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The geometrical statistics of fluid deformation are analyzed theoretically within the
framework of the restricted Euler approximation, and numerically using direct numerical
simulations. The restricted Euler analysis predicts that asymptotically a material line
element becomes an eigenvector of the velocity gradient regardless its initial orientation.
The asymptotic stretching rate equals the intermediate eigenvalue of the strain rate tensor.
Analyses of numerical data show that the pressure Hessian is the leading cause to
destroy the alignment between the longest axis of the material element and the strongest
stretching eigendirection of the strain rate. It also facilitates the alignment between the
longest axis of the element and the intermediate eigendirection of the strain rate during
initial evolution, but tends to oppose the alignment later.
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r é s u m é

Les statistiques de la géométrie de la déformation sont analysées dans le cadre théorique
de l’approximation d’Euler restreint, et numériquement en utilisant une simulation
numérique directe des équations de Navier–Stokes. Sous l’approximation d’Euler restreint,
il est prédit qu’une ligne matérielle devienne asymptotiquement un vecteur propre du
tenseur des gradients, qu’elle que soit son orientation initiale. De plus, le taux d’étirement
devient égal à la valeur propre intermédiaire du tenseur de déformation. L’analyse des
simulations numériques montre que le hessien de pression est la cause principale de la
détérioration de l’alignement du plus grand axe de l’élément matériel avec la direction
principale de plus grande déformation. Le hessien favorise aussi l’alignement de ce plus
grand axe avec la direction principale intermédiaire de la déformation lors de l’évolution
aux temps courts, mais a tendance à s’y opposer par la suite.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Enhanced mixing is a prominent feature of turbulent flows. At the smallest scales, mixing is related to the stretching
and evolution of infinitesimal material elements, such as lines, surfaces and volumes. Thus the latter has been the focus of
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a number of previous works [1–11]. The evolution of material elements carries useful information for model construction, as
is demonstrated in [12–15] for velocity gradients, and [16] for subgrid-scale models. These developments further contribute
to the interests in the study of the Lagrangian evolution of material elements.

One of the central problems in the above investigations is the stretching rate of the material elements. It is closely related
to the geometry of the elements as well as the small scales of turbulence. Small scales of the turbulent field are described
by the velocity gradient tensor Aij ≡ ∂ui/∂x j , where ui(x, t) is the velocity field, the strain rate tensor Sij ≡ (Aij + A ji)/2,
and the vorticity ωi = εi jk Akj . The equation for Aij can be derived from the Navier–Stokes (NS) equation and is given as:

dAij

dt
= −Aik Akj − ∂2

i j p + ν∇2 Aij (1)

where p is the pressure, ∂2
i j p ≡ ∂2 p/∂xi∂x j is the pressure Hessian. The density of the fluid is assumed to be 1 and ν is the

viscosity. One important geometrical statistic is the alignment between a material line element and the eigenvectors of the
strain rate tensor. Let li denote the i component of a material line element, then

dli

dt
= Aijl j (2)

The growth in the length of li is measured by the logarithmic rate of change d ln l/dt where l ≡ (lili)
1/2 is the length of li .

It follows from the above equation that

d ln l

dt
= l̂i Ai jl̂ j = l̂i Si j l̂ j (3)

where l̂i ≡ li/l is the direction of the element. Thus the growth rate is closely related to the alignment between li and Sij .
The alignment problem has been addressed in [4–6,9,10], among others. Girimaji and Pope in [4] analyze the non-

persistent nature of the alignment and its effects on the mean stretching rate. The dynamics of the alignment is considered
in [5] based on the equation for the direction cosines of a line element made with the eigenvectors of the strain rate tensor.
Results in simple flow fields and random Gaussian velocity fields are discussed. The strong alignment with the intermediate
stretching eigendirection of the strain rate tensor is observed in [6,8]. It is also found that the alignment with the strongest
stretching direction is also preferred albeit to a somewhat lesser extent. To understand the alignment statistics of material
line elements as well as vorticity, Guala et al. [10] look into the rotation of the eigenvectors and the switching events
during the Lagrangian evolution of material elements. They find that the active role of vorticity and the effect of viscous
diffusion make important differences. To understand the effects of viscous diffusion, alignments of passive diffusive vectors
are simulated in [9] and [17], qualitatively same alignment trends are observed. Interestingly, in Gaussian velocity fields,
the strongest alignment occurs along the strongest stretching direction [17]. The result suggests that the alignment in real
turbulence results from the nonlinear interaction in turbulent fields, and viscosity may not play the dominant role.

We present in this article a further analysis of the evolution of the material line elements. We first look into the evo-
lution of a material line in the restricted Euler (RE) approximation [18–20]. The restricted Euler equation for the velocity
gradient Aij makes the assumption that the pressure Hessian is isotropic. Since the pressure Laplacian is locally determined
by Aij , the restricted Euler equation is closed. The closed form solutions of the equations have been found and shown to be-
come singular at finite time. Nevertheless, the solution shows that asymptotically the strain rate tensor will have a positive
intermediate eigenvalue. Meanwhile the vorticity will tend to align with the intermediate eigenvector. Both are consistent
with observations in turbulence, in particular in regions with strong straining. It is shown in [21] that a closed form solu-
tion for the material deformation also exists in the restricted Euler approximation. However, the asymptotic behavior of the
solution is not yet explored. We will look into this problem and show that, regardless of the initial orientation of the line
element, asymptotically it will become an eigenvector of the velocity gradient. The result sheds further light on the effects
of the nonlinear interactions on the alignment statistics as well as the stretching rate of material lines.

We then present a DNS analysis of the dynamics of the alignment between material elements and the strain rate tensor.
In particular we discuss the effects of the pressure Hessian, which has not been studied before. The pressure Hessian has
been shown to play a central role in the dynamics of the velocity gradients (see, e.g., [15,22–25]). Our results show that
its effects on material deformation are also significant and depend non-trivially on the relative orientation between the
element and the strain rate tensor.

2. Material deformation in restricted Euler equations

2.1. Exact solution for a material line element

Infinitesimal material line elements evolve according to Eq. (2). Alternatively, evolution of material elements can be
described by the deformation gradient Bij(X, t) ≡ ∂xi(X, t)/∂ X j , where X is the spatial coordinates of a fluid particle at
some initial time t0. Bij is governed by the equation

dBij = Aik Bkj (4)

dt
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The evolution of line elements is determined by Bij through the relation li(X, t) = Bij(X, t)l j(X, t0). We will also use the
Cauchy–Green (CG) tensor, denoted as C and defined by Cij = Bik B jk . It is easy to show that |li(t0)|2 = li C

−1
i j l j , which for

constant |li(t0)| represents an ellipsoid. Therefore an infinitesimally small sphere evolves into an ellipsoid described by
the CG tensor. The square roots of the eigenvalues of the CG tensor give the lengths of the axes of the ellipsoid, and the
eigenvectors define the directions of the axes.

The restricted Euler approximation considers the inviscid case and makes the assumption that the anisotropic part of the
pressure Hessian is negligible, so that

∂2
i j p ≈ 1

3
∇2 pδi j = −2

3
Q δi j (5)

where Q = −Aij A ji/2 is the second tensor invariant of Aij . Thus the restricted Euler equation for Aij becomes

dAij

dt
= −Aik Akj − 2

3
Q δi j (6)

which is a closed tensorial Riccati equation for Aij .
The solutions of Eq. (6) have been extensively discussed in [18–20]. The properties have been summarized in the intro-

duction. Material deformation with restricted Euler approximation is investigated in [21]. It is shown that the deformation
gradient has a closed form solution as well when the velocity gradient Aij is a solution to the restricted Euler equation.
The short time evolution is compared with DNS data.

We now summarize the main ideas of the solution and look into its asymptotic properties. While it is the evolution
of Bij that is considered in [21], the same argument applies to the line element li . We will illustrate the method using the
latter. Let R = −Aij A jk Aki/3 be the other invariant of Aij , the equations for R as well as Q in RE approximation can be
found as

dQ

dt
= −3R,

dR

dt
= 2

3
Q 2 (7)

which is called the trace dynamics [26]. It is not difficult to show that � ≡ 27R2/4 + Q 3 is an invariant of the system.
Let Q 0 be the value of Q when R = 0, one has

27

4
R2 + Q 3 = Q 3

0 (8)

Making use of the trace dynamics, and taking the derivative of Eq. (6) with respect to t , one finds

d2 Aij

dt2
+ 2

3
Q Aij = 0 (9)

The equation can be transformed to a linear one by changing the independent variable to R , making use of the trace
dynamics (Eq. (7)). The solution can thus be found in terms of hypergeometric functions.

The solution will be given in non-dimensional variables. Using Q 0, one defines a time scale t∗ ≡ 1/|Q 0|1/2. All the
variables (except for li , which we keep as dimensional) are then non-dimensionalized by a suitable power of t∗ . (Another Q
value can be chosen in place of Q 0 if the latter is zero.) We will use lower-case letters to denote the dimensionless variables,
and τ = t/t∗ the dimensionless time. Then the solution for dimensionless velocity gradient aij is

aij(τ ) = Cij f1
[
r(τ )

] + Dij f2
[
r(τ )

]
(10)

where Cij and Dij are two constant coefficient matrices, r is the dimensionless invariant R , and f1 and f2 are two hyper-
geometric functions, whose expressions are given as, when Q 0 > 0,

f +
1 (r) = 1

2

[(
1 + 3

√
3

2
r

) 1
3

+
(

1 − 3
√

3

2
r

) 1
3
]

(11)

f +
2 (r) = 1√

3

[(
1 + 3

√
3

2
r

) 1
3

−
(

1 − 3
√

3

2
r

) 1
3
]

(12)

when Q 0 < 0,

f −
1 (r) =

(
1 + 27

4
r2

) 1
6

cos

[
1

3
tan−1

(
3
√

3r

2

)]
(13)

f −
2 (r) = 2√

(
1 + 27

r2
) 1

6

sin

[
1

tan−1
(

3
√

3r
)]

(14)

3 4 3 2
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and when Q 0 = 0,

f 0
1 (r) = 2

1
3

[
3
√

3

2
r

]− 2
3

(15)

f 0
2 (r) = 22/3

3
√

3

[
3
√

3

2
r

] 1
3

(16)

Applying the same trick to material line evolution, we take the derivative of Eq. (2) with respect to time, giving (see
also [21])

d2li

dt2
= Aij A jklk +

(
−Aik Akj − 2

3
Q δi j

)
l j = −2

3
Q li (17)

Thus li satisfies the same equation as Aij (see Eq. (9)), and hence has the same general solution. In terms of the dimension-
less variables, we write the solution as

li(τ ) = hi f1
[
r(τ )

] + gi f2
[
r(τ )

]
(i = 1,2,3) (18)

where hi and gi are constants. Given initial conditions li(0), and dli(0)/dt ≡ aij(0)li(0), the coefficients can be fixed in terms
of li(0) and aij(0).

2.2. Asymptotic evolution of the material lines

The RE solution for Aij diverges in finite time, but the geometry of the velocity gradient aij displays interesting universal
properties asymptotically when approaching the singularity [18,20], as is summarized in the introduction. Generalizing the
method in [20], we now show that the line element li also exhibits certain universal geometrical properties, regardless its
initial conditions.

We illustrate the method with the case where Q 0 = 0. The other two cases can be worked out in the same way. When
Q 0 = 0, f1 and f2 are denoted as f 0

1 and f 0
2 and given by Eqs. (15) and (16). It is also known that r(τ ) tends to positive

infinity at time τ = √
3 (see [20]). Using Eqs. (15) and (16), it is shown in [20] that

lim
r→+∞aij(r) = Kijr

1/3, Kij = (
21/3/3

)
Dij (19)

Thus the geometrical structure of aij is determined by Kij when approaching the singularity. We will identify Kij with
the asymptotic velocity gradient, even though they differ by a scaling factor r1/3. Note that aij(r) has to satisfy Eq. (6).
Substituting aij(r) = Kijr1/3 into the equation, and noting q = −(3

√
3r/2)2/3 in this case due to Eq. (8), one finds

Kim Kmj + (
1/21/3)Kij − 21/3δi j = 0 (20)

which is Eq. (78) in [20]. Due to Eq. (20), Kij has rather specific structures, which has been discussed in [20] and will be
used later.

We now look into the limit of the solution for li given by Eq. (18). It is easy to see that

lim
r→+∞ li(r) = nir

1/3, ni = (
21/3/3

)
gi (21)

Therefore li points to the same direction as ni when its length tends to infinity. Now note that li must satisfy Eq. (2). Thus,
we substitute Eqs. (21) and (19) into Eq. (2). After some algebra, we find

Kijn j = 2−1/3ni (22)

Thus, the line element asymptotically becomes an eigenvector of the velocity gradient tensor with eigenvalue λl = 2−1/3. Same limit
is found for Q 0 > 0 with ni = 22/3 gi , and for Q 0 < 0 with ni = (3hi/2 + gi)2−1/3.

A few immediate remarks can be made. First, the above result is independent of the initial orientation or length of the
line element. The initial condition affects the length of the element, but not the direction. Second, Eq. (22) implies that,
asymptotically, the normalized stretching rate of the material line is λl = 2−1/3 (cf. Eq. (3)). We will compare λl with the
eigenvalues of the strain rate tensor corresponding to Kij below.

To further explore the consequences of Eq. (22), we make use of the results regarding Kij detailed in [20], which is
derived from Eq. (20). In the eigenframe of the strain rate tensor of Kij , it can be written as

Kij =
[ S11 −ω3/2 ω2/2

ω3/2 S22 −ω1/2

]
(23)
−ω2/2 ω1/2 S33
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where S11 etc. are the strain rates, and ωi the vorticity components. S33 = −(S11 + S22) due to incompressibility. In order
for Kij to satisfy Eq. (20), there are only two possibilities, each implying different properties for ni .

In the first one, the vorticity is zero and

(S11, S22, S33) = (
2−1/3,2−1/3,−22/3) (24)

Thus Kij = diag(2−1/3,2−1/3,−22/3). Solving Eq. (22), we find that the equation can be true only when n3 = 0. Therefore,
the material line is perpendicular to S33 and lies in the plane spanned by the two stretching directions, but no preferred
alignment with either direction can be concluded. Moreover, the stretching rate experienced by the line element, λl , is the
same as the two positive eigenvalues of the strain rate tensor.

In the second scenario, only one component of the vorticity is non-zero. Let us assume ω1 	= 0 and ω2 = ω3 = 0. It is
then shown in [20] that S11 = 2−1/3, S22 > S11, and S33 < 0. Thus S11 is the intermediate eigenvalue. Therefore, the results
imply that the stretching rate for the line element is the same as the intermediate eigenvalue of the strain rate tensor. Besides, using
these results and Eq. (22), we find that

ni = (n1,n2, δn2) = n2(n1/n2,1, δ) where δ = ω1

2S22 + 25/3
(25)

The orientation of ni hence depends on two parameters n1/n2 and δ, the latter measuring the relative magnitude of the
vorticity. As a result, it is not straightforward to predict the behaviors. One may argue that for fixed n1/n2, the alignment
with the contracting eigendirection (the third coordinate direction) would increase with δ (i.e., the relative magnitude of
vorticity). The results reported in [6] appear to support the observation (see Fig. 12 therein).

To summarize, the analysis of the evolution of material lines based on the restricted Euler dynamics of the velocity
gradient predicts that, asymptotically, the stretching rate tends to the intermediate eigenvalue of the strain rate tensor.
This observation is supported by the DNS results in, say, [4,6], where it has been qualitatively attributed to the effects of
the vorticity and the rotation of strain axes. Our analysis suggests that these effects are captured by the restricted Euler
approximation. Our analysis also predicts that, when vorticity is relatively weak, the line element tends to be perpendicular
to the contracting direction of the strain rate tensor. The model does not predict a preferred alignment with the intermediate
eigendirection. This observation indicates that the anisotropic part of the pressure Hessian plays a role in its origin. This is
addressed in the next section with DNS data.

It is worth pointing out that the results for material lines are different from those for vorticity in several aspects, as is
described above, although the asymptotic stretching rates are the same.

3. Analysis of the dynamics of alignment with DNS data

We now turn to the analyses of the alignment between a material element and the strain rate tensor, using a DNS data
set. We will pay particular attention to the pressure Hessian term.

To consider the alignment problem, we introduce the eigenframe of the strain rate tensor Sij . The alignment evolves
with the strain tensor, which is governed by the following equation

dSij

dt
= −Sik Skj − 1

4
(ωiω j − δi jωkωk) − ∂2

i j p + ν∇2 Sij (26)

We denote the eigenvalues of the strain rate tensor as λs
1 � λs

2 � λs
3, and corresponding eigenvectors es

1, es
2, and es

3. The
coordinate frame defined by the eigenvectors will be called the S-frame. The frame rotates as Sij evolves. Let Ω s be the
angular velocity of the eigenframe, we have the following relations

des
i

dt
= Ω s × es

i ,
des

i

dt
· es

j = εi jkΩ
s
k (27)

where Ω s
k is the kth component of Ω s in the S-frame. Given the orthogonality of the eigenvectors, one has

esT
i Ses

j = 0 (i 	= j) (28)

where S represents the strain rate tensor. Taking the derivative of the relation and using Eq. (27), we find

1

λs
i − λs

j

esT
i

dS

dt
es

j = εi jΩ
s
k (29)

see also [5]. Thus, using Eq. (26), we find

εi jkΩ
s
k = 1

λs
i − λs

j

[
−1

4
ωs

i ω
s
j − P s

i j + V s
i j

]
(30)

where
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P s
i j ≡ esT

i Πes
j, V s

i j ≡ esT
i

(
ν∇2 S

)
es

j (31)

P s
i j is the (i, j) component of the pressure Hessian in the S-frame, with Π representing the pressure Hessian tensor. The

components of Π in the fixed laboratory frame are ∂2
i j p. V s

i j is the component of the diffusion term for S in the S-frame.
ωs

i is the ith component of the vorticity in the S-frame. Eq. (30) is valid only when i 	= j. Out of the 6 valid equations only
three are independent, which give the expressions for the three components of the angular velocity.

Eq. (30) shows that the rotation of the S-frame is induced by vorticity, the pressure Hessian and viscous diffusion.
Because i 	= j, P s

i j only contains contributions from the anisotropic part.
The evolution of a line element can be described by the deformation gradient Bij , which evolves according to Eq. (4). We

will solve Eq. (4) numerically to find Bij . With Bij given, we then find the CG tensor and its eigenvectors and eigenvalues.
As is known from [4], the alignment statistics of the eigenvector corresponding to the largest eigenvalue of Cij show same
trends as those of a line element. We will thus only investigate the former.

We use λc
1 � λc

2 � λc
3 to denote the eigenvalues of C , ec

1, ec
2 and ec

3 the corresponding eigenvectors, and Ωc angular
velocity of the eigenframe of C . The eigenframe will be called the C-frame, to distinguish it from the S-frame. The eigen-
values are all positive since the CG tensor is positive definite. Note that a relation similar to Eq. (28) exists for C and its
eigenvectors. Using that, we find the expressions for the components of Ωc in the C-frame, which can be written as

εi jkΩ
c
k = λc

i + λc
j

λc
i − λc

j

Sc
i j + εi jk

ωc
k

2
(32)

In the equation Sc
i j and ωc

k are the components of the strain rate tensor and vorticity in the C-frame, respectively. Eq. (32)
is also only valid for i 	= j.

Eq. (32) shows that, apart from the vorticity, straining also contributes to the rotation of a material element by changing
its shape. Note that ωc

k 	= ωs
k even for the same vorticity vector, because they represent the kth component in different

coordinate frames.
The quantities that we are interested in are the direction cosines αi = |ec

1 ·es
i | for i = 1,2,3. A close alignment between ec

1
with the intermediate eigenvector of Sij implies that there is a strong peak at α2 = 1 in the probability density function
(PDF) of α2. We will consider the PDF of αi , denoted as P (αi). We will derive the equation governing its evolution and
elucidate the dynamics leading to the preferential alignment.

Using Eq. (27) and a similar equation for ec
1, it is not difficult to find

dαi

dt
= sign

(
ec

1 · es
i

)(
Ω s − Ωc) · (es

i × ec
1

)
(33)

The equation shows that the evolution of αi is determined by the difference between the angular velocities projected on
a direction perpendicular to both eigendirections. According to Eqs. (30) and (32), there are five contributions to the right
hand side of Eq. (33). We use Rs

o , Rs
p , and Rs

v to denote the contributions from the three terms on the right hand side of
Eq. (30), and use Rc

o and Rc
s to denote the vorticity and strain rate contributions, respectively, from Eq. (32). We have from

Eq. (32)

Rc
o = −1

2
ω · (es

i × ec
1

)
sign

(
ec

1 · es
i

)
(34)

Other quantities would take a similar form after suitable notations are introduced. For example, define vector h by

hk = −1

2
εki j

P s
i j

λs
i − λs

j

(35)

Then

Rs
p = h · (es

i × ec
1

)
sign

(
ec

1 · es
i

)
(36)

We will use R to denote the sum of all the contributions, i.e., R = sign(ec
1 · es

i )(Ω
s − Ωc) · (es

i × ec
1). These quantities are

termed “effective rotation” for convenience.
The equation for P (αi) can now be derived from Eq. (33) (see, e.g. [27]), which reads

∂ P

∂t
= − ∂

∂αi

(〈R | αi〉P
)

(37)

where 〈R | αi〉 is the average of R conditioned on given value αi . Physically, 〈R | αi〉 is the conditional rate of change
of αi (cf. Eq. (33)). Its product with P (αi) gives the probability flux across αi . Eq. (37) shows that, where the gradient of
〈R | αi〉P (αi) is negative, the probability accumulates hence PDF increases with time. Thus, the evolution of P (αi) can be
learned from the distributions of the probability fluxes.

We document below the conditional statistics in a DNS data set, and investigate the behaviors of the five different
contributions to R .
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Fig. 1. The PDFs of αi = |ec
1 · es

i | at (a) t = 3.68τη and (b) t = 7.35τη . Solid line: i = 1 (the strongest stretching direction of Sij ); dashed line: i = 2
(intermediate direction); dash-dotted line: i = 3 (contracting direction).

3.1. Numerical simulations

We solve the forced Navier–Stokes equations using a pseudo-spectral method in a [0,2π ]3 periodic box. Time-marching
is conducted with the AB2 method. The Courant number defined with the maximum speed in the velocity field is set at
β = 0.3. The resolution of the data is 1283, with the viscosity ν = 0.006. The forcing term injects energy into the flow
field in such a way that the mean dissipation is maintained at 0.1. For these parameters, the Kolmogorov time scale in the
resulted flow fields is τη ≈ 0.25. The Reynolds number based on the Taylor length scale is about 60. The Kolmogorov length
scale is η ≈ 0.04, such that kmaxη ≈ 1.6 (kmax ≈ 43 due to dealiasing by the two-third rule).

Velocity data are saved at a constant time interval after the statistics have reached steady state. The time interval is
set as �tw = 0.01225, corresponding to Courant number β ≈ 0.5. The corresponding pressure fields are also computed and
stored.

Particle tracking is performed using the saved snapshots of the velocity fields (thus the time step size is �tw ). The de-
formation gradient is solved along the particle trajectories. AB2 is used to solve for the trajectories, and a fourth order
predictor–corrector method proposed in [4] is used to integrate the equation for the deformation gradient. We use a sixth
order Lagrange interpolation scheme to find the parameters on the fluid particles. To solve the equation for the deformation
gradient, we need the velocity gradient at the spatial location of the fluid particles. They are found by interpolation from
grid-point values after the latter is found with Fourier transforms.

1283 particles are released in the flow field at 22 well-separated times. They are tracked over a time span approximately
equal 8τη . Thus there are 22 × 1283 trajectories in total, and the statistics are averaged over all the trajectories.

3.2. Numerical data and analysis

Due to the dispersive nature of turbulence, the evolution of a material element is a non-stationary process. However ge-
ometrical statistics tend to reach a stationary distribution within few Kolmogorov time scales, after an initial transience [4].
We will present results at t = 1.22,3.68,7.35τη . The statistics at the last time essentially represent the behaviors at the
stationary stage, although small residual evolution can be seen (a recent study in a slightly different context [28] shows
that some small changes can be seen up to time t ∼ 12τη).

We present in Fig. 1 the PDFs for the alignment between ec
1 and the S-frame, i.e., P (αi), calculated from our data.

At very short time δt , Cij(δt) ≈ δi j + 2δt Si j . Thus Cij has perfect alignment with Sij , where ec
1 is in the same direction as es

1
and perpendicular to es

2 and es
3. The alignment relaxes over time. The alignment between ec

1 and es
2 increases while that

between ec
1 and es

1 weakens, leading to the results in Fig. 1(a). Fig. 1(b) shows that the ec
1 − es

2 alignment finally dominates,
while ec

1 and es
1 remain a rather strong tendency to align with each other. On the other hand, ec

1 always tends to be
perpendicular to es

3 with large probabilities. These observations confirm what has been found in previous investigations
(see, e.g., [6]).

Our goal is to understand the evolution shown in Fig. 1. We thus look into the conditional statistics that control the
preferential ec

1 − es
2 alignment. We plot in Fig. 2 the conditional averaged effective rotations for α2 weighted by the PDF

P (α2), i.e., the probability fluxes. The total value and those from the rotation of the S-frame and the C-frame are plotted
separately. According to Eq. (37), the PDF for α2 increases where the gradient of the weighted conditional average of R
is negative, and vice versa. The dash–dot curve in Fig. 2(a) has a negative gradient for α2 > 0.6, which shows that the
probability for preferential alignment α2 > 0.6 increases. The same trend remains at t = 7.35τη (Fig. 2(b)), but with a rather
weaker rate, indicative of reaching stationary distribution. These behaviors are consistent with Fig. 1. The results for the
separate contributions exhibit interesting difference. The contribution from the rotation of the S-frame shows the same
trend as the total contribution. Namely, it always tends to strengthen the ec

1 − es
2 alignment. On the other hand, the rotation

of the C-frame always tends to weaken the alignment. The behavior is observed at both times.
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Fig. 2. The probability flux 〈R∗ | α2〉P (α2) for ec
1 − es

2 alignment at (a) t = 3.68τη and (b) t = 7.35τη . Solid line: R∗ = Rs
o + Rs

p + Rs
v (total contribution from

the rotation of the S-frame); dashed line: R∗ = Rc
o + Rc

s (total contribution from the rotation of the C-frame); dash-dotted line: R∗ = R (total).

Fig. 3. The probability fluxes 〈R∗ | α2〉P (α2) for ec
1 − es

2 alignment at t = 3.68τη . (a) Solid line: R∗ = Rs
o ; dashed: R∗ = Rs

p ; dash-dotted: R∗ = Rs
v ; dotted:

the sum of previous three. (b) Solid line: R∗ = Rc
o ; dashed: R∗ = Rc

s ; dotted: the sum of previous two.

The contributions from the rotation of the two frames are presented in Fig. 3. Plotted in Fig. 3(a) are the three contri-
butions to the rotation of the S-frame. The figure shows that both vorticity (solid line) and the non-local pressure Hessian
work to strengthen the ec

1 − es
2 alignment, since the two curves mostly have negative gradients for large α2. The viscous

term makes a small, opposite contribution. The two contributions to the rotation of the C-frame are given in Fig. 3(b). Here
vorticity tends to increase the alignment as well, as is shown by the solid line. The effect is weaker compared with the
vorticity contribution in Fig. 3(a), since the slope of the curve is flatter. This contribution, however, is dominated by the
counteracting contribution from straining, shown by the dashed line. In other words, the straining of the material element
tends to strongly tilt ec

1 away from es
2. Thus, both Figs. 3(a) and (b) show consistently that, whilst vorticity tends to enhance

the alignment, straining does the opposite.
To assess the relative importance of the pressure Hessian term, we compare it with the combination of all the other four

contributions, which mainly come from straining-and-vorticity-induced rotation (of the two frames) and will be referred
to as local effects. Fig. 4(a) shows, respectively, the conditional rate of change of α2 generated from the pressure Hessian
(dashed line) and that from local effects (dash-dotted line), at t = 3.68τη . The total value is plotted with solid line as
a reference. We first observe that the magnitudes for the two distributions are comparable, thus the non-local pressure
Hessian indeed has significant effects. The curve for local effects has a steep negative slope near α2 = 1, implying that they
have a strong effect in generating the ec

1 − es
2 alignment. Meanwhile, the distribution for pressure Hessian has a positive

slope at α2 = 1. Thus, it does not prefer the perfect alignment between ec
1 and es

2, although overall it tends to improve their
alignment, since the curve mostly has negative slope when α2 > 0.5.

On the other hand, for α2 around 0, the pressure Hessian contribution has a steeper positive slope compared with that
of the local effects. This means that the non-local pressure Hessian is more effective at bringing ec

1 and es
2 closer when

they are nearly perpendicular. This interpretation is collaborated by Fig. 4(b). In (b) the comparison is made at an earlier
time t = 1.22τη . At this stage ec

1 dominantly aligns with es
1 and tends to be perpendicular to es

2. The figure shows that the
contribution from pressure Hessian is much stronger, as is expected from the above interpretation.

Fig. 5 plots same comparison as Fig. 4(a) at t = 7.35τη . The total contribution now is nearly zero as the PDF is reaching
the stationary distribution. Compared with Fig. 4(a), the local effects remain nearly the same except the magnitude has
decreased slightly. On the other hand, the non-local pressure Hessian has evolved to counteract the local effects. Namely,
the pressure Hessian now acts to destroy the ec − es alignment, with a sharp positive slope at α2 = 1.
1 2
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Fig. 4. The probability fluxes 〈R∗ | α2〉P (α2) for ec
1 − es

2 alignment at (a) t = 3.68τη , (b) t = 1.22τη . Solid line: R∗ = R (total); dashed: R∗ = Rs
p ; dash-dotted:

R∗ = R − Rs
p .

Fig. 5. Same as Fig. 4(a) but for t = 7.35τη .

Fig. 6. The probability fluxes 〈R∗ | α1〉P (α1) for ec
1 − es

1 alignment at t = 1.22τη . (a) Contributions from the rotation of the S-frame. Solid line: R∗ = Rs
o ;

dashed line: R∗ = Rs
p ; dash-dotted line: R∗ = Rs

v ; dotted line: total contribution. (b) Contributions from the rotation of the C-frame. Solid line: R∗ = Rc
o ;

dashed line: R∗ = Rc
s ; dotted line: total contribution.

It is also instructive to consider the results for the alignment between ec
1 and es

1. Fig. 6 shows the results for the
probability fluxes at a short time t = 1.22τη . Note that initially the ec

1 − es
1 alignment is perfect, and P (α1) has a strong

peak at α1 = 1. The total contributions from the rotation of the S-frame and C-frame are given by the dotted line in
Figs. 6(a) and (b), respectively. Overall the rotation of the S-frame will reduce the peak strongly, as shown by the steep
negative slope near α1 = 1. On the other hand, the rotation of the C-frame tends to maintain the peak. For the rotation of
the S-frame, Fig. 6(a) shows the contributions mainly come from vorticity and pressure Hessian, the latter dominating the
former. Viscous diffusion tends to maintain the alignment, but the effect is weak. For the rotation of the C-frame, Fig. 6(b)
shows that vorticity tends to reduce the alignment. However, the straining-induced rotation produces an even stronger effect
to reinforce the alignment.

The qualitative features shown in Fig. 6 are maintained at later times. We now show the comparison between pressure
Hessian and the total of other local effects in Figs. 7(a), (b) and (c) for t = 1.22,3.68 and 7.35τη , respectively. It is clear from
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Fig. 7. The probability fluxes 〈R∗ | α1〉P (α1) for ec
1 − es

1 alignment at (a) t = 1.22τη , (b) t = 3.68τη and (c) t = 7.35τη . Dashed line: R∗ = Rs
p ; dash-dotted

line: R∗ = R − Rs
p ; solid line: total contribution.

Fig. 8. The probability fluxes 〈R∗ | α3〉P (α3) for ec
1 − es

3 alignment at t = 3.68τη . (a) Contributions from the rotation of the S-frame. Solid line: R∗ = Rs
o ;

dashed line: R∗ = Rs
p ; dash-dotted line: R∗ = Rs

v ; dotted line: total contribution. (b) Contributions from the rotation of the C-frame. Solid line: R∗ = Rc
o ;

dashed line: R∗ = Rc
s ; dotted line: total contribution.

the results that the pressure Hessian is the main cause for the reduction of the ec
1 − es

1 alignment (with steep positive slope
near α1 = 1). The effect persists throughout the evolution. On the other hand, the local effects initially also help reduce
the alignment, but then turn to enhance it at later time. The two contributions almost balance each other in the end, as is
shown in Fig. 7(c).

Finally, we briefly discuss the ec
1 − es

3 alignment, shown in Fig. 8. As is shown in Fig. 1, ec
1 initially is perfectly perpen-

dicular to es
3, and remains preferentially so later on. Therefore we focus on the behaviors near α3 = 0 when examining

Fig. 8. First of all, we observe that the effect of vorticity (shown by solid lines in both (a) and (b)) is always reducing the
probability for the perpendicular configuration, since the curves have positive slopes at α3 = 0. This is in line with the
prediction from the restricted Euler approximation (see Eq. (25) and the discussion that follows) and previous research [6].
Pressure Hessian, shown by the dashed line in Fig. 8(a), also tends to reduce the probability for α3 = 0, and the effect is
rather strong. On the other hand, the dashed line in Fig. 8(b) shows that the straining-induced rotation of the C-frame will
in effect strengthen the perpendicular configuration.

4. Conclusions

We have investigated the properties of geometrical alignment in the evolution of material elements in isotropic turbu-
lence. We first present an analysis based on the restricted Euler approximation, and look into the asymptotic stretching
rate and alignment trends for material line elements. The result predicts that the stretching rate would be given by the
intermediate eigenvalue of the strain rate tensor. The prediction is consistent with well-known observations in numerical
simulations of isotropic turbulence. The alignment properties between a material element and the strain rate tensor are
then analyzed using DNS data. The individual contributions to the rotation of the eigenframes of the strain rate tensor as
well as the Cauchy–Green tensor are documented. Emphasis is given to the effects of the pressure Hessian.

The results show that the pressure Hessian is the main cause for the misalignment between the longest axis of the
Cauchy–Green tensor and the strongest stretching eigendirection of the strain rate (the 1–1 alignment). This effect persists
throughout the evolution. In the meantime, it facilitates the alignment between the longest axis of the Cauchy–Green tensor
and the intermediate eigendirection of the strain rate (the 1–2 alignment) during initial evolution. However, its role changes
to resist the 1–2 alignment later.

Vorticity-induced rotation of both eigenframes prefers 1–2 alignment and suppresses 1–1 alignment, whereas straining-
induced rotation does exactly the opposite. The two effects partially cancel each other, and the net effect is that both
alignments are enhanced.
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The effects of the pressure Hessian cannot be trivially reduced to its effects on the rotation of the eigenframe of the strain
rate tensor, since they strongly depend on the relative orientation of the two eigenframes and evolve with deformation.
Our results shed some light on the interesting effects on the coupling between the three entities. More questions remain to
be answered, such as the geometrical alignment between the pressure Hessian and the material elements, which may help
understand the interesting roles of the former. This, and related questions, will be the subject of further studies.
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