads

d2ψn

dz2
+
[

2min(E − nh̄ω)

h̄2
− 2minmgrav g

h̄2
z

]
ψn = 0 (838)

It is straightforward to obtain that the solution can be expressed in terms of Airy functions [48,49] Ai(z) and Bi(z). If we
retain only the branch that leads to a bounded wave-function, the result is given by

ψ(z, θ)= A√
N

n= j∑
n=− j

Ai

(
z − b

a

)
un(θ) (839)

where A is constant fixed by the normalization of the wave-function and a and b are defined by

a =
(

h̄2

2minmgrav g

)1/3

(840)

b = E − nh̄ω

mgrav g
(841)

The next step consists in evaluating the wave-function at x = L, with the assumption that the return point is located far
from the maximum altitude. This means that L − b is a negative quantity and that |L − b| is large [more precisely, one has
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L − b = L − E/(mgrav g)+ Eε/(mgrav g) and the quantity L − E/(mgrav g) is minus the distance the particle can rise, see the
remark after Eq. (836). Therefore, L − b < 0 and, if this distance is large, |L − b| is indeed a large quantity]. In this limit, one
has

ψ(L, θ)	 A

2i
√
πN

n= j∑
n=− j

(
z − b

a

)−1/4(
eiξ+iπ/4 − e−iξ−iπ/4)un(θ) (842)

where ξ ≡ (2/3)[(b − L)/a]3/2. Explicitly, this quantity can be expressed as

ξ = 2

3a3/2

[
E

mgrav g
(1 − ε)− L

]3/2

(843)

	 2

3a3/2

(
E

mgrav g
− L

)3/2

− 1

a3/2

(
E

mgrav g
− L

)1/2 nh̄ω

mgrav g
(844)

In order to calculate the difference between the two times indicated by the clock and corresponding to the two branches
of the wave-function, it is in fact sufficient to estimate the part of the phase shift that depends on n. Therefore, it is clear
that the phase shift ±π/4 in the expression (842) will not contribute because it is n-independent. Moreover, the term
[(z − b)/a]−1/4 is n-dependent but is common to the two branches of the wave-functions. As a consequence, it will cancel
out when the phase shift is determined (but would participate to the “absolute” time indicated by the clock when the
particle leaves z = L and returns to z = L). Summarizing, the up-and down time of flight is given by

�t = 2

a3/2

(
E

mgrav g
− L

)1/2 h̄

mgrav g
(845)

= 2

√
2

g

(
min

mgrav

)1/2( E

mgrav g
− L

)1/2

(846)

that is to say exactly Eq. (837), see Ref. [140]. Several remarks are in order here. Firstly, although it is of quantum-mechanical
origin, the above equation does not contain h̄ that cancels out. Secondly, this result seems to indicate that the weak equiva-
lence principle holds at the quantum level. Thirdly, it may appear surprising that the quantum �t is not corrected by a term
corresponding to the penetration depth, see Section 14.2.1, in particular Eq. (832), as it is the case for a square potential. The
interpretation given in Ref. [140] is that there is a finite probability that the particle tunnels below the barrier but there is
also a finite probability that the particle is scattered back before the classical turning point. If these two probabilities cancel
then one obtains the classical prediction. Fourthly, the above result is valid only if the return time is measured far from the
maximum altitude. What happens if, on the contrary, the particle starts from a position which is close to the turning point?
To investigate this case, we re-start from Eq. (839) and write the solution as

ψ(z, θ)= A√
N

n= j∑
n=− j

√
y

3

{[
eiπ/3 J1/3(ζ )+ e−iπ/3 J−1/3(ζ )

]
+ [(1 − eiπ/3) J1/3(ζ )+ (1 − e−iπ/3) J−1/3(ζ )

]}
un(θ) (847)

where y ≡ (b − z)/a > 0 and ζ ≡ 2y3/2/3. In this way, we have identified the incident (first term in the squared bracket)
and the reflected wave (second term in the square bracket). Indeed, using the asymptotic behavior of the Bessel functions
at infinity, one can check that each branches give precisely e±(iξ+iπ/4) if z = L, see Eq. (842). If we now consider the limit
y � 1, then one arrives at

ψ(z, θ)= A√
N

n= j∑
n=− j

{[
3−2/3

2Γ (2/3)
+ 3−4/3

2Γ (4/3)
y

]
+ i

√
3

[
− 3−2/3

2Γ (2/3)
+ 3−4/3

2Γ (4/3)
y

]
+
[

3−2/3

2Γ (2/3)
+ 3−4/3

2Γ (4/3)
y

]

− i
√

3

[
− 3−2/3

2Γ (2/3)
+ 3−4/3

2Γ (4/3)
y

]
+ · · ·
}

un(θ) (848)

the two first terms corresponding to the incident wave and the two last ones to the reflected wave. The two branches are
of course complex conjugate to each other. Therefore, if we denotes by ℵ the complex number corresponding to the two
first terms in the above equation, then the wave-function takes the form

ψ(z, θ)	 A√
N

n= j∑
n=− j

|ℵ|(ei argℵ + e−i argℵ)un(θ) (849)

where
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arg ℵ = arctan

[√
3

32/3Γ (2/3)y − 34/3Γ (4/3)

32/3Γ (2/3)y + 34/3Γ (4/3)

]
(850)

The rest of the calculation proceeds as before. We first expand the phase in ε and, then, take the limit E/(mg g)− L → 0.
This leads to

arg ℵ 	 −π

3
− 35/6

6

Γ (2/3)

Γ (4/3)

h̄

mgrav ga
nω (851)

As a consequence, one finds that the time of flight is given by

�t 	 2
35/6

6

Γ (2/3)

Γ (4/3)
21/3
(

min

mgrav

)1/3( h̄

mgrav g2

)1/3

(852)

	 1.59 ×
(

min

mgrav

)1/3( h̄

mgrav g2

)1/3

(853)

in rough agreement with Ref. [140]. This time, we notice that h̄ has not canceled in the final expression and that the time
of flight is different from its classical counterpart (837). This also means, as already mentioned, that the cancellation which
leads to a quantum time of flight equals to the classical one is in fact valid only if the particle starts far from the turning
point.

We conclude that the weak equivalence principle (or the universality of the free fall) can be extended to the quantum
regime. The linear potential seems to possess precisely the shape which leads to identical times of flight. It is impor-
tant to realize that this property depends on the shape of the potential and would not be obtained with another shape,
see Ref. [140]. Moreover, this seems to be true only far from the turning point. If one identifies the wave-vector to
k = (2minmgrav g/h̄2)1/3, see Ref. [151], the de Broglie relation v 	 h̄k/m allows us to estimate a velocity. Then, from the
quantum time of flight, see Eq. (853), we can construct a length 	 [h̄2/(m2 g)]1/3 which typically controls the validity of the
approximation just mentioned.

14.2.3. Atom trampoline
In this section, we want to briefly mention the case of the “atom trampoline” [150,151]. Let us consider again the

experimental set up of the previous section but let us now assume that a reflecting wall has been installed on the ground,
at z = 0. Then, the boundary condition ψn(0) = 0 leads to Ai(−b/a) = 0. If zn denotes the zero of the Airy function, this
means that we now have a discrete spectrum of energy levels given by

En = −zn

(
h̄2m2

grav g2

2min

)1/3

(854)

It is interesting to notice that this result depends on the ratio m2
grav/min and not on mgrav/min. Moreover, this spectrum

has been observed (with ultra-cold neutrons which leads to En of the order of ∼ 10−12 eV) in the gravitational field of
the Earth [152,153]. Therefore, this result confirms the discussion about the COW experiment described in Section 14.1. It
experimentally establishes that the gravitational force “couples” to the Schrödinger equation in a standard way.

14.2.4. Schrödinger equation in an accelerated frame
It is also frequent to refer to the weak equivalence principle as the property stating that, locally, the effect of a constant

gravitational field can be mimicked by an accelerating frame. Therefore, it is interesting to study whether this claim holds
in quantum mechanics. This question has been studied in Refs. [146,150,151]. Here, we follow the treatment of Ref. [146].

Let us consider the free Schrödinger equation (in one dimension to simplify the problem). It reads

ih̄
∂Ψ (t, z)

∂t
= − h̄2

2m

∂2Ψ (t, z)

∂z2
(855)

Then, let us consider the following coordinate transformation

z′ = z − vt − 1

2
gt2 (856)

t′ = t (857)

It is straightforward to show that the function ϕ(t′, z′) defined according to

Ψ (t, z)= ϕ
[
t′(t), z′(t, z)

]
exp

[
imv

h̄

(
z′ + vt′

2

)
+ imgt′

h̄

(
z′ + vt′

2
+ gt′2

6

)]
(858)

satisfies the equation [146]
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ih̄
∂ϕ(t′, z′)

∂t′ = − h̄2

2m

∂2ϕ(t′, z′)
∂z′2 + mgz′ϕ

(
t′, z′) (859)

The potential in the above equation is precisely of the form describing a constant gravitational field. In this sense, we find
that the equivalence between a constant gravitational field and an accelerated frame propagates to quantum mechanics.

14.2.5. Falling composite quantum objects
In the previous sections, we have studied how a quantum particle falls in a uniform gravitational field. For instance, we

have investigated under which circumstances one can say that the weak equivalence principle holds in quantum mechanics.
Here, we would like to study the same question but in the case of a composite quantum object. In particular, it is interesting
to ask whether the motion of the composite system (the atom) can depend on its internal state.

Let us start by recalling the Ehrenfest theorem [57] for a quantum particle. It states that the time derivatives of the mean
position and momentum are given by (for simplicity, we consider the case of a one-dimensional system since we have in
mind a particle falling down along the z-axis)

d〈z〉
dt

= 〈pz〉
min

(860)

d〈pz〉
dt

= −
〈
∂V

∂z

〉
(861)

In the case of a linear potential, V (z) = mgrav gz, the two previous equations expressing the Ehrenfest theorem can be
combined in such a way that we arrive at

d2〈z〉
dt2

= −mgrav

min
g (862)

This means that the average position 〈z〉(t) evolves exactly as the classical z given in Eq. (834). However, let us also notice
that the variance of the position is not a function of the ratio mgrav/min only, see in particular Refs. [146–148].

After this short reminder, let us consider a bound system of two particles interacting through a potential V which only
depends on the distance between them. We also assume that this system is embedded in a region where there is an exterior
field described by the potential U (r). The corresponding Lagrangian reads

L(ṙ1, ṙ2, r1, r2)= min,1

2
ṙ2

1 + min,2

2
ṙ2

2 − V (r1 − r2)− U (r1)− U (r2) (863)

where r1 and r2 are the positions of the two particles and min,1, min,2 their mass. If we now introduce the center of mass
position vector,

rG = min,1

min,1 + min,2
r1 + min,2

min,1 + min,2
r2 (864)

and the relative position vector,

r = r1 − r2 (865)

then Eq. (863) takes the form

L(ṙG, ṙ, rG, r)= M

2
ṙ2

G + μ

2
r2 − V (r)− U (r1)− U (r2) (866)

where M ≡ min,1 + min,2 is the total mass and μ ≡ min,1min,2/(min,1 + min,2) is the reduced one. Of course, in the above
expression r1 and r2 must be viewed as function of rG and r.5 From the above considerations, it is straightforward to obtain
the Hamiltonian of the system. We arrive at the following expression:

H = p2
G

2M
+ p2

2μ
+ V (r)+ U (r1)+ U (r2) (867)

where pG ≡ p1 + p2 and p = (μ/min,1)p1 − (μ/min,2)p2. If we now assume that the external field is a uniform gravitational
field (directed along the z-axis), then it is easy to show that

5 The relation between these quantities is given by

r1 = rG + min,2

M
r

r2 = rG − min,1

M
r
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U (r1)+ U (r2)= (mgrav,1 + mgrav,2)gzG + 1

M
(mgrav,1min,2 − mgrav,2min,1)gz (868)

≡ U (zG)+ Ũ (z) (869)

where, according to Eq. (865), z ≡ z1 − z2. As a consequence, the Hamiltonian (867) takes the form

H = HG + Hrel (870)

where the center of mass and relative Hamiltonians can be expressed as

HG = p2
G

2M
+ U (zG) (871)

Hrel = p2

2μ
+ V (r)+ Ũ (z) (872)

The physical interpretation of these equations is clear. The center of mass behaves as a free particle embedded in a uniform
gravitational field. On the other hand, the internal states of the composite system are determined by the potential V (r)
but are also affected by the gravitational field through the term Ũ (z). In practice, one expects that Ũ (z) � V (r) and,
therefore, the perturbations of the energy levels will be either very small or even totally negligible. Moreover, because
[z, pG,z] = [zG, pz] = 0, the two above Hamiltonians commute

[HG, Hrel] = 0 (873)

which implies that the total state space is in fact the tensorial product of the center of mass state space and of the relative
state space.

Let us now study the behavior of 〈zG〉. One has

d〈zG〉
dt

= 1

ih̄

〈[zG, HG + Hrel]
〉= 1

ih̄

〈[zG, HG]〉= 〈pG,z〉
M

(874)

In the same manner, one can now calculate the evolution of 〈pG,z〉. One obtains

d〈pG,z〉
dt

= 1

ih̄

〈[pG,z, HG + Hrel]
〉= 1

ih̄

〈[pG,z, HG]〉
= 1

ih̄

〈[
pG,z,U (zG)

]〉= −(mgrav,1 + mgrav,2)g (875)

Therefore, combining Eqs. (874) and (875), we arrive at the following expression

d2〈zG〉
dt2

= −mgrav,1 + mgrav,2

min,1 + min,2
g (876)

Of course, this equation is similar to Eq. (862) and this implies that the center of mass mean value of the quantum compos-
ite system will follow the classical trajectory. In particular, this means that 〈zG〉 does not depend in which internal energy
state the system is placed. Therefore, if, for instance, we consider a falling Hydrogen atom, the behavior of the position
mean value of the atom will not depend of whether the atom is in the state, say, 1s or 2p. We also notice that the coeffi-
cient in front of g in Eq. (876) is the ratio of the total gravitational mass to the total inertial mass. In this sense, the weak
equivalence principle is also satisfied by the composite quantum systems.

Finally, it is also interesting to repeat the gedanken experiment in Fig. 14 but with a composite system. It seems reason-
able to couple the Peres clock to the center of mass of the system which means that the Hamiltonian of the system is still
given by

H = HG + Hrel (877)

where, now, the center of mass and relative Hamiltonians can be expressed as

HG = p2
G

2M
+ U (zG)+P(zG)Hclock (878)

Hrel = p2

2μ
+ V (r)+ Ũ (z) (879)

Then, following Eq. (809), we write the wave-function of the system as

Ψ (t, rG, r, θ)= 1√
N

n= j∑
ψn(rG)χn(r)un(θ)e

−iEt/h̄ (880)

n=− j
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The next step consists in inserting this wave-function in the Schrödinger equation in order to obtain the equivalent of
Eq. (810). The result can be written as

n= j∑
n=− j

{
χn(r)

[
− h̄2

2M
�Gψn(rG)+ U (zG)ψn(rG)+ nh̄ωP(zG)ψn(rG)− EGψn(rG)

]

+ψn(rG)

[
− h̄2

2m
�χn(r)+ Ũ (z)χn(r)− Erelχn(r)

]}
un(θ)= 0 (881)

where E = EG + Erel. This implies that only the center of mass part, ψn(rG), of the total wave-function will depend on n. As
a consequence, the internal part should in fact be written as χ(r) instead of χn(r). This means that χ(r) cannot cause a
rotation of the Peres clock. Therefore, the time indicated by the clock will not depend on the internal state of the composite
system. We conclude that the time of flight of an atom, defined and calculated in terms of the Peres clock, does not depend
in which quantum state this atom is placed.

This concludes the section on the weak equivalence principle in quantum mechanics. The result is mixed. We have shown
that, very often, it is satisfied in the framework of quantum mechanics. But, on the other hand, it seems sometimes to be
modified by quantum effects, see in particular Eq. (853). Maybe this indicates that its application to the more complicated
case of quantum vacuum fluctuations of a field is rather suspicious?

15. Conclusions

We are now in a position where we can really formulate the cosmological constant problem. Vacuum fluctuations seem
to exist in Nature and to have normal gravitational properties. Therefore, it seems natural to postulate that they participate
in the value of the cosmological constant. However, when one tries to use well controlled techniques of quantum field
theory to compute their energy density, one obtains a number which seems to be in contradiction with the measurement
of Λ that one obtains in cosmology and with the constraints that one deduces from (for instance) the motion of the planets
in our solar system. The difficulty of the problem stems from the fact that, in order to remove the above contradiction,
one necessarily has to abandon something that is considered as robust, i.e. renormalization in quantum field theory, weak
equivalence principle, high accuracy measurements of the expansion of the Universe, etc.

Even if this is not the purpose of this article, let us conclude this review with a few words about the solutions that
have been proposed to solve the cosmological constant problem, for a complete overview of the subject, see for instance
Ref. [154]. Of course, the most obvious solution is super-symmetry [19,74,75]. However, as we have discussed in Section 7.4,
super-symmetry has to be broken and this destroys the “miraculous” cancellation of the various terms participating the
vacuum energy. In fact, the only common point between these various contributions is gravity. Therefore, this suggests that
the mechanism that cancels the cosmological constant makes use of gravity. This idea has been explored in the so-called ad-
justment mechanisms [155–157]. These models work reasonably well but, unfortunately, they suffer from a severe disease.
Indeed, in these scenarios, the Newton constant is time-dependent and it turns out that the variation of the gravitational
coupling is too strong to be compatible with the known constraints on |Ġ/G|. Therefore, although the idea is very attractive
at first sight, it seems that it does not yet exist a realistic realization of it. It is also worth signaling that back-reaction mech-
anisms have also been studied in Refs. [158,159]. Here, the idea is that the long wavelength (super-Hubble) cosmological
perturbations are described by a stress–energy tensor that exactly cancels the cosmological constant.

Another class of solution is based on quantum gravity and quantum cosmology [160–162]. It is argued that the no-
boundary Hartle–Hawking wave-function is such that it peaks at Λ = 0. However, this approach suffers from various
limitations among which is the fact that the path integral is not properly defined and that probabilities are not positive
definite (this comes from the fact that the Wheeler–De Witt equation is in fact similar to a Klein–Gordon equation. The
positivity of probabilities in quantum cosmology can be only be restored in the WKB approximation).

Recently, following the pioneered work of Ref. [163], there have been many attempts to solve the cosmological constant
problem in the framework of extra dimensions, see Chapter 7 of Ref. [154] or Ref. [164]. Another popular solution, also
based on high-energy physics considerations, is the landscape approach [12] in string theory [165]. This approach assumes
that all the pocket universes of the landscape are populated during eternal inflation. Combining this fact with the anthropic
principle [166], it is argued that the most probable value of Λ is approximately the value observed today. This solution
suffers from the difficulty of defining a measure on the landscape [167] and the use of the anthropic principle in this
context has been criticized in Refs. [168,169].

Finally, another possibility that has recently been investigated is to modify the Einstein equations such that they become
blind to a stress–energy tensor of the form Tμν ∝ gμν , see Refs. [170–172].

In order to be complete, let us mention that models of analogue gravity have also been developed to study the vacuum
energy problem [173–175]. In these models, one can calculate the equivalent of the cosmological constant and study pre-
cisely its origin since the physics controlling the microscopic constituents is explicitly known. These models are based on
many different types of analogue physical systems such as condensed matter systems [176], super-fluid Helium [177], Fermi
liquid [178], Bose–Einstein condensates [179,180], etc. Then, one can show that a simple calculation of the ground state
may lead to an incorrect result, the only possibility in order to reach the correct answer being to fully take into account the
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microscopic theory. This would indicate that a correct calculation of the cosmological constant must necessarily be based
on the fine structure of space–time, i.e. probably on a consistent theory of quantum gravity.

As the variety of the subjects studied is this review shows, the cosmological constant problem is a very rich one. Given its
difficulty, it is probable that it will have to wait for a new theory beyond the current standard model to find its resolution.
This theory will have to describe the gravitational properties of the vacuum fluctuations and to regulate the ultra-violet
infinities that appear in the calculation of vacuum energy density. This list of requirements almost constitutes an identity
card for a theory of quantum gravity. But the most interesting aspect maybe goes the other way round. Given the fact that
cosmology has enabled us to grasp observational signatures related to the vacuum energy, maybe these experimental results
will help us to deduce and to establish a convincing theory of quantum gravity? This is the reason why the cosmological
constant problem appears to be so important and so interesting.
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