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r é s u m é

Nous discutons les principaux résultats obtenus sur les propriétés universelles de la
dynamique des interfaces élastiques en milieu aléatoire. Une attention particulière sera
dédiée à la relation entre la géométrie rugueuse de l’interface en mouvement et ses
proprietés de transport collectif. Les approches numériques développées permettent de
décrire les propriétés d’équilibre, la dynamique de reptation et la transition de dépiégeage
de l’interface. Nous discutons aussi la pertinence de nos résultats dans les expériences sur
la dynamique des parois.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The out-of-equilibrium interplay between quenched disorder and elasticity in uniformly driven interfaces is at the root of
the universal dynamical response displayed by very diverse physical systems. Examples are magnetic [1–6] or ferroelectric
domain walls [7–13], contact lines in wetting [14,15], fractures [16,17], and earthquakes [18]. In this paper we discuss the
basic phenomenology that emerges by solving, with specially devised numerical methods, the minimal models proposed for
capturing such dynamical behavior.

Universal dynamical properties can be captured, both qualitatively and quantitatively, by rather simple models. To be
concrete we will focus on the paradigmatic-driven quenched Edwards–Wilkinson (QEW) universality class, minimally de-
scribed by:
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Fig. 1. Linking transport and geometry. (a) Snapshot of a domain wall in a two-dimensional ferromagnet [30]. (b) Typical velocity–force characteristics.
(c) Crossover lengths �opt and �av representing the optimal excitation and the deterministic avalanches, respectively. (d) Geometric crossover diagram.
Color available online.

γ∂t u(x, t) = c∂2
x u(x, t) + Fp(u, x) + f + η(x, t) (1)

This equation models the overdamped dynamics of an elastic interface with a univalued scalar displacement field u(x, t),
with x a vector of dimension d, such that the interface is embedded in a space of dimension D = d + 1. The elastic
approximation made above assumes small deformations such that the elastic part of the energy is well described by
Hel = (c/2)

∫
x dxd [∇u]2. We are thus ignoring “plastic” deformations such as overhangs or pinched-off loops that might

appear in real interfaces, and assuming that elastic interactions are short-ranged, with a stiffness constant c. The contact
with a thermal bath at temperature T is modeled by a Langevin noise, such that 〈η(x, t)η(x′, t′)〉 = 2kBT γδ(x − x′)δ(t − t′).
Finally, the interface is coupled with a uniform driving force f and to a quenched pinning force Fp, which arises from the
disorder in the host materials. We will consider a non-biased pinning force characterized by its disorder-averaged correlator:

Fp(u, x)Fp
(
u′, x′) = �

(
u − u′)δ

(
x − x′) (2)

with �(u) a short-ranged function, of range rf (determined by the domain wall width in real interfaces with point dis-
order). For the so-called random bond (RB) case, the elastic line moves in a random short-range correlated potential. The
corresponding pinning force is Fp(u, x) = −∂u U (u, x), where U (u(x), x) is the random potential, and thus

∫
u �(u) = 0. For

the random-field (RF) case, U (u(x), x) is a random walk as a function of u, with diffusion constant
∫

u �(u) > 0 [19].
The model just defined is minimal, and in order to compare with experiments other ingredients might be considered.

For example, in charge density waves and vortices, the elastic structure is periodic [20,21], while in fracture [17,22–25] and
wetting [26,27], the elastic interactions are long ranged. Moreover, anharmonic corrections to the elasticity or anisotropies
can be also relevant [28,29]. Remarkably, all these different universality classes (with different critical exponents) share the
same basic physics of the QEW model discussed in the following sections.

2. Transport and geometry of driven interfaces in random media

Disorder makes the interface dynamics very rich. On one side, the interface appears rough, both in absence and in pres-
ence of drive. On the other side, the response of the system to a finite drive is strongly non-linear and, at zero temperature,
motion exists only above a finite threshold, the so-called critical force fc. As summarized in Fig. 1, collective dynamics is
observed in different regimes: just above fc the motion is very jerky, and displays collective rearrangements or avalanches
of a typical size �av . Below fc, motion is possible only by thermal activation over energy barriers and the interface slowly
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fluctuates backward and forward. This “futile” and reversible dynamics takes place up to a characteristic size1 �opt above
which energy barriers do not exist before the next lower-energy metastable state and the interface moves only forward
pulled by the finite drive f . As f → 0 both �opt and the energy barriers diverge.

2.1. Three reference stationary states

Universality manifests, both in the transport and in the geometry of the moving interface, through the existence of robust
critical exponents. These describe the rate of power-law divergences of important quantities as the control parameter f
approaches three special states: (i) the equilibrium ( f = 0); (ii) the depinning ( f = fc, T = 0), and (iii) the fast-flow ( f � fc).
At asymptotically large length scales, these three steady-states have the peculiarity that the geometry is self-affine with
their characteristic roughness exponent: (i) ζeq , (ii) ζdep , and (iii) ζff . The scale beyond which this is valid is not necessarily
microscopic and can particularly grow with temperature [31–34]. Self-affinity means that length x and displacement u can
be rescaled as x′ = ax and u′ = a−ζ u into a new interface u′(x′) that is statistically equivalent to u(x), namely u(ax) ∼ aζ u(x).
Transport properties in these three points are very different: at equilibrium, the mean velocity is zero and the dynamics is
glassy: at small length scales, we observe a fast futile motion, while in order to observe a rearrangement on a large-scale size
l we need to overcome a barrier Eb(l) growing as Eb ∼ lθ , with θ a positive and universal exponent. Dimensional analysis
suggests that θ = d − 2 + 2ζeq , which is confirmed by accurate numerical studies [35]. At the zero temperature depinning
transition, the velocity vanishes as v( f , T = 0) ∼ ( f − fc)

β for f > fc, while v = 0 for f < fc. At finite temperature, this
sharp transition is rounded and the velocity behaves as v( fc, T ) ∼ T ψ . This is the so-called thermal rounding regime. At large
force, f � fc, in the fast-flow regime, we recover the linear response v ∼ f . Here impurities generate an effective thermal
noise on the interface with Teff − T ∼ �(0)/v (the disorder strength �(0) is defined in Eq. (2)). Therefore, the fast-flow
roughness corresponds to the Edwards–Wilkinson roughness2 ζff = (2 − d)/2. The three reference state are schematically
represented in Fig. 1b.

2.2. Connecting the three reference stationary states: creep and depinning

How does the interface behaves in between (i.e., 0 < f < fc and f > fc) these three reference steady-states? Let us
consider some instantaneous snapshots of an interface as obtained from an experiment or a numerical simulation. Fig. 1a
is an illustrative experimental example for a ferromagnet [30]. Let us assume that the longitudinal size of the snapshot is
large enough to contain all the relevant characteristic length scales, and that the driven interface is already in a stationary
regime so that the memory of the initial condition is lost. By analyzing the snapshot, what can we say about the interface
state of motion?

One could imagine a naive scenario where the dynamic roughness exponent ζ varies continuously upon increasing
the driving force, from its value at the equilibrium ζeq , to ζdep , and finally to ζff . Actually, this is not true, and the
interface geometry can be instead described by only these three exponents and by the two crossover lengths �opt and
�av . The crossover or dynamical phase diagram is schematically shown in Fig. 1d. At small temperatures and below the
threshold, 0 < f < fc, the interface is in the ultra-slow creep regime. At small length scales � < �opt the interface looks like
an equilibrated interface (with an exponent ζeq). For intermediate scales, �opt < � < �av , we expect the same roughness
exponents as those of the depinning transition, ζdep . Finally, at the largest length-scales, �av < �, we expect to measure the
fast-flow roughness exponent ζff . Let us observe that the large length scales are controlled by non-equilibrium roughness
exponents. This shows that even for very small forces f , the system is far from equilibrium [19,36,37], in contrast with the
initial physical pictures that assumed metastable configurations indistinguishable from the equilibrium ones. Analogously,
for f > fc, we observe that at short length scales � < �av , the roughness exponent is ζdep , while for � > �av one has ζff .

The dynamical phase diagram of Fig. 1d thus allows us to get important information from snapshots such as the one of
Fig. 1a: (i) it can tell us first if the interface of the snapshot was in the f < fc (creep), in the f � fc (depinning), or in the
f � fc (fast-flow) regime; (ii) the actual values of the different roughness exponents (obtained by fitting, for instance, the
structure factor Sq) guide us in the search for a universality class; (iii) looking at snapshots for different forces could give us
access to the critical behavior of �opt and �av , namely �opt ∼ f −νeq and �av(T = 0) ∼ ( f − fc)

−νdep . At finite temperature,
�av remains finite below threshold, but quickly diverges as f → 0 [19].

Interestingly, both �av and �opt have a “double” physical meaning: besides being roughness crossover lengths, they
control the non-linear collective transport properties of the interface. Indeed, in the depinning regime f � fc, T = 0, the
jerky motion can be characterized by a velocity autocorrelation with finite spatial and time ranges �av and �

zdep
av , respectively

(with zdep the dynamical exponent). Since the width of the avalanches is expected to grow as �
ζdep
av , the velocity can

be thus estimated as v ∼ �
ζdep−zdep
av . On the other hand, v ∼ ( f − fc)

β ∼ �
−β/νdep
av , yielding the hyperscaling relation β =

νdep(zdep − ζdep).

1 The subscript opt stays from “optimal” because �opt is the size of the jump associated with the optimal barrier that the interface should overcome in
order to find a new metastable state with a smaller energy.

2 In real experiments we expect non-linear terms to become relevant and change the Edwards–Wilkinson into the Kardar–Parisi–Zhang universality class.
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In the f < fc creep regime, three different dynamical steps can be isolated (see Section 4.2): (i) starting from a deep
metastable state, the interface explores the neighborhood jumping back and forth (futile dynamics); (ii) this continues
until a saddle configuration is found. The saddle configuration will differ from the initial metastable state on a typical
length �opt; (iii) finally, from the saddle configuration the interface relaxes deterministically to a new and deeper metastable
configuration. The size of the optimal excitation �opt can be estimated by balancing the gain in energy of being pinned in
a deep metastable state, Emetast(�), with the gain in energy of moving the interface forward ∼ f (usaddle(�)− umetast(�)).
At equilibrium, we have that usaddle(�) − umetast(�) ∼ �ζeq and that Epinned(�) ∼ �θ , with θ = d − 2 + 2ζeq . The balance
gives �opt ∼ f −νeq , with νeq = 1/(2 − ζeq), which means that �opt diverges when f → 0, as expected. Moreover, numerical
simulations give a clear evidence that the energy landscape is characterized by a unique energy scale, and that the energy
difference between neighbor metastable states is equal to the energy barrier separating them [35]. Thus, we expect the
barrier that the interface has to overcome to escape from a deep metastable state to grow as �θ

opt . Using the Arrhenius
activation, we recover the creep formula [19,38,39]:

v ∼ exp
(−C f −μeq/T

)
(3)

where μ = (2ζeq − 1)/(2 − ζeq) is an equilibrium exponent. This formula has largely been verified by experiments on
magnetic [1,4–6] and ferroelectric [9,13] domain walls. When the barriers are too small compared with T , the velocity is no

longer described by the Arrhenius law, leading to a thermal rounding behavior v ∼ �
−β/νdep
av , with �av ∼ T −ψνdep/β at f = fc.

For harmonic short-range elasticity, it can be shown that νdep = 1/(2 − ζdep) (Statistical Tilt Symmetry relation [40]).
As summarized in Fig. 1, geometry and transport are thus closely related. In the following sections, we explain how the

above phenomenology can be numerically obtained.

3. Method and observables

The main difficulty with Eq. (1) is the non-linearity introduced by the disorder, which breaks the translational symmetry.
Indeed, in the absence of disorder, Eq. (1) becomes the Edwards–Wilkinson equation, which is exactly solvable [41,42].
With disorder, the mean field model, valid above the upper critical dimension duc = 4, was solved by Fisher [43]. Advanced
analytical techniques, such as the functional renormalization group (FRG), allow us to obtain expansions below but close to
duc [19]. Numerical approaches thus appear as a valuable and necessary theoretical tool. From now on, we will focus on the
d = 1 QEW model, which is: (i) experimentally relevant for interfaces in thin films, (ii) a stringiest case for testing analytical
approaches in principle valid only close to duc , (iii) simpler to tackle numerically at large length scales.

Numerically, it is convenient to discretize the interface in the x-direction, keeping u(x, t) as a continuum variable.3 The
center of mass velocity for an interface of size L is defined as:

v(t) = 1

L

L−1∑

x=0

∂t u(x, t) (4)

that, given Eq. (1) and η = c = 1, is nothing else but the spatial average of the instantaneous total forces acting on the line.
The geometrical properties of the line as a function of length scale can be conveniently described using the instantaneous
quadratic width:

w2(t) = 1

L

L−1∑

x=0

[
u(x, t) − u(t)

]2
(5)

or the averaged structure factor:

Sq(t) =
∣∣∣∣

1

L

L−1∑

x=0

u(x, t)e−iqx

∣∣∣∣
2

(6)

where q = 2πn/L, with n = 1, . . . , L − 1, and u(t) = L−1 ∑L−1
x=0 u(x, t) is the center of mass position. When the steady-state

regime is reached, these quantities become time-independent. In particular, for the three reference states (equilibrium,
depinning, and fast flow), the last two quantities display self-affine behavior at asymptotically large length scale (small q):
w2 ∼ L2ζ and Sq ∼ 1/qd+2ζ . For different values of the external force, the above observables display crossovers between the
corresponding reference states.

3 For developing some algorithms and specially for the statics, it might be also convenient to discretize the displacement field u(x, t).
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4. Numerical methods and main results

At zero force, the steady-state is the equilibrium state, which corresponds to the ground state at T = 0. There exist exact
and efficient numerical methods for targeting the equilibrium both at zero and finite temperature. These methods rely on
transfer matrix techniques and apply to short-range elasticity [44]. Upon increasing the driving force from zero, we enter
first in the creep regime, which is defined at low, but non-zero temperature. In this regime, the Langevin dynamics can be
implemented at finite temperature [45,46], but becomes highly inefficient in the vanishing temperature limit (T → 0+).
Fortunately, in this limit an exact algorithm allows us to characterize the ultra-slow motion of the line [36,37]. For a larger
value of the external force, we reach the depinning transition ( f = fc). At T = 0, direct Langevin dynamics simulations
converge very slowly to the correct steady-state. Different methods have been thus developed: (i) an efficient algorithm
allows an exact calculation of the critical force and critical configuration for each disorder realization [47]; (ii) molecular
dynamics simulations of the non-steady relaxation allow us to get the dynamical critical exponents and target the thermo-
dynamic critical force [48]. At T > 0 and f = fc, Langevin dynamics allows us to describe the critical thermal rounding of
the depinning transition [49,50]. Finally, simple Langevin dynamics in the large force limit ( f � fc) captures the features of
the fast-flow regime at all temperatures.

4.1. Equilibrium state

At zero force, the geometrical properties of the elastic string can be targeted using a transfer matrix method for the
discrete directed polymer model [51]. The line is described by the discrete variable u(x), that gives the displacement of the
string on the slice x of a square lattice, and a disorder potential U , which is drawn on each site (u, x). The energy of a given
configuration is given by the sum of the site energies along the path u(x): E = ∑

x U (u(x), x). Furthermore, the so-called
solid-on-solid (SOS) restriction |u(x + 1) − u(x)| = 1 has to be implemented. When f = 0, this model belongs to the same
universality class as Eq. (1).

Given a disorder realization, the ground-state configuration of a polymer starting in (0,0) and ending in (u, x) can be
found using the following recursive relation [44]:

Emin(u, x) = U (u, x) + min
[

Emin(u − 1/2, x − 1), Emin(u + 1/2, x − 1)
]

(7)

At finite temperature T , it is possible to compute the weight Zu,x of all polymers starting in (0,0) and ending in (u, x)
using the following recursion [52]:

Zu,x = e−U (u,x)/T (Zu−1/2,x−1 + Zu+1/2,x−1) (8)

with the initial condition Zu,0 = δu,0. Therefore, the probability to observe a polymer ending in (u, x) is Zu,x/
∑

u′ Zu′,x . Due
to the recursion relation, Zu,x grows exponentially with x. To avoid numerical instability, all weights Zu,x at fixed x have
to be divided by the largest one, which does not change the polymer ending probability [53]. With these procedures, it is
possible to characterize both the geometrical properties of the polymer (as the roughness exponent ζeq = 2/3 in 1d) and
the free energy or ground-state energy fluctuations (as the characteristic exponent θ ) [54,55].

4.2. Creep regime

For non-zero drive, but still below the depinning threshold (0 < f < fc), a finite temperature must be imposed in order
to forget the initial condition and reach a unique stationary state. In Refs. [36,37], the regime relevant for creep motion
was studied, that is, the steady-state regime of an interface in the limit of vanishing temperature. A direct numerical
study of the motion of such a regime is very difficult. The motion takes place by thermal activation over barriers, leading
to extremely long activation times, making numerical techniques such as the Langevin dynamics inefficient. Fortunately,
a different numerical method [36,37] allows us to follow the motion of an interface at finite temperature, avoiding the
above-mentioned difficulty. This method directly implements the polymer dynamics as a unique forward-moving sequence of
metastable states of decreasing energy. It can be proved that such a sequence corresponds to the exact dynamics for a finite
interface in a given disorder realization in the T → 0 limit.

The elementary step of such a dynamics is sketched in Fig. 2. It consists in finding the optimal path from one metastable
configuration α with energy Eα to the next metastable configuration γ, with a lower energy. This path passes through a
saddle configuration β with an energy Eβ > Eα . Once in β, the polymer relaxes deterministically to γ. The configurations α

and γ differ from each other by a portion of size �relax , while α and β differ by �opt . The maximum energy Emax reached
by the polymer through the path defines a drive-dependent barrier Eb( f ) = Emax − Eα; therefore, the time associated with
this elementary step is given by ∼ eEb( f )/T .

Our numerical results are summarized in Fig. 3: (i) the structure factor behavior below fc supports the picture proposed
in Fig. 1. In particular, this behavior is consistent with FRG calculations [19] that predict in the creep regime the existence of
a characteristic scale (namely �opt) below which the system is at equilibrium and above which the system is characterized
by deterministic forward motion. Moreover, in qualitative agreement with these predictions, it is observed that both �opt
and Eb( f ) increase as f decreases. Unfortunately, this algorithm has not allowed us to explore the region of vanishing f
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Fig. 2. Low temperature dynamics of the driven elastic string below the depinning threshold. The optimal path to escape from a given metastable configura-
tion α pass through a saddle configuration β, from which the system is able to relax deterministically to the next metastable configuration γ with Eγ < Eα .
Color available online.

Fig. 3. (a) Steady-state structure factor S(q) of the line in the T → 0 limit for different forces (curves are shifted for clarity). (b) The steady-state properties
of the elastic string at T → 0 are determined by �opt (filled symbols) and by �av . These lengths separate regions characterized by the equilibrium exponent,
the depinning exponent (gray region), and the fast-flow one. The divergent length �relax (open symbols) is associated only with transient dynamics. Lines
are guides to the eye. Figures are adapted from [36].

where �opt is expected to diverge as ∼ f −1/(2−ζeq) and the “optimal” barrier as Eb( f ) ∼ f −μ . In turn, it can be seen that
the size �relax diverges as ∼ ( fc − f )−νdep and this is interpreted as the linear size of the deterministic depinning-like
avalanche triggered by thermal nucleation. It is worth remarking that although �relax diverges as f → fc from below, it
does not affect the steady-state spatial correlations, unlike �av and �opt .

In order to study the effects of larger temperatures, one can use Langevin dynamics [46]. These simulations show that
�av has a finite value for T > 0 and 0 < f < fc, and it actually diverges as f → 0 (as sketched in Fig. 1), but the lack of
precision does not allow us to test the universal behavior �av ∼ T −σ f −λ predicted by FRG calculations [19]. Note that �av
diverges as the velocity goes to zero, while �relax remains finite in the same limit. In other words, while in the T → 0
limit the string is blocked in the first metastable state with lower energy producing an avalanche of typical size �relax , at
finite temperature a larger avalanche of size �av takes place. In the creep regime, these depinning-like processes are fast in
comparison with the waiting times for the thermally activated jumps (�opt).

Finally, the finite temperature long-time relaxation of a flat line in the absence of drive can be described as a creep process
over barriers that increase in time, such that the growing correlation length (separating the equilibrated length scales with
the ones retaining memory of the initial condition) is �(t) ∼ [T log(t)]1/θ [56].

4.3. Depinning regime at T = 0

4.3.1. Critical force and critical configuration
At T = 0, the transition between a pinned phase and a moving phase is displayed in any finite sample with a given

disorder realization. This is assured by a set of properties pointed out by Middleton [57]. The first one is the so-called
“no-passing rule”: if two strings u(x, t) and ũ(x, t) do not cross at a given time, they will not cross at any later times.
Another important property of Middleton’s theorem states that if, at an initial time, the velocities are non-negative for
all points x, they will remain non-negative for all later times. It follows from these properties that, once we have found
a forward-moving string, we can be sure that snapshots of the string at later times will be ahead (in the u-direction).
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Fig. 4. Results for the critical state in finite samples obtained with the exact algorithm of Section 4.3.1. (a) Critical configuration structure factor (see
definition in Eq. (6)). The fitted roughness exponent yields ζdep = 1.250 ± 0.005. (b) The finite-size critical force fc as a function of the longitudinal size L

for periodic samples of size L × M with M = kLζ
dep . As L grows, the asymptotic value of the critical threshold becomes independent of the aspect ratio k.

The dashed line corresponds to the thermodynamic limit fc = 1.916 ± 0.001. Figures are reproduced from [48]. Color available online.

As a consequence of these two properties, we can define (for a given finite sample) the critical force f samplec as the
maximal force for which a metastable configuration still exists, i.e., a configuration for which all points x verify ∂t u(x, t) = 0.
Analogously to the ground-state polymer for the statics (Section 4.1), this last unique metastable configuration displays
self-affine properties with a well-defined roughness exponent ζdep (see Fig. 4a). For a finite sample, f samplec is a stochastic
variable that depends on the disorder realization. As the size L of the sample grows, the asymptotic critical threshold fc is
approached (see Fig. 4b), and the fluctuations of f samplec are suppressed as [58]:

[
f samplec

]2 − [
f samplec

]2 ∼ L−2/νdep (9)

where νdep is the characteristic correlation length exponent. Both the exponents ζdep and νdep can be carefully determined
using numerical algorithms that avoid the direct numerical integration of Eq. (1). The key idea behind these methods is to
check for the existence of metastable states for the string in the particular sampled disorder for a given value of the external
force f . This check can be performed in a computing time that grows only linearly with the system size using properties
discussed by Middleton [47,59].

4.3.2. Critical and dynamical exponents: the non-steady relaxation
The accurate determination of critical exponents is a difficult task, specially for critical phenomena in disordered systems.

The so-called Short-Time Dynamics method (STD) allows one to obtain critical exponents values without the need of system
equilibration. It relies on the validity of a homogeneous relation for the order parameter when the system performs a
non-steady relaxation at the critical point. This scaling relation, in contrast with traditional equilibrium finite-size scaling
methods, can be used to avoid finite-size effects, but includes dependence on time and initial conditions [60–62].

To apply the STD to the depinning transition, we rely on the analogy with standard phase transitions [43]. By considering
the velocity v as an order parameter, and the dimensionless force ( f − fc)/ fc as the reduced driving field, we expect the
following homogeneity relation to be valid for the long-time relaxation of an initially flat string (infinite velocity initial
condition4) [63,64,48]:

v(h, L, t) = t−β/νz ṽ±
(
t1/zνh, t−1/z L

)
(10)

where h = | f − fc|/ fc and the function ṽ± has two branches depending on the sign of f − fc. Close to depinning, the
relaxational dynamics described by Eq. (10) is valid in a short-time regime, after which the velocity reaches a steady-state
value if f > fc, while for f < fc the string is blocked in a metastable state (with memory of the initial condition) and
v → 0. Exactly at the critical point (h = 0) and in the limit L → ∞, we expect a power-law behavior for the velocity,
v ∼ t−β/νz . Alternatively, we can write v ∼ �(t)−β/ν , where �(t) ∼ t1/z is the dynamical length, describing the growth of
roughness as w(t) ∼ �(t)ζ ∼ tζ/z . By fitting v(t) and w(t), we thus in principle get β/νz and ζ/z independently. Since ζ

(and therefore ν) can be obtained independently using the method described in Section 4.3.1, with the STD method it is
possible to extract in addition the critical exponent β and the dynamical exponent z.

In Ref. [48], large-scale Langevin dynamics simulations have been implemented to obtain v(t) and w(t) over a large
period of time for large system sizes, such that L � �(t). This has allowed us to detect robust (under different shape and
nature of the disorder correlator) scaling corrections to the asymptotic power-law forms, and thus to avoid fitting effective
power-law decays, yielding significantly biased incorrect exponents. A practical criterion to estimate the crossover between

4 This is equivalent to the case of an “ordered” initial condition for the order parameter.
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Fig. 5. Evolution of γ(t) (a) and v(t) (b) for f ≈ fc , with fc the thermodynamic critical force. Two other forces, just above ( f +
c ) and just below ( f −

c ) fc are
also shown. Continuous lines are fits for γ(t) and v(t) including power-law corrections to the asymptotic scaling, yielding the true critical exponents. In (a),
vertical dashed lines separate qualitatively different time regimes. The inset in (b) shows that corrections to scaling are power-law like. Figures are adapted
from [48]. Color available online.

the “mesoscopic” time regime with corrections and the truly universal “macroscopic” time regime was found by observing
that the hyperscaling relation β = ν(z−ζ ) is violated in the former regime. This can be easily seen by analyzing the quantity
γ(t) = w(t)

tv(t) : if the measured γ(t) depends on time, it means that the system has not reached the critical scaling regime yet.
In Fig. 5a we show the behavior of γ(t). After a microscopic regime, γ(t) slowly decreases, implying an “effective”

unbalanced relation [ν(z − ζ ) − β]eff < 0. In this mesoscopic regime, the critical dynamics scaling is not valid. After a
surprisingly long crossover, however, γ(t) develops a plateau. This information allows us to determine the appropriate time
regime of v(t) and w(t) where it is possible to fit β/νz and ζ/z, respectively. In Fig. 5b, the behavior of v(t) is shown.
Power-law corrections of the form v(t) = V 0t−β/νz[1+ (t/tv)−αv ] (with V 0, tv , and αv fitting parameters) are found. At large
times, when γ(t) develops a plateau, an accurate power-law fit can be performed for v(t) at the thermodynamic depinning
force fc = 1.5652±0.0003, yielding β/(νz) = 0.128±0.003. The observation of scaling corrections explain the systematically
larger effective values for (β/νz) reported before for smaller systems [48]. An analogous analysis for w(t) shows similar
robust power-law scaling corrections, and gives a consistent value for the exponent, 1 − ζ/z = 0.128 ± 0.003. These results,
combined with an independently determined value of ζ = 1.250 ± 0.005 (see Fig. 4a) and the relation ν = 1/(2 − ζ ), allow
us to get β = 0.245 ± 0.006, z = 1.433 ± 0.007, ζ = 1.250 ± 0.005 and ν = 1.333 ± 0.007 [48]. Scaling forms for the joint
force–time dependence of the velocity extracted from Eq. (10) are in excellent agreement with these exponents [48].

4.4. Depinning regime at T > 0: the critical thermal rounding

When the temperature is finite, there is no sharp transition between zero and finite velocity regimes. At forces around
the critical value, f ≈ fc, a finite temperature value smears out the transition, which is no longer abrupt. This thermal
rounding of the depinning transition can be characterized, exactly at the critical force f = fc, by a power-law vanishing of
the velocity with the temperature v ∼ T ψ , where ψ is the so-called thermal rounding exponent [45,49,50,65,66].

At small length scales, q � 1/�av , the structure factor shows the typical roughness regime associated with depinning, i.e.
Sq ∼ q−(1+2ζdep) , while at large length scales, q � 1/�av , geometrical properties are dictated by effective thermal fluctuations
induced by the disorder, i.e. Sq ∼ q−(1+2ζff) , as shown in Fig. 6a. In the critical region, the depinning correlation length is
given by the velocity as �av ∼ v−ν/β . Thus, the depinning correlation length depends on the temperature only through the
velocity and in the thermal rounding regime [49] �av ∼ T −ψν/β . With this information, one can write for the structure
factor:

Sq = T −ψνdep(1+2ζdep)/βs
(
qT −ψνdep/β

)
(11)

where the scaling function s(y) ∼ y−(1+2ζff) for y � 1 and s(y) ∼ y−(1+2ζdep) for y � 1. In Ref. [49], it was shown that the
structure factor scales with the previous form.

All the information about the thermal rounding regime can be gathered in the expected universal behavior of v(h, T ).
It is possible to show that assuming the homogeneous relation between the velocity and both temperature and force, as it
is usual for phase transitions, a universal function follows. If there were not strong finite-size effects, in the vicinity of the
critical region the velocity should scale as:

vT −ψ ∼ h±
(

f T −ψ/β
)

(12)

with h±(x) a universal function which can in principle be different above (h+) and below (h−) thresholds. One expects that
h+ ∼ yβ for y � 1. Fig. 6b shows this scaling relation for fixed disorder intensity and different temperatures, as indicated.
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Fig. 6. (a) Structure factor Sq at a finite temperature T = 0.02, showing two regimes with different roughness exponents, ζff and ζdep , above and below
the crossover length scale �av , respectively. (b) Velocity–force scaling function in the thermal rounding region. The disorder intensity is kept fixed and the
velocity for different temperatures collapses in a single function. Figures are adapted from [50]. Color available online.

This universal behavior has been numerically confirmed using Langevin dynamics simulations of the QEW equation [50] and
indirectly tested in experiments of domain wall motion in 2D ferromagnets [67].

5. Conclusions and perspectives

The driven QEW model represents a minimal paradigmatic model for studying the dynamics of driven elastic systems in
random media. In this paper, we have reviewed a series of numerical methods specially developed for studying different
and key properties of this system. The results found in the literature lead us to the physical picture discussed in Section 2
and illustrated in Fig. 1.

The most challenging aspect of the problem remains the quantitative comparison with experiments. On one hand, it
would be important to make quantitative predictions for different elastic universality classes. Although we expect the same
basic physics described here to emerge at large enough scales, it is important to accurately obtain the corresponding critical
exponents and to understand the additional dynamical crossovers that may arise at intermediate length scales.

At last, probably the least understood but still experimentally relevant phenomena for the dynamics of interfaces in
random media are: the occurrence of “plasticity” (displayed by overhangs and bubbles [68]), the effect of internal degrees
of freedom (such as the “spin phase” coupled with the position of magnetic domain walls [5,69]), and the effect of “struc-
tural relaxation” [18] in host materials. This may encourage the development of new models and novel efficient numerical
approaches in the field.
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