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We review recent experimental, theoretical, and computational studies of red blood cells
and their mimics, vesicles and capsules, in flow. We focus on the continuum approach in
modeling cell deformability and blood rheology.
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r é s u m é

Nous passons en revue les progrès expérimentaux, théoriques et numériques réalisés dans
l’étude de la dynamique des globules rouges et des systèmes biomimétiques, les vésicules
et capsules sous écoulement. Nous mettons l’accent sur les approches continues de la
modélisation de la déformabilité des cellules ainsi que sur la rhéologie du sang.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Red blood cells (RBCs) are micron-sized cells that are the main component of blood; they make up for about 45% of
its volume. Blood circulates through the body via a network of vessels with diameter ranging from few microns in the
microcirculation (e.g. capillaries), which is comparable to and even smaller than the RBC size, to few millimeters in the
macrocirculation (e.g., aorta). Normal physiological function depends on the mechanical stability of the individual RBCs and,
since blood is a dense suspension, on their collective dynamics under widely varying flow and geometry conditions. This
is a vast area of active research, as evident from recent reviews [1–5]. Here we overview the work on this topic in recent
years.

The healthy human RBC lacks nucleus and organelles; it is essentially a membrane encapsulating a hemoglobin solution.
The membrane consists of a lipid bilayer supported by an attached spectrin polymer network (Fig. 1b). Features of the RBC
mechanics arising from the properties of either the lipid bilayer or the spectrin network are studied on two model systems:
vesicles (made of lipid bilayers) [6] and capsules (made of polymerized membranes) [7,8]. In this review we attempt to
provide an overview of the understanding of the dynamics of real RBCs gained from these two model systems.

Since the composite bilayer-spectrin membrane is very thin (∼10 nm [9]), on the length scale of the cell the membrane
can be treated as a two-dimensional viscoelastic interface. Accordingly, continuum models based on elasticity theory and
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Fig. 1. Illustration of the continuum approach to modeling the human RBC membrane. (a) The equilibrium shape of a healthy human RBC is a biconcave
disk approximately 8.0 μm in diameter and 2.0 μm in width. The (composite) cell membrane is approximated as a continuum viscoelastic interface. (b) The
cell membrane structure comprises the lipid bilayer, the spectrin network and transmembrane proteins [12]. Color available in the online version of this
article.

fluid dynamics provide a basis for studying RBC mechanics on mesoscopic to macroscopic length and time scales (Fig. 1).
In this review we discuss only the continuum approaches. However, we should note that in recent years there is increasing
interest in particle-based simulations. Such methods could potentially answer questions concerning the coupling of bio-
chemistry and mechanics, which require resolution of subcellular structures and processes, for example shear-induced ATP
release [5] and the mechanics of diseased RBCs [10]. We refer the interested reader to [11].

2. Membrane models

Under stress, energy is stored in the membrane through the elastic deformations (bending, shearing, and dilation/com-
pression) or dissipated by viscous friction. The fluid lipid bilayer is responsible for the resistance to bending, stretching
and viscous dissipation, while the spectrin scaffolding is responsible for the elastic behavior such as resistance to shearing
(Fig. 1b).

The cost for bending is described by several models based on the Helfrich energy [13]. For a membrane patch with area
A the bending energy Eb can be expressed as:

Eb = κ

2

∮
A

(2H)2 dA + κg

∮
A

KG dA (1)

where κ and κg are the bending and the Gaussian elastic moduli, H and KG are the mean and Gaussian curvatures. The
contribution from the Gaussian curvature is a constant if the topology of the surface does not change.

A classic model for the elastic energy Ee associated with the stretch and shear of the spectrin polymer network is
[14–16]:

Ee = KA

2

∮
α2 dA + μ

∮
β dA (2)

where α = λ1λ2 − 1 and β = (λ1 − λ2)
2/2λ1λ2 are the local area and shear strain invariants and λ1 and λ2 are the local

principal stretches. KA and μ are the elastic moduli for stretch and shear, respectively. Higher-order nonlinear elastic terms
can be included in the strain energy Eq. (2) to describe very deformed shapes such as echinocytes [17,18].

The mechanical properties of the RBC membrane have been measured by various techniques: micropipette aspiration
[15], optical tweezers [19–23], electric field deformation [24,25] and thermal shape fluctuations (flickering) [26,27]. The
surface shear elastic modulus μ is estimated to be a few μN/m, while the area expansion KA (controlled by the lipid
bilayer) is about 105 higher than that [4]; accordingly the membrane is virtually area-incompressible. The bending rigidity
similar to that of lipid bilayers, in the order of a few 10kBT (here kB is the Boltzmann constant and T is the absolute
temperature).

Equilibrium RBC shapes minimize the sum of the bending and elastic energies (Eqs. (1) and (2)). However, the shapes
under flow represent a non-equilibrium problem and energy minimization is not applicable; instead the cell shape and
motion are determined by the balance of membrane and viscous flow stresses.

The membrane stresses per unit area of deformed membrane are obtained from the variation of bending and elastic
energies. For example, Eq. (1) yields:

τ κ = −κ
(
4H3 − 4KG H + 2∇2

s H
)
n (3)

The area-incompressibility constraint is treated by the use of a local Lagrange multiplier, which adds an additional term to
the free energy of the membrane

∫
σ dA. The corresponding stress is:

τσ = σ Hn − ∇sσ (4)
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These forces can also be written as a surface divergence of a second-order stress tensor:

Σ = −κ

(
−1

2
H2Is + H∇sn − n∇s H

)
+ σ Is (5)

The elastic behavior can be described by various constitutive laws [28,8], which for small membrane deformations reduce
to a linear stress–strain relation (a two-dimensional equivalent of Hooke’s law) [29,30]:

τμ = 2(KA − μ)(∇s · d)Hn − (KA − μ)∇s∇s · d − μ∇s · [∇sd · Is + Is · (∇sd)†] (6)

where d is the displacement of a material particle of the membrane from its unstressed position. The surface gradient
operator is defined as ∇s = Is · ∇ , where the matrix Is = I − nn represents a surface projection. Like τ κ , the elastic force
can also be written as a surface divergence of a second-order stress tensor (see [30,7]). For an incompressible membrane
∇s · d = 0 and the elastic stresses depend only on the shear elastic resistance.

Membrane viscous stresses depend not on the strain but on the rate of strain; the analog of Eq. (6) for a Newtonian
interface has the interface velocity vm instead of d, the surface shear viscosity ηmm in place of μ, and the surface dilational
viscosity in place of KA.

3. RBC dynamics: Experimental observations

3.1. Equilibrium fluctuations

Thermally induced membrane undulations are widely used to measure the mechanical properties (elastic moduli and
viscosity) of artificial lipid bilayers [31,32]. The RBC membrane, however, shows some non-trivial features. Experiments find
that the fluctuations are not isotropic on the RBC surface but enhanced at the outer convex region [33]. It appears that the
RBC fluctuations are sensitive to ATP but this is an effect still under debate [34,27,33,23]. Another surprising result is that
the RBC effective viscosity determined from fluctuation analysis is an order of magnitude higher than usually assumed [27],
which is attributed to “unknown dissipative process”.

3.2. Flow

In flows resembling the microcirculation, RBCs exhibit various behaviors. In steady shear flow, a RBC deforms into an
ellipsoid that can tank-tread (the cell shape and orientation with respect to the flow direction remain steady, while the
membrane rotates as a tank-tread), tumble (continuous flipping), or “swing” (tank-treading accompanied by oscillations in
the inclination angle) [35]. Oscillatory shear may drive chaotic cell response, namely, irregular sequences of tumbling and
tank-treading [36]. In capillary flows, an individual RBC can adopt either symmetric parachute or asymmetric slipper shape
depending on confinement and flow rate [1,37]; multiple RBCs form clusters with limiting size, depending on the applied
pressure drop (flow strength) [38].

Membrane-bound particles such as vesicles [2] and capsules [7,8] mimic some features of the RBCs behavior. For example,
vesicles made of pure lipid bilayer can undergo tank-treading or tumbling in linear (shear) flows [39,40], and can adopt
parachute- and slipper-shapes in quadratic (capillary) flows [41]. The swinging motion [42] and the parachute shape in pore
flow [43,44] were also reported for capsules. Recent experiments showed that RBCs under shear flow can perform a rolling
motion [45].

4. RBC dynamics: Modeling

The explanation of the experimentally observed behaviors of RBCs has been attempted with various theoretical ap-
proaches, including reduced analytical models and detailed numerical simulations.

4.1. Analytical models

Theoretical models for the dynamics of a deformable RBC simplify the cell shape and membrane rheology in order
to derive an analytical solution. For example, shape fluctuations are studied on a planar interface because typically the
undulation amplitude is much smaller than the curvature of the cell. The dynamics of the whole RBC in flow is studied by
approximating its shape as an ellipsoid. The exact solutions provide physical insight and results that are useful to validate
numerical simulations.

4.1.1. Fluctuations
Thermal fluctuations of a fluid membrane were considered in the classic studies by [46] in the case of a planar inter-

face, and [47] – for a quasi-spherical vesicle. The curvature undulations of the membrane hq with wave number q have
time-averaged amplitude:

〈
h2

q

〉 ∼ kBT
4 2

(7)

κq + σq
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Fig. 2. Sketch of the flow and capsule configuration. ψ is the inclination angle of the capsule major axis, φ is the angle between the flow direction and the
material particle in the reference configuration. The time rate of change of the phase angle ψ–φ is the tank-treading frequency of the membrane.

and evolve as hq ∼ exp(−st) with a relaxation rate s = (κq3 + σq)/4η reflecting the balance between energy storage in
bending and energy dissipation by the viscosity of the surrounding fluid. The dynamics predicted by the classic theory,
however, shows discrepancies with the experiments, e.g., higher bulk fluid viscosity is needed to fit the data [32]. Sur-
face viscosity could potentially explain the experimental findings. A model for the dynamics of a planar membrane with
surface viscosity has been recently accomplished [48,49] but not yet tested on vesicle fluctuation data. Actually, in planar
geometry the out-of-plane (bending) and in-plane (shear) modes are decoupled, hence one needs to consider the dynamics
of a quasi-spherical vesicle, i.e., generalize the Milner–Safran model [47] in order to see the effect of membrane viscos-
ity.

The effect of the spectrin cytoskeleton can be included by treating the polymer network as a homogeneous viscoelastic
shell coupled to the lipid bilayer [50,51]. However, the experimental observations discussed in Section 3.1 challenge the
continuum view of the RBC membrane. The spectrin cytoskeleton is only sparsely connected to the lipid bilayer, and may
be undergoing continuous remodeling (breaking and reforming of the network). Hence, nonthermal (ATP-driven) shape
fluctuations may reflect topological defects induced in the cytoskeleton network by ATP [52].

4.1.2. Flow
The RBC dynamics under flow is studied using a “capsule” model: a nearly-spherical closed membrane. The capsule

non-sphericity is characterized by the excess area 
, which is the difference between the capsule area and the area of an
equivalent volume sphere:


 = A

a2
− 4π, a =

(
3V

4π

)1/3

(8)


 = 0 for a sphere, and 
 > 0 otherwise. For red blood cells 
 � 5. Dimensional analysis of the governing equations shows
that RBC dynamics are controlled by several dimensionless parameters. One subset depends solely on cell geometry and
fluid properties: excess area 
 and viscosity ratio between the encapsulated and suspending fluids λ = ηin/ηex. The rest are
flow-dependent: capillary number based on the bending rigidity Caκ = ηexa3γ̇ /κ , and capillary number based on the shear
elasticity Caμ = ηexaγ̇ /μ, where γ̇ is the shear rate. In the case of Poiseuille flow, the curvature of the flow is another
relevant parameter.

In the case of pure lipid bilayer (shear-free interface), the theoretical phase diagram of vesicle behaviors (tank-treading,
tumbling, breathing) depends on 3 control parameters, 
, λ, and Caκ [53–56]. The phase diagram is supported by numerical
simulations [57,58], but questioned by experiments [40]. The discrepancies in the latter case appear to be due to membrane
thermal undulations, which are not included in the model. Note also that addition of fluorophores in high-enough concen-
trations (as in the aforementioned experiments [40]) in membranes are known to significantly alter membrane properties,
in that pore formation can take place [59] leading to permanent flow between inside and outside the vesicle. Further studies
are needed in order to see whether thermal fluctuations or pore formation are the determinant factor. Further analysis of
vesicle dynamics highlighted that tumbling can be suppressed by slippage between the two monolayers [60], application of
a uniform electric field in the velocity gradient direction [61] or even small amounts of inertia [62]. Recently, the original
model of vesicles under shear flow [53,54] has been solved exactly [63].

The small-deformation asymptotic theory has been applied to study vesicles in Poiseuille flow [64] or sedimentation [65].
Intriguingly, despite the axial symmetry of the ambient flow, non-axisymmetric solutions for the vesicle shapes are possible.
For example, in Poiseuille flow, in addition to centered symmetric (parachute or bullet) shapes, off-centered asymmetric
(slipper) shapes exist at low flow strengths. These findings are in agreement with numerical simulations [66]. However, the
asymmetric slippers are elusive in experiments [41]. As discussed in [67] the experimentally explored parameter range is
beyond the regime of existence of the slipper shape. Highly deflated vesicles (as is the case with RBCs) should favor the
emergence of slipper shape. While the problem for cell shapes and dynamics in capillary flows is far from being fully solved,
the analytical results suggest that neither the cytoskeleton nor the confinement due to channel walls is essential for the
appearance of the slipper.
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As an example of the successful application of the analytical approach to gain physical insight, here we summarize
the analysis of the swinging motion of a RBC in shear flow, which has generated some controversy. Phenomenological
models [35,68–70], which approximates the RBC with an ellipsoid of fixed shape, predicted intermittent behavior (swinging
periodically interrupted by a tumble), for which no evidence was found in the numerical simulations [71–73]. A deformable
cell was considered in the treatment by [74–76]. Vlahovska et al. [74] described the capsule dynamics in terms of the
orientation angle between its major axis and the flow direction, ψ , and a parameter R , which measures the ellipticity of
the cell contour in the x–y plane, see Fig. 2. The non-sphericity of the rest shape is measured by ε0 = R (t = 0):

∂ψ

∂t
= −1

2
+ Λ−1

2R
cos(2ψ) + ε0

(SΛ)−1

2R
sin(2φ − 2ψ) (9)

∂ R

∂t
= Λ−1(1 − R2) sin(2ψ) + (SΛ)−1

{
ε0

(
1 − R2) cos(2φ − 2ψ) − R

√(
1 − R2

)(
1 − ε2

0

)}
(10)

where

S−1 =
√

2


15π
Ca−1

μ , Λ =
√


(23λ + 32)

8
√

30π
(11)

The tank-treading frequency is ∂tφ = −1/2, where φ is the angle between the position vector of a material particle and the
flow direction. Eqs. (9) and (10) reduce to the vesicle model if the shear elasticity is zero, i.e., S−1 = 0. The capsule model
predicts the observed transition from tumbling to swinging as the shear rate increases. Near the transition, intermittent
behavior (swinging periodically interrupted by a tumble) is found only if the capsule deforms in the shear plane and does
not undergo stretching or compression along the vorticity direction; the intermittency disappears if deformation along the
vorticity direction occurs, i.e., if the capsule “breathes”.

4.2. Computational models

In the case of large deformations, it is necessary to resort to numerical models. The usual technique of resolution consists
in injecting the undeformed particle in the flow field and in following numerically the time evolution of the particle motion
and deformation until a steady state is reached, if any. At a given time, the position of the membrane material points
is thus known. By comparison with the initial reference state, the deformation, curvature and stress in the membrane
τm = τ κ + τμ + τσ are easily computed. Then, the solution of the flow equations gives the velocity vm of the membrane
points, which can be integrated to give the new position of the membrane material points, and the process is repeated.
Different numerical techniques have been used, but the general principle is the same.

One technique is based on the boundary integral method which applies to low Reynolds number flows (Stokes flows)
and which consists in recasting the flow equations of motion in integral form. For the particular case where the viscosity of
the two liquids are equal, λ = 1, the membrane velocity is given by [77]:

vm = v∞ − 1

8πηex

∮
A

(
G · τm)

dA (12)

where G is the Green’s function for the Stokes equations, and v∞ is the applied flow (the formulation for different viscosity
fluids is a bit more cumbersome). The integration is performed on the particle deformed surface A at time t . Within the
framework of this integral representation, the fluid and solid equations of motion can then be solved on the same grid,
thus reducing the geometric dimension of the problem by one. This technique has been used extensively over the years
[78–82] and has been shown to be very precise. It is however, restricted to Stokes flows and thus excludes inertial or
non-Newtonian effects. In the case of capsules it has allowed to compute the flow of initially ellipsoidal capsules and show
how the tumbling and swinging regimes depended on the capsule initial aspect ratio, membrane law and flow strength [83].
It is also possible to use this technique to compute the flow of an initially spherical capsule in a small pore with a square
or circular cross section [84].In this case a parachute or slug profile is found depending on flow strength and confinement
ratio.

In the case of RBC, a major challenge is to enforce the local inextensibility of the membrane; it results in a very stiff
problem with high computational cost. Recently efficient schemes for the BIM have been developed to study pure lipid vesi-
cles (shear-free interface μ = 0) [58,85–89], multicomponent membrane vesicles [90], and RBCs [91,92]. These computations
have allowed to explore the behavior of an isolated vesicle in wall-bounded shear flows [85], unbounded quadratic flows
[66,67], and capillary flows [93]. Collective dynamics of many vesicles has also been considered [94,95], but only to a limited
extent, and a systematic numerical study of suspension rheology is still lacking despite recent progress in this direction with
capsules [96]. Such simulations are needed to interpret the experiments on hydrodynamic interactions between vesicles [97]
and the effective viscosity of suspensions of RBCs and vesicles [98], which was found to depend non-monotonically on λ.

A great advantage of the BIM is the accurate computation of the interface evolution. However, the method cannot han-
dle topological changes such as budding, and it is restricted to zero-Reynolds number (no inertia). To treat these effects,
other computational approaches are being developed, e.g., level-set [99,100], phase-field [101], and front-tracking [102,103].



456 P.M. Vlahovska et al. / C. R. Physique 14 (2013) 451–458
A simulation using the level-set method recently showed that inertia suppresses vesicle tumbling in simple shear flow [62].
Another computational challenge is to include the membrane thermal undulations; progress in this direction has been made
only for planar membranes [104–106].

5. Conclusions

Despite decades of intense research, the dynamic behavior of RBCs remains an active research area full of open problems
such as shape fluctuations with account for ATP effects or membrane viscosity, hydrodynamic interactions and clustering of
RBCs and the rheology of dense suspensions. Finally, the mechanics of diseased RBCs, e.g., in sickle cell anemia or malaria, is
another virtually unexplored problem. This review provides the continuum perspective in analyzing RBC dynamics, however
particle-based methods are becoming increasingly popular [11]. The two approaches complement each other and their
potential fusion could lead to multi-scale models that more closely represent the real RBC and microcirculatory flows.
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