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We study the influence of the growth kinetics on the Asaro–Tiller–Grinfel’d instability of a
thin film deposited on a patterned substrate. We use a continuum model that we solve
at first order in the surface slope. Both wetting interactions and elastic fields induced
by the film/substrate interface introduce an explicit dependence on the film thickness.
As a consequence, the translational symmetry in the growth direction is broken and
the deposition flux cannot be trivially accounted for. Similarly to the evolution during
annealing, the instability can skip during growth from an in-phase to an out-of-phase
geometry depending on the growth duration and film thickness. We compare the evolution
of the instability using different deposition fluxes. We find that the kinetic phase diagram
found in the annealing case also explains the evolution during growth in usual growth
conditions.
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r é s u m é

Nous étudions l’influence de la cinétique de croissance sur l’instabilité d’Asaro–Tiller–
Grinfel’d qui se développe sur un film mince sur un substrat structuré. Nous utilisons un
modèle continu qui est résolu au premier ordre en la pente de la surface. Les interactions
de mouillage ainsi que le champ élastique induit par l’interface film/substrat introduisent
une dépendance explicite dans l’épaisseur du film. En conséquence, la symétrie par
translation dans la direction de croissance est brisée et le flux de déposition n’est pas
un paramètre trivial de l’instabilité. Comme dans le cas du recuit, nous trouvons que
l’instabilité peut évoluer d’une configuration en phase vers une configuration en opposition
de phase avec le substrat, en fonction du temps de déposition et de l’épaisseur du film.
Nous comparons l’évolution de l’instabilité pour différents flux de croissance. Le diagramme
des phases cinétique obtenu dans le cas du recuit rend aussi compte de l’évolution du film
lors de la croissance dans ses conditions courantes.
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1. Introduction

Controlling the self-organization of quantum dots is a requirement for their potential use in optical or electronic systems.
Their position, geometry and size distribution need to be precisely defined if one wants to draw benefit of their physical
properties. This control addresses fundamental questions regarding the growth mechanisms of quantum dots (QDs) and
the interplay between self-organization and an external forcing. The coherent deposition of a crystal film on a lattice-
mismatched substrate is known to be a good way to generate QDs following the Stransky–Krastanov growth mode, where
strain relaxation leads to an island after the completion of a wetting layer [1,2]. However, when grown on a flat substrate,
the randomness of surface diffusion leads to disordered objects with a significant size dispersion. Recent developments have
been made to combine the strain induced self-assembly with surface patterning in an effort to improve the size uniformity
and spatial order [3].

Different kinds of templates have been dedicated to the growth of quantum dots using optical lithography, e-beam lithog-
raphy, focused ion-beam (FIB), vicinal substrates, growth instabilities, etc. [3–9]. In some conditions, a strong correlation is
found between the pattern and the growing islands leading to regular arrays. For example, Ge dots grown on stripes and
mesas revealed ordering on the top concave part of the template [10–13]. On the contrary, pit-patterned substrates pro-
duced by holographic lithography in the sub-micrometer range lead to ordering of islands inside the pits, i.e. in the bottom
convex part of the pattern, see e.g. Ref. [14], as found in similar geometries [15–18]. More recently, experiments on FIB
nano-patterns [3,19] evidenced the influence of the temperature: while islands nucleate at low temperature inside the pits,
they nucleate outside at high temperature and randomly at intermediate temperature.

On the theoretical front, no clear and comprehensive description of the preferential growth of islands on a pattern
arises. As regards equilibrium, Yang, Liu and Lagally [13] showed that local minima of the surface chemical potential arise
in convex regions due to an enhanced strain relaxation, so that growth should occur preferentially on top of the pattern. On
the other hand, Monte Carlo simulations [19] showed that equilibrium corresponds to dots sitting between holes, whereas
metastable states are found at low T , where dots grow in the pits. Finally, note that a simple calculation assuming a
sinusoidal surface and pattern shapes [20] showed that the geometry which minimizes the energy corresponds to a substrate
out-of-phase with respect to the substrate where the surface maxima lie on top of the substrate minima. As regards kinetics,
the computation of the variation of the nucleation barrier due to the sole elastic relaxation showed that nucleation should
be directed in the bottom of a pit [21]. Finally, kinetic Monte Carlo simulations using a basic description of elastic relaxation
with a given chemical potential for different islands volume, argued that, whereas the most energetically favorable sites are
in the center of the pits, nucleation occurs randomly at low T , and preferentially in the holes at intermediate and high
T , the latter undergoing a significant Ostwald ripening. Our goal is to clarify the different outcomes and to investigate the
ordering resulting from the diffusion equation on a surface which describes the essential mechanisms at work on large
scales.

The island growth may follow different pathways. In SiGe systems, islands nucleate spontaneously during an abrupt 2D–
3D transition when the strain is high enough, i.e. concerning a Si1−xGex film on Si, when x is high enough. However, when
the strain is not too large, the island growth follows an initial nucleationless morphological instability [22] reminiscent of
the Asaro–Tiller–Grinfel’d (ATG) instability [23,24]. The absence of nucleation in this case is a promising route for increasing
the spatial order resulting from the island self-organization, especially when growth occurs on top of a patterned substrate.
We aim here at describing the evolution governing this instability on a patterned substrate. We performed in Ref. [25] a
linear analysis of this instability on a pattern for a given film thickness. It corresponds to experiments where one grows a
film one a time scale where mass transport does not have time to occur, and then performs annealing where the instability
occurs. We investigate here the influence of the growth kinetics on the instability development and study the evolution
during deposition also and its dependence on the flux.

We consider a continuum model describing surface diffusion ruled by surface energy, elastic relaxation and wetting
interaction between the film and the substrate. Using a quasi-static approximation, we find the mechanical equilibrium
solution within the small-slope approximation and solve the film evolution at linear order in the surface corrugation. We
find different geometries depending on the pattern wavelength, film thickness, annealing time, and deposition flux. The
film can either mainly develop a corrugation equal to the substrate shape but either in-phase or out-of-phase, or develop a
‘classic’ ATG-like morphology with little impact of the pattern. We compare these results with the dynamics resulting from
the annealing case and find that the kinetic phase diagram which gives the typical geometry as a function of time and film
thickness, is still relevant under deposition when typical growth conditions are used. Of special interest is the time where
a phase shift occurs, i.e. where the instability is first in-phase with the substrate, vanishes and subsequently develops an
out-of-phase configuration [25]. This change of geometry is important for the localization of the subsequent quantum dots
which will grow on the basis of the instability initial stage.

2. Continuum model

We describe the hetero-epitaxial system by a film with a free surface z = h(r, t), where z is the growth direction and
r = (x, y), deposited on a substrate with an interface z = hi(r). The lattice mismatch between the film and substrate is
m = 1 − a f /as , with the film a f and substrate as lattice parameters. Mechanical equilibrium is reached on the instability
time scale so that the Navier–Lamé equations, ∂iσ i j = 0, apply in the entire system. The film surface is supposed to be
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free of stress, while the film/substrate interface is coherent, with the continuity of displacements and forces. An analytical
solution of the Navier–Lamé equations can be found in Fourier space F [h](k) = (2π)−2

∫
dr eik·rh(r) when using the small-

slope approximation for solving the interface and free film boundary conditions. Given the elastic displacements and strain
tensor e, one can compute the elastic energy density Eel = 1

2 σi jei j at first order, which reads on the surface [25]

Eel(r) = E0
{

1 − 2(1 + ν)H[h] + 2(1 + ν)Hi[hi, h̄]} (1)

where E0 = Y m2/(1 − ν) is the elastic energy density of a flat film on a flat substrate, while ν and Y are the film Poisson
ratio and Young modulus respectively. The operators

H[h] = F−1[|k|F[h]] (2)

Hi[hi, h̄] = F−1[|k|e−|k|h̄F[hi]
]

(3)

are associated respectively with the elastic dipoles induced by the free surface and to the buried dipoles of the film/substrate
interface which involve the mean film thickness h̄.

The morphological evolution that we study is ruled solely by surface diffusion, which is relevant for experiments at not
too high temperature where intermixing could also come into play. The diffusion flux on the surface enforces the mass
conservation equation

∂h(r, t)

∂t
= D�sμ + F (4)

where D is a surface diffusion coefficient, �s is the surface Laplacian, μ is the chemical potential and F is the deposition
flux. The chemical potential μ is the sum of the elastic energy on the surface Eel(r)a3

f , and a term describing the surface
energy. Wetting interactions between the film and the substrate induce a dependence of the surface energy on the film
thickness h when the latter is a few atomic layer large. In order to depict SiGe systems where a small variation of γ
is found [26], we decompose the latter dependence as γ (h) = γ f (1 + δγh), where γ f is the pure film surface energy
while δγh = cw exp(−h/δw), with the amplitude cw and decay length δw . Given that the local thickness is h(r) − hi(r), we
consider on a patterned substrate the dependence γ (h − hi). The surface contribution to the chemical potential is thence
γ (h − hi)κ + ∂γ

∂h
1√

1+|∇h|2 , where κ is the surface curvature equal to −�h at first order in the surface slope. Eventually, in

units of the space and time scales l0 = γ f /2(1 + ν)E0 and t0 = l40/Dγ f , the evolution equation at first order in the surface
and interface slopes reads

∂h

∂t
= �

{−�h −H[h] +Hi[hi] + a(h̄)(h − hi)
} + F (5)

with the amplitude of the wetting term a(h̄) = cw e−h̄/δw /δ2
w .

For a given film thickness h̄ on a flat substrate, a single mode modulation of the film surface eik·r grows as eσ t with the
growth rate

σ(k; h̄) = −a(h̄)k2 + |k|3 − k4 (6)

The typical |k|3 − k4 spectrum corresponds to the usual ATG instability which is hindered by the −k2 wetting term, as
wetting favors the surface to follow the pattern shape. Below a given thickness hc , σ is negative for every k and the
instability is suppressed due to wetting interactions [27], as usual in the Stransky–Krastanov growth mode. On the contrary,
above hc , the instability grows and we define for convenience kATG = 3/4 as the wave-vector which maximizes the ATG
growth rate when no wetting interactions are at work, and which defines the typical length scale of the ATG instability. The
influence of the forcing terms in Eq. (5) on the morphological evolution at constant thickness h̄ was analyzed in Ref. [25]
where we described the kinetic phase diagram of the instability: Depending on the substrate wavelength, film thickness and
annealing time, the surface geometry was found either to follow exactly the pattern, to follow the pattern shape but with
an anti-coincidence geometry, or to merely develop the instability typical geometry quite independently of the pattern.

In order to depict growing films and the influence of the growth kinetics, we now consider a two-step growth mode,
where the film is first grown at constant deposition flux before annealing occurs, see Fig. 5. The film evolution is now
explicitly function of the film thickness (h̄) which depends on time. During the first step h̄(t) = hc + Ft , while it is constant
during annealing. We do not consider the dynamics below the critical height where no evolution occurs because of strong
enough wetting interactions. Once a given thickness is reached, that we choose in most cases equal to 20 monolayers (ML)
for practical reasons, annealing is performed at constant thickness h̄(t) = cst. The evolution equation at linear order (5) can
be solved analytically, and one finds

h(k, t) = h0(k)eσ ∗
k (t)t + δ(k)Ft + hi(k)eσ ∗

k (t)t × · · · ×
t∫

dt′[k2δγ ′′
h

[
h̄
(
t′)] − |k|3e−|k|h̄(t′)]e−σ ∗

k (t′)t′ (7)
0
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Fig. 1. (Color online.) Geometry of a film deposited on a patterned substrate with an egg-carton shape.

Fig. 2. (Color online.) Kinetic phase diagram for ki = kATG. The red line tex characterizes the time when the instability skips from a configuration parallel to
the pattern but in-phase with it to a configuration out-of-phase. The blue lines with dots show the film thickness evolution under consideration related to
deposition fluxes F = 0.1 ML/s and F = 0.2 ML/s respectively. The blue points refer to the times corresponding to the deposition of each monolayer from
hc up to 20 ML, and characterize the line scans shown in Figs. 3 and 4. The black points on the horizontal line refer to the different times during annealing
also shown in Figs. 3 and 4.

where h0(k) is the initial condition h(r, t = 0) in Fourier space, while we defined the time-average growth rate σ ∗
k (t) =

1
t

∫ t
0 dt′σ [k; h̄(t′)] and defined δγ ′′

h as the second derivative of γ (h) with respect to h. Eq. (7) shows that the film evolution
is dictated firstly by a term linked to the initial condition h0 which enforces a classic ATG instability dynamics. On the other
hand, the term linked to hi favors the film surface to follow the pattern geometry, in-phase if its amplitude is positive, or
out-of-phase otherwise.

3. Results and discussion

In the following, we consider a substrate which displays a typical egg-carton shape, see Fig. 1, with a wave-vector
modulus ki ,

hi(r) = ε
[
cos(ki x) + cos(ki y)

]
(8)

where ε is a small parameter which ensures the small-slope approximation. When h̄ < hc , the instability does not occur and
wetting interactions enforce a surface which follows the pattern geometry. We compute the evolution after the thickness hc

and choose for the initial condition

h0(r) = hC + hi(r) +R (9)

where R is a white noise which describes the intrinsic deposition noise and substrate roughness that we choose to corre-
spond to a roughness of 1 ML [25]. We perform a numerical computation of Eq. (7) using a decomposition on the Fourier
modes, with the parameters appropriate for a Si0.75Ge0.25 film on a Si substrate, cw = 0.09, δw = 1 ML while l0 = 27 nm
[28]. At the working temperature T = 700 ◦C, the instability time scale is t0 = 25 s. These parameters and initial condi-
tion (9) correspond to the system under study in Ref. [25]. It was shown in this reference that there exists a typical time
tex(ki; h̄) for which the surface morphology skips during annealing from two geometries parallel to the pattern but either
in- or out-of-phase, through a nearly flat configuration in between (even when the growth rate of the ki mode is positive).

We first consider the simplest case ki = kATG where a single characteristic wavelength occurs and where the pattern
influence is maximal. We plot in Fig. 2, the film thickness evolution for two different fluxes together with the tex line
which results from the annealing analysis. We choose a film thickness of 20 ML while F = 0.2 ML/s for which growth
occurs mainly in the in-phase region of the annealing phase diagram, and F = 0.1 ML/s, for which growth is still acting
at tex. Line scans of the corresponding surface geometries at different times are plotted in Figs. 3 and 4. For the time under
investigation, the surface geometry is mainly dictated by the pattern shape. It skips from an in-phase configuration to an
out-of-phase one roughly at the same time tex compared to the annealing case. For this case, self-organization is found to
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Fig. 3. (Color online.) Line scan of the surface geometry at each monolayer from initial thickness up to 20 ML during deposition and subsequent annealing,
with ki = kATG and F = 0.2 ML/s.

Fig. 4. (Color online.) Same characteristics as in Fig. 3 but with F = 0.1 ML/s. Note the change from in-phase to out-of-phase as indicated by arrows.

be perfectly controlled by the influence of the pattern with either a localization on top (initially) or in the bottom (at large
time) of the pattern depending mainly on the growth duration (either growth or annealing).

We now consider the case ki = 1
2 kATG, where the system is ruled by two different characteristic length scales. In this case,

the dynamics results from the competition between the growth of the ki mode, which favors a change from an in-phase
to an out-of-phase configuration, and the growth of the kATG mode, which favors a typical ATG instability morphology. This
instability is characterized by a moderate spatial order in real space and a ring of maxima in Fourier space. In the annealing
case, beside the tex line, an extra tmax line characterizes the full development of the instability at kATG, see the upper
black line in Fig. 5. The time tmax is defined in Fourier space by the fact that the spectrum |h(k)|2 at kATG is larger than
the spectrum at ki [25]. Two growth scenarios are investigated at two different fluxes, F = 0.1 and 0.01 ML/s, see Fig. 5.
The former corresponds nearly to the annealing case where deposition occurs quickly before any evolution occurs, while
in the latter case, the surface evolution occurs already during deposition. For F = 0.1 ML/s, the tex line is still relevant to
characterize the first vanishing of the amplitude of the ki mode prior to its phase shift, but the surface geometry for this
time gets clearly an extra noisy modulation due to the growth of the ‘classic’ kATG mode. Similarly, for F = 0.01 ML/s, the
vanishing of the amplitude of the ki mode is still well described by the tex line, but the subsequent growth is also clearly
modified by the kATG mode. We plot in Fig. 8(a) the full geometry of the film after the shift from the in-phase to the
out-of-phase geometry. The film clearly gets some noise corresponding to the kATG mode but the geometry enforced by the
pattern is still clearly visible. In addition, when the deposition time exceeds the time tmax, the ‘classic’ instability is again
fully developed, see Figs. 5 and 8(b), and overcomes the pattern mode, as seen in Fourier space in Fig. 9.

These findings put emphasis on the importance to consider a dynamical approach to investigate such structures. Min-
imization of energy would lead, when no wetting interactions are at work, to a geometry where the film is out-of-phase
relatively to the substrate [20]. When wetting interactions are included, an in-phase configuration would be stable for thin
enough films, while the out-of-phase one is again stable above a given thickness [25]. Here, we find that either states can
be found depending on the time used to grow the film, with a transition from the in-phase to the elastic energy minimizing
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Fig. 5. (Color online.) Same notation as in Fig. 2 but for ki = 1
2 kATG, and with deposition fluxes F = 0.1 and 0.01 ML/s corresponding respectively to the

line scans in Figs. 6 and 7. The extra upper black line, referred to as the tmax line in the text, delimitates the region where the instability mode kATG is
stronger than the ki one. The dash line corresponds to the tmax line on a stripe pattern, see Fig. 10, as discussed in Appendix A.

Fig. 6. (Color online.) Line scan of the surface geometry at each monolayer from initial thickness up to 20 ML during deposition and subsequent annealing,
with ki = 1

2 kATG and F = 0.1 ML/s.

Fig. 7. (Color online.) Same characteristics as in Fig. 6 but with F = 0.01 ML/s.

out-of-phase geometry. Moreover, an instability with a spectrum similar to the flat substrate may be observed for a large
enough deposition time. The geometry resulting from the instability defines the first stage on which quantum dots subse-
quently grow. Even though a systematic and explanatory comparison cannot be drawn between a simple linear analysis and
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Fig. 8. (Color online.) Surface geometry with ki = 1
2 kATG and F = 0.01 ML/s corresponding to: (a) the time when the pattern wave-vector mode vanishes

(even when it has a positive growth rate) in order to allow a shift from an in-phase to an out-of-phase configuration with respect to the pattern (cor-
responding to a 15 ML thick film); (b) a time after the phase shift where the instability corrugation is superimposed on an out-of-phase configuration
(corresponding to a 20 ML thick film).

Fig. 9. (Color online.) Spectrum of the surface morphology for 25 ML deposited layers (t = 67t0) for ki = 1
2 kATG and F = 0.01 ML/s, see the kinetic phase

diagram of Fig. 5. The ring corresponds to the ‘classic’ spectrum of the ATG instability while the four peaks correspond to the pattern modes.

experiments, we believe that the kinetic phase diagram that we have exhibited gives some hints on the parameters relevant
during growth and defines the basis of future work on the full non-linear regime.

4. Conclusion

We study here the dynamics of the morphological instability of a strained film on a patterned substrate. We solve
the evolution equation during growth resulting from the continuum description of surface diffusion induced by elastic
relaxation, surface energy and wetting interactions. We investigate the influence of the deposition flux on the initial stages
of the instability in the linear approximation, and compare our findings with the results of the instability during annealing.
For a given flux, we find different states (a configuration equal to the substrate geometry but either in-phase or out-of-phase,
a ‘classical’ ATG instability-like morphology, etc.) depending on the time, pattern wavelength and film thickness. We study
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Fig. 10. (Color online.) Geometry of a 1D stripe pattern.

different growth scenarios where we deposit a given thickness but with different deposition flux and total duration of
growth and annealing. We find that the kinetic phase diagram found analytically in the annealing case describes well the
film configuration for a flux appropriate to describe usual growth conditions. In addition, as described in Appendix A, we
also find that this kinetic phase diagram also applies to describe the film geometry in the case of a 1D stripe pattern,
and is therefore likely to be relevant in many different geometries and growth scenarios. Further investigation of the fully
developed island regime will require a non-linear analysis. It was already pointed out that the translational symmetry-
breaking in the growth direction due to wetting interactions, enforces a non-trivial dependence on the deposition flux
which leads, on a flat substrate, to different non-linear regimes [29]. Extension of the latter analysis to the patterned case,
where an extra symmetry-breaking arises from the elastic interactions, is currently under investigation.

Appendix A. 1D stripe pattern

We investigate here the influence of the pattern geometry by looking at a 1D pattern, see Fig. 10, where the
film/substrate interface is basically

hi(r) = ε cos(ki x) (10)

This geometry mimics stripe patterns which are also often studied in experiments. The evolution equation during annealing
at linear order is merely

h(k, t) = h0(k)eσ t − C(k, h̄)hi(k)
(
eσ t − 1

)
(11)

with the surface initial condition h0(k) and the coefficient of the inhomogeneous solution C(k, h̄) given in Ref. [25]. The
kinetic phase diagram for both the egg-carton and stripe shapes during annealing are plotted in Figs. 2 and 5. The time for
the phase exchange tex(ki, h̄) is the same for both patterns as it is defined in both cases by tex(ki, h̄) = ln[C/(C − 1)]/σ .
However, the tmax line, which delimitates when the ‘classic’ instability overcomes the pattern influence, differs slightly for
these two pattern shapes, see Fig. 5. The tmax line is indeed slightly shifted for smaller times for the stripe pattern, as the
amplitude of the ki mode is indeed smaller in this case compared to the egg-carton shape.
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