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Geometrical frustration arises whenever a local preferred configuration (lower energy for
atomic systems, or best packing for hard spheres) cannot be propagated throughout space
without defects. A general approach, using unfrustrated templates defined in curved space,
have been previously applied to analyse a large number of cases like complex crystals,
amorphous materials, liquid crystals, foams, and even biological organizations, with scales
ranging from the atomic level up to macroscopic scales. In this paper, we discuss the
close sphere packing problem, which has some relevance to the structural problem in
amorphous metals, quasicrystals and some periodic complex metallic structures. The role of
sets of disclination line defects is addressed, in particular with comparison with the major
skeleton occurring in complex large-cell metals (Frank–Kasper phases). An interesting
example of 12-fold symmetric quasiperiodic Frank–Kasper phase, and its disclination
network, is also described.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

La frustration géométrique apparaît lorsqu’une configuration préférentielle (par exemple
de plus basse énergie pour des systèmes atomiques ou de compacité maximale dans les
modèles sphères dures) ne peut se propager dans l’espace sans engendrer de défauts.
Une approche générale a été proposée dès les années 1980, basée sur des modèles non
frustrés définis dans des espaces courbes et qui permet d’analyser de nombreux cas,
comme les intermétalliques complexes, les matériaux amorphes, les cristaux liquides, les
mousses et même certains édifices biologiques dans une vision multi-échelle allant du
niveau atomique au niveau macroscopique. Nous discutons dans cet article le problème
de l’empilement de sphères en connexion avec le problème structural des amorphes
métalliques, quasicristaux et intermétalliques complexes. On s’intéressera ensuite au rôle
des ensembles de disinclinaisons, dont ceux rencontrés dans les grandes mailles des
composés métalliques complexes comme les phases de Frank–Kasper. On décrira enfin un
exemple intéressant d’une phase de symétrie locale dodécagonale quasipériodique de type
Frank–Kasper, avec son réseau de disinclinaisons.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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Fig. 1. Geometrical frustration for close tetrahedral packing in R3. (Colour online.)

1. Introduction

Geometrical frustration appears in different contexts like complex crystals, amorphous materials, liquid crystals, foams
and even biological organizations, with scales ranging from the atomic level up to macroscopic scales. It is generically
encountered whenever a local configuration, which minimizes energy, cannot be freely propagated throughout space, leading
to complex organizations. In this paper, we first recall the curved space approach, whose first step consists in curving the
underlying space (here going to the three-dimensional sphere S3) to release frustration. The real Euclidean structure is then
analyzed, along the decurving procedure to R3, in terms of ordered regions (close to that occurring in S3), interrupted by
topological defects, whose presence and density is directly related to the change of curvature from the curved to the flat
space.

We shall focus here on the sphere dense packing problem in three dimensions, in relation with polytetrahedral and
icosahedral order. An ideal, unfrustrated, template, the polytope {3,3,5}, is described in Section 2, in particular with the
help of the so-called Hopf fibration. Section 3 relates decurving modes of this curved space template in terms of topological
defects called disclination lines. These lines can be sequentially entered in the polytope using the Hopf fibration, leading
to a first set of slightly decurved polytopes. A method to fully map the polytope into flat space, the iterative flattening
method, is recalled, leading to hierarchical structures, with interlaced disclination defects. Such lines are also identified in
known large-cell metallic alloy phases called Frank–Kasper phases. A related 12-fold quasicrystalline Frank–Kasper phase is
described, and its disclination network displayed. This paper ends by an analysis of coordination number and disclination
lengths in polytetrahedral close packings.

2. Hard sphere packing, frustration and curved space template

2.1. Dense sphere packing and icosahedral order

Consider the a priori simple but eventually very different geometrical hard sphere and hard disks packing problem. In
two dimensions, three disks densely pack in the form an equilateral triangle, a configuration easily extended throughout
the plane in the form of a periodic triangular packing; local and global order are compatible; this is an unfrustrated case.
In three dimensions, the local densest packing of four spheres is achieved by placing their centers at regular tetrahedron
vertices. The geometric frustration reveals immediately that the three-dimensional Euclidean space cannot be filled com-
pletely by regular tetrahedra. Indeed, the tetrahedron dihedral angle is θ = cos−1(1/3), slightly less than 2π/5, which leads
to the conclusion that five tetrahedra can be arranged around a common edge, with some remaining extra room. The latter
accumulates when trying to propagate such a polytetrahedral dense packing, leading to pseudo-icosahedral arrangements at
medium range and eventually a disordered sphere packing (Fig. 1).

The misfit angle around one edge can be made vanishing by changing the curvature of the underlying space. In the
present case, upon embedding in a 3-dimensional positively curved space, the hypersphere S3, the tetrahedron dihedral
angle increases, and eventually reaches the value 2π/5, which allows a perfect propagation of polytetrahedral order on a
hypershere S3 of appropriate radius (here the tetrahedral edge times the golden ratio τ = (1 + √

5 )/2). One gets a regular
structure, a polytope, called the “600-cell” or the {3,3,5} polytope [1], providing a very dense sphere packing (filling factor
∼0.78, therefore surpassing the Euclidean case), which has been intensively studied as an ideal template in the context of
amorphous and complex crystalline metals [2–11].

Let us recall Coxeter notation for regular polytopes. A regular polyhedron {p,q} has q p-gonal faces around each vertex:
{4,3} is a cube, {3,3} is a tetrahedron. A polytope {p,q, r} has r {p,q} polyhedra around each edge. The {3,3,5} is a finite
structure on S3, comprising 120 vertices, 600 tetrahedral cells. Each edge shares five tetrahedral cells, and each site is
surrounded by a perfect icosahedral first shell. This polytope has a very large symmetry group, of order 14 400, the square
of the double icosahedral group Y in SU(2).
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Fig. 2. A limited view of the S3 Hopf fibration (stereographic map onto R3).

2.2. Hopf map views of polytope {3,3,5}
Even though it can be embedded in a 4-dimensional space Euclidean space as x2

1 + x2
2 + x2

3 + x2
4 = r2, one should not

forget that the hypersphere S3 is a (curved) 3-dimensional space (indeed, the four coordinates x j are constrained by one
equation). Let us have a closer look to S3 via the concept of fibred space. A space has a fibre bundle structure if it contains
a sub-space (the fibre) that can be reproduced by a displacement so that any point of the space is on a fibre and only one.
For example, the Euclidean 3-space can be considered as a fibre bundle of parallel straight lines, all perpendicular to the
same plane, or, dually, of parallel planes perpendicular to one line.

A fibred space E is defined by a mapping from E onto the so-called “base” B , any point of a given fibre F being mapped
onto the same base point. A fibre is therefore the full pre-image of one base point under the mapping. A fibration is said
to be trivial if the base space can be embedded in the full space, which leads to a simple product presentation E = B × F .
In the above simple R3 example, the two-dimensional base space is just the plane orthogonal to fibres (or dually the line
perpendicular to the planes). Said differently: R3 = R2 × R1 = R1 × R2. But this latter property is not general, the simplest
case being provided by the Hopf fibration [12] of S3 by great circles S1 and base S2 for which S3 �= S2 × S1.

The fibre is an S3 great circle (parameterized by one angle) which map onto a point on the base S2; the full inverse
image of S2 gives a fibration of S3 with disjoint great circles, the Hopf fibration. A circle on the base S2 corresponds to a
torus in S3, and the sequence of “parallel” circles on S2 is an image of a torus foliation of S3, of which three members are
drawn in Fig. 2.

Looking to the base, a set of parallel circles on a sphere has three particular members: the (largest) equatorial circle and
the two opposite poles, where the parallel circles degenerate into two points. The equatorial circle is the image, in the fibred
sphere S3, of the so-called “spherical torus”, which has some interesting metrical properties and plays a role as a template
for toroidal configurations in R3, minimizing the Willmore functional [13]. Now, each such great circle in the fibration is
surrounded by a toroidal neighbourhood, as illustrated for the central fibre in Fig. 2.

Back to the polytope case, it turns interesting to define discrete Hopf fibrations, as the set of fibres (associated with
the symmetry axes of the polytope) that contain all the polytope vertices (Fig. 3). For the above polytope {3,3,5}, we are
facing many different possibilities owing to the high order of the polytope symmetry group. Let us focus on the case where
the circular fibres contain the largest number of polytopes sites, namely 10 arranged as regular decagons. The 120 sites of
the polytope are then gathered along 12 fibres of ten sites. The nice point here is that the Hopf map sends the 12 fibres
onto the 12 vertices of an icosahedron on the base S2, which therefore gather information about the way these fibres are
arranged in S3. Two first neighbour points on the icosahedral base corresponds to two neighbouring fibres; the fact that
one icosahedral vertex has five neighbours therefore images the symmetric arrangement of five fibres around a central one
in the polytope. Finally, to a triangular face of the icosahedron corresponds a set of three fibres that realizes a compact
pseudo-linear arrangement of tetrahedra very close to the well-known Boerdijk–Coxeter triple helix [14,15]. This discrete
Hopf fibration will be used later to introduce disclination lines and decurve the polytope.

3. Frank–Kasper lines and disclinations

One can always, in an unambiguous way, connect a generic three-dimensional set of points, and get a (usually irregular)
tetrahedral space division. This is done using first the Voronoï (or Dirichlet) decomposition of space into individual cells
that contain the regions of space, closer to a given point than to any other one. In generic cases, the Voronoï cells have
three faces sharing a vertex of the cell. Then, connecting the original points of the set whenever their associated Voronoï
cells share a face defines a unique decomposition of the space into tetrahedra. This simplicial decomposition is equivalent,
in three dimensions, to a point set triangulation in two dimensions. This procedure also provides a non-ambiguous way to
define the coordination number in dense structure: it is the number of faces of the Voronoï cell. In a tetrahedral division
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Fig. 3. Discrete Hopf fibration for polytope {3,3,5}. The Hopf fibration is oriented such that each fibre contains 10 sites. The base has 12 points with
an icosahedral geometry. A finite portion of the polytope is stereographically mapped onto R3, with the centre of projection along one central fibre,
with its five neighbouring fibres (left); with the centre of projection located at the centre of a triangular face on the base (right), closely related to the
Boerdijk–Coxeter triple helix. (Colour online.)

Fig. 4. Frank–Kasper polyhedra.

of space, the set of vertices closest to a given site forms its first coordination shell, which is a triangulated polyhedron
(a deltahedron). Now, if the set of points is the centre of a compact sphere packing, the tetrahedral space division presents
some regularities: a major part of the first coordination shells belong to a small set of deltahedra (called in some context
the Frank–Kasper polyhedra), with interesting interconnections, which we now summarize.

3.1. Frank–Kasper polyhedra and phases

In their study of large-cell crystalline polytetrahedral structures, Frank and Kasper introduced a standard notation to
distinguish atomic sites according to their coordination number [16,17]. If the tetrahedra are not too distorted, one mainly
faces situations where either five or six tetrahedra share a given edge. A site whose first-neighbour shell is an icosahedron
(allowing small distortions) is called a Z12 site. Additional sites are defined, denoted Z14, Z15 and Z16 sites according to
their numbers of neighbours (Fig. 4). Their corresponding coordination shells are deltahedra, with twelve 5-fold coordinated
vertices and respectively two, three or four 6-fold coordinated vertices. It can be proved that these latter sites cannot occur
isolated in the tetrahedrally divided space, but should form a subnetwork called the “major skeleton”. The edges of these
networks are precisely those edges in the simplicial decomposition that share six tetrahedral cells. This topological property
of Frank–Kasper structures is related to the non-existence of a canonical Z13 site together with the above requirement of
having only five or six tetrahedra around each edge. We shall later identify this major skeleton with a disclination network.
But let us first describe some large cell tetrahedrally close to packed crystalline phases.

These phases have been a main subject in metallurgical studies, with a pronounced renewed interest when it was re-
alized that, in the large-cell case, they may occur as approximant phases for quasicrystalline alloys. These structures have
been studied extensively by D. Shoemaker and C. Shoemaker [18], among others. They all show how a local tetrahedral ar-
rangement can lead to periodic structures while keeping some icosahedral configurations. Let us describe the most common
phases, with a focus on the different F–K polyhedra. The coordination number is now written at a upper place, in order to
recover, as usual, the composition as an index (e.g., Z (12) means two Z12 sites in the unit cell).
2
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Fig. 5. Disclinations in 2d and 3d. (a) a disclination point at the centre of a hexagon change the size of a ring and concentrate curvature (positive or
negative); (b) a 2π/5 disclination line through an icosahedron transforms it into a Z14 site.

– Z (12) Z (14)
3 corresponds to the simplest examples of Frank–Kasper phases, the β phase of tungsten, also called the A15

structure. The A15 elementary cell is cubic and contains eight atoms. Inside the cube is a centered icosahedron, with
the twelve outer atoms on the cube faces, which therefore count for 1/2. The eight cubic corners are also occupied
(counting for 1/8). The three orthogonal 2-fold axes of the icosahedron coincide with the three 4-fold axes of the
cube. Among the eight atoms of the elementary cell, two have an icosahedral coordination (Z12 sites) and six have a
coordination polyhedron with 14 vertices (Z14 sites). These latter sites are connected along infinite straight lines (the
major skeleton) running in the three spatial directions.

– Z (12)
2 Z (16) corresponds to Friauf–Laves phases, as for instance Cu2Mg. They have a cubic cell with eight atoms of one

type (Z16-type, here Mg) and 16 atoms of a second type (Z12-type, here Cu), filling the free space in the voids of
the diamond structure. The coordination polyhedron for the former type of sites has 16 vertices (Z16 site) with the
four six-fold coordinated vertices (arranged with tetrahedral symmetry) at the nodes of the diamond sub-structure. The
latter type of sites have a slightly distorted icosahedral environment (Z12 sites). The structure of this cubic Laves phase
can also be described as a stacking of sheets made of Friauf–Laves polyhedra and small tetrahedra (see below). All Cu
atoms are on the vertices of these polyhedra, and the Mg atoms at their centre.

– A third encountered phase has the composition Z (12)
3 Z (14)

2 Z (15)
2 , corresponding to alloys such as Zr4Al3 (Zr on Z14 and

Z15 positions).
– A last phase is interesting to mention in the present context: the Mg32(Zn,Al)49 crystalline alloy, known as

the Bergman’s structure [19] (also called T-phase), with its large cubic cell with 162 atoms and composition
Z (12)

49 Z (14)
6 Z (15)

6 Z (16)
20 . Its great interest comes from its relation with approximants of quasicrystals of close composition.

Notice that the sequence of the first three concentric polyhedra around a Z12 node of the cubic cell is an icosahedron
of Z12 sites, a dodecahedron of Z16 sites and an icosahedron of Z12 sites. Up to this third shell, remarkably enough,
this shelling is identical to that surrounding a {3,3,5} vertex (but in the polytope, all sites are of type Z12). We shall
go back to this phase below.

3.2. Disclinations

A disclination is a defect involving a rotation operation, as opposed to the more familiar dislocation, which is associated
with a translation given by it Burgers vector. A disclination can be generated by a so-called “Volterra” process, by cutting
the structure along a surface ending on line and adding (or removing) a sector of material between the two lips of the cut
[20,21]. In two dimensions, this defect is point-like, while it is linear in three dimensions. The two lips of the sector should
be equivalent under a rotation belonging to the structure symmetry group in order to get a pure topological defect confined
near the apex of the cut. It is possible to describe this defect, and the induced deformation, as a concentration of curvature
(Fig. 5a). It is therefore natural to use disclination lines in order to map a positively curved space onto a flat one. We shall
see that suitable disclinations can transform Z12 sites into the other Frank–Kasper polyhedra. One then expect that suitable
disclination lines introduced in the polytope {3,3,5} create structures containing a mixing of Frank–Kasper polyhedra.

In two dimensions, a disclination changes the coordination number when it goes through a vertex, or the size of a
polygonal cell when the latter is threaded by the defect. In three dimensions, disclinations also change the network topology
as exemplified in Fig. 5b, where a 2π/5 disclination line through an icosahedron transforms it into a Z14 site. The central
site and the two opposite vertices on the cut axis belong to the defect line. In a similar way, three halves (four halves)
2π/5 disclination lines, meeting at the central vertex, transform a Z12 into a Z15 site (a Z16 site). It is possible to show that
such lines cannot stop in the structure and either end at the surface, split at crossing points, or form closed lines. The set of
crossing points and disclination segments or lines form a so-called disclination network. The Frank–Kasper major skeleton is
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an instance of a disclination network in an icosahedral medium. So, introduction of disclinations not only allows decurving
the embedding space, but it also generates slight modifications of the local configurations.

3.3. Disclinations in polytope {3,3,5}
3.3.1. Fibration approach

We now describe the effect of introducing two 2π/5 disclination lines in the {3,3,5} polytope. An elegant way to do
that is to use the above discrete Hopf fibration [22]. As said above, polytope {3,3,5} has twelve great circle fibres of ten
sites that map onto the twelve vertices of an icosahedron. The fact that one fibre has five neighbouring fibres (Fig. 3, left)
brings about (in the base) the fact that an icosahedral vertex has five neighbours. The idea is to select a pair of opposite
great circles as the locus of line defects, and analyze the disclination procedure on the base. A disclination will change the
number of edge-sharing tetrahedra along the defect line, changing the sites from Z12 to Z14, with six, instead of five fibres
around the “defect” fibre. As a result, the Hopf map of the disclinated structure will change from an icosahedron to precisely
the 14-vertex polyhedron called Z14 (Fig. 4). In that case, the two black vertices in the figure are the Hopf map of the two
disclination lines in S3. This disclinated polytope has been called D14 [22]; it contains 168 sites, with 144 twelve-fold
coordinated sites (Z12 sites) and 24 Z14 defective sites on the two opposite great circles. It is here interesting to recall the
work of Straley [23], who studied, by numerical simulation, the ground state of 168 spheres on S3, under a standard pair
potential, and who obtained this same polytope, with the two same disclinations. It is further possible to consider Z15 and
Z16 configurations on the fibration base, with three or four vertices having six neighbours. This leads to new disclinated
polytopes with three and four disclination lines, having respectively 180 and 192 vertices that have been denoted D15 and
D16. Notice that an intrinsic limitation of this disclination procedure is that it introduces individual non-crossing defects
lines along great circles. In order to go further and approach flattened structures with disclination networks, on needs to
use another approach, the iterative flattening method, that we now describe.

3.3.2. Iterative flattening method
Instead of entering disclinations one by one, it is possible to generate sets of entangled disclination networks, leading

rapidly to flattened structures. The proposed hierarchical flattening procedure [24,25] is based on an iterative decoration
scheme, where a tetrahedrized structure is transformed into another tetrahedrized structure containing more tetrahedra and
vertices. Consider a tetrahedral cell in the {3,3,5} polytope and add two new vertices on each one of its edges, dividing
them into three equal segments. The solid tetrahedron has been decomposed into four smaller tetrahedra and one truncated
tetrahedron. This truncated tetrahedron is a ubiquitous structural unit observed in several metallic compounds, often called
the Friauf–Laves (F.L.) polyhedron (see below). All the 600 {3,3,5} cells are thus decorated, leading to a decomposition of
the polytope into tetrahedral and F.L. cells. New vertices are then added at the centre of F.L. polyhedra (the centres of the
original tetrahedral cells). Each hexagonal face of an F.L. polyhedron carries six tetrahedra (shared by two neighbouring F.L.
polyhedra). Therefore, upon weighting the shared cells by one half, we see that a {3,3,5} tetrahedral cell is decomposed
into twenty smaller tetrahedral cells (Fig. 6a, b). One eventually finds three types of sites in this curved structure: (i) the
120 sites located at the {3,3,5} vertices which remains Z12 sites; (ii) the 1440 added (by pairs) on each of the 720 {3,3,5}
edges, still of type Z12; (iii) and finally the 600 sites added at the centre of the {3,3,5} cell, which appear to be of Z16-type.
A disclination network has been generated, whose edges connect the centre of the {3,3,5}. This is nothing but the edges
of the dual {5,3,3} polytope, a regular packing of dodecahedral cells on S3. This new tetrahedrally close-packed polytope,
with 2160 sites, is denoted P1 (with the {3,3,5} as P0).

Nothing prevents to apply this decoration again onto P1, even though its tetrahedral cells are not regular, and gets a P2
polytope, with a large number of Z12, Z16 and also now Z14 sites. At each iteration, a scaling factor λ = 3 occurs between
each interlaced disclination network. Upon iteration, the distribution of coordinations allows a simple algebraic description
[24,25]. Let us form a three-dimensional vector N(i)

1 with components (n12,n14,n16), the number of Z12, Z14 and Z16 sites

at the ith iteration. The decoration procedure is encoded in a matrix Ω1, such that N(i)
1 = ΩN(i−1)

1 :

Ω1 =
⎛
⎝ 13 12 12

0 3 4
5 6 8

⎞
⎠

The iteration begins with the {3,3,5} = P0 and N(0)
1 = (120,0,0). To the largest eigenvalue of Ω1 (the so-called Per-

ron root), here v = 20, corresponds an eigenvector whose components gives the average properties of P∞ . In particular,
the mean coordination number, 40/3, is closely approached after only very few iterations. After p iterations, polytope P p
contains p interlaced disclination networks (Fig. 6c), which all share the [3,3,5] symmetry group. As a consequence, these
hierarchical structures display an orientational order, a point that appears clearly when looking at the optical Fourier trans-
form of large clusters, mapped onto a tangent R3 after several iterations [11].

3.4. Hierarchical decoration on Frank–Kasper phases

The above decoration applies to any tetrahedral close-packed structure, and therefore also to Frank–Kasper phases in R3,
leading to interesting structures. As an example, we have described a hypothetical structure, hereafter referred to as S.M .,
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Fig. 6. Iterative flattening method and Friauf–Laves decoration. (a) Decoration procedure inside a tetrahedron; (b) Friauf–Laves polyhedron with one central
(Z16) site and its four disclination lines pointing at tetrahedral directions; (c) local view of the entangled disclination network after two iterations (polytope
P2); (d) packing of F.L. polyhedra in standard Friauf–Laves phases. Their centres form a diamond structure.

Fig. 7. Disclination network in the two related Bergman (a) and SM (b) phases; both present dodecahedral shells with Z16 sites.

corresponding to the application of the above Friauf–Laves decoration onto the A15 structure. Its formula is Z (12)
49 Z (14)

9 Z (16)
23 ,

as can be simply checked from the matrix Ω applied to vector (1,3,0) which represents the Z (12) Z (14)
3 composition for

A15. A remarkable fact is that this decorated structure is a simple variant of the above-mentioned Bergman (T ) structure
Mg32(Zn,Al)49, whose composition reads Z (12)

49 Z (14)
6 Z 15

6 Z (16)
20 . S.M . and T phases (which share the same mean coordina-

tion number z � 13.358) are both cubic structures with similar coordination shells around vertices and center of the cubic
cell; they only differ in the orientation of these shells: they are similar with regard to the T phase, which is therefore
body-centered cubic, while different for the S.M . structure, which has therefore a simple cubic symmetry (inherited from
the A15). Notice in Fig. 7 their main difference: in addition to the Z12, Z14 and Z16 sites common to both structures, the
Bergman phase contains Z15 sites (three-fold coordinated sites in the disclination network). The above decoration can be
applied to any F–K phase, and even iterated as for the polytope. This would lead to an infinite family of large-cell tetra-
hedrally close-packed structures with entangled disclination networks, whose relation with quasicrystals is an interesting
open question. But another route to quasiperiodic structures is explored in the following section.

3.5. A 12-fold symmetric quasiperiodic Frank–Kasper-like phase

Up to now, we have described the F–K phases in terms of their major skeleton. It is also interesting to recall their
analysis in terms of their possible planar sub-structures. In their original papers, Frank and Kasper described a large set of
tetrahedrally close-packed structures in terms of main layers tiled by triangles with hexagons or pentagons, supplemented
in between by secondary (less dense) layers tiled by square (or rectangles) and triangles [16,17,26]. We consider here only
those structures whose main layers contain triangles and hexagons, and focus on their intermediate layers geometry. Indeed,
it is possible to define a local atomic decoration with respect to such triangle-square tilings, which eventually leads to the
full set of atomic positions, once periodically repeated in the orthogonal direction. These structures contain Z12, Z14, and Z15
sites, and interestingly simple disclination networks. A nice example is provided by the σ phase: the disclination network is
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Fig. 8. Disclination networks for (a) the σ phase and (b) the 12-fold quasicrystal. Both are constructed as periodically spaced parallel layers with hexagonal
packings having the Z15 sites at the nodes (large disks) and the Z14 sites along the edges (smaller disks). The σ phase network has one type of periodically
repeated (non-regular) hexagons, with two different orientations according to the layer. The quasicrystal shows a quasiperiodic tiling of several types of
hexagons, with again two different orientations according to the layer.

made of stacked layers, with Z15 sites at the centres of triangles and Z14 sites in between, arranged in (irregular) hexagonal
tilings that alternate in orientation (Fig. 8a). Now there are already plenty of different periodic, disordered, and even a
quasiperiodic 12-fold symmetric patterns, which differ by the ratio of squares and triangle, and their relative arrangement.
We shall not present here the detailed atomic decoration, but rather give the correspondence between the ratio of squares
to triangles and the relative frequency of different types of sites.

Let us form a two-dimensional vector V with components (ns,nt), the number of squares and triangles (which can be
given in terms of relative frequencies for infinite structures), and a three-dimensional vector N2 with components (n12,
n14, n15), the number of Z12, Z14 and Z15 atomic sites upon decoration. The atomic decoration, once coded as a relation
between V and N2, takes the simple (rectangular) matrix form:

N2 =
⎛
⎝ 2 3/2

6 1
0 1

⎞
⎠V

With y = ns/nt, the average coordination number for the decorated structures reads:

z̄ = 108y + 47

8y + 7/2

This describes a large and interesting set of Frank–Kasper phases. The A15 phase has only squares in the intermediate
layer (therefore infinite y), which leads to z̄ = 13.5. The Z phase has only triangles (y = 0), leading to z̄ ∼ 13.429. And the
above σ phase corresponds to y = 1/2, leading to z̄ ∼ 13.467.

An interesting member of the triangle-square tilings is provided by the quasiperiodic dodecagonal tiling, which was
popularized when 12-fold quasicrystals were discovered [27], showing an interesting case with symmetry differing from
that of the icosahedral quasicrystal [28]. These tilings allow an inflation–deflation construction that is summarized by the
following transfer matrix relating V i+1 to V i between two consecutive generations:

V(i+1) =
(

7 3
16 7

)
V(i)

To this matrix of largest eigenvalue 7 + 4
√

3 corresponds an eigenvector {√3/4,1} giving the asymptotic (for the
quasiperiodic structure) relative frequency between squares and triangles. It is then easy to get the average coordination
z̄ ∼ 13.464, and even the (unnormalized) composition Z (12)

r Z (14)
s Z 15

t , with r = 3 + √
3, s = 2 + 3

√
3 and t = 2. It is interest-

ing to have a look to the disclination network (Fig. 8b), and compare it, for example, to that of the σ phase. As expected,
the disclination network is itself quasiperiodic, made of hexagons of different shapes.

3.6. Coordination number and disclination lengths in tetrahedrally close-packed structures

It is well known that, in two dimensions, tilings are subject to constraints leading to conserved quantities depending on
the underlying space curvature and topology [11]. From the mathematical point of view, this results from applying Gauss–
Bonnet and Euler–Poincaré relations, which leads to interesting sum rules on the proportions of ring sizes or coordination
numbers. As an example, one easily derives that for any c-fold coordinated (c being constant) tiling on a domain D of a
curved manifold (with Gaussian curvature κ , not necessarily constant), the following relation applies for F p , the number of
p-gonal faces:

∞∑
p=3

(2c − cp + 2p)F p = c

π

∫ ∫
κ dσ
D
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The symmetry between c and p allows us to treat the dual problem with constant p-gonal faces and varying coor-
dinations. One than get, with a vanishing right-hand side, the known fact that for any triangulated two-dimensional flat
structure, the average coordination number is six. Notice that whenever (2c − cp + 2p) = 0, the corresponding F p does not
contribute to the sum rule, leading to the concept of neutral charge polygons. As said above, disclinations in two dimensions
are point-like defects, carrying curvature, and their main effect is to change the ring size or the coordination number in
a tiling. The above sum rule can therefore result in disclination distributions, with the concept of deficit angle carried by
a disclination. Let us first recall how the area of a 2-dimensional sphere S2 can be faithfully computed by summing over
angular deficits at the vertices of a discretized structure, a polyhedron, covering this surface. The surface is considered as
being flat everywhere, except on the (regular) polyhedron {p,q} vertices that concentrate curvature. The angular deficit δ

of each vertex is δ = 2π − qαp where αp is the vertex angle of a p-gonal face. So, δ = π [4 − (p − 2)(q − 2)]/p. The num-
ber of vertices V in a regular polyhedron {p,q} is easily deduced from the Euler relation, as V = 4p/[4 − (p − 2)(q − 2)].
Consequently, the total angular deficit for a polyhedron is

∑
δ = 4π , precisely the area of a unit radius sphere S2.

The three-dimensional case is less constrained and do not lead to simple unique value, but rather to ranges of expected
values. For tetrahedrally close-packed structures, one can focus on two related quantities, the mean coordination z̄ and
the mean number of tetrahedra sharing an edge r̄. For the regular {3,3,5} polytope, one has trivially z̄ = 12 and r̄ = 5.
Disclination lines affect these values, which increase when going from a positively curved space to a flat space. In flat
space, most structures of interest (with slightly distorted tetrahedral cells) have r̄ ∼ 5.1 and z̄ in the range 13.3–13.5. A nice
mean-field-like approach to this packing problem in three dimensions is provided by the Coxeter statistical honeycomb [29]:
using the above given regular tetrahedron dihedral angle θ , one expects an average of r = 2π/θ � 5.1043 tetrahedra sharing
an edge, forming the average structure {3,3, r}. Consider the average Voronoï cell surrounding one vertex: it is generically
a polyhedron with 3-fold coordinated vertices, which can be viewed as a tiling on a closed surface equivalent to a sphere.
The above relation leads to

∑
p(6 − p)F p = 12; introducing the face mean size p̄ = (

∑
pF p)/F and assuming (the main

approximation here) that the Voronoï cells are all equivalent, one gets F̄ = 12/(6 − p̄). With the above r, one finds F for
the Voronoï cell, and therefore the average coordination z̄ ∼ 13.3973, well in the middle of the observed range for compact
tetrahedral packing.

It is then possible to go further in the analysis, and get an approximate sum rule, by considering the flat tetrahedral
packing as having an underlying corrugated geometry [30] (with alternation of positive and negative curvature), and ap-
plying Regge-like analysis [31], which focuses on the deficit angle carried by disclination defects; in a similar way, Regge’s
calculus uses a simplicial decomposition of a curved manifold. The space enclosed by a tetrahedron is regarded as flat
and the curvature is concentrated on the edges. When r tetrahedra share an edge, the angular deficit reads δr = 2π − rθ .
The quantity δ5 (�01283 rad) is positive, corresponding to a positively curved space (similar to polytope {3,3,5}), while
δ6 (� −1.102 rad) is negative (corresponding to a hyperbolic negatively curved space H3). Consider a tetrahedrally close-
packed structure, and suppose that one has only five or six tetrahedra sharing edges (like in Frank–Kasper phases). Such a
network is now viewed as a Regge skeleton whose edges code an underlying curved topology, flat on the average, with the
5-fold (resp. 6-fold) edges in the positively (resp. negatively) curved regions. One shows that the requirement of vanishing
curvature reads: L5δ5 + L6δ6 � 0, where L5 and L6 are the lengths per unit volume of edges sharing five or six tetrahedra.
Notice that, if necessary, this sum rule can be generalized to cases with other numbers of edge-sharing tetrahedra.

Let us carry out a simple calculation in the case of the hierarchical polytope where we assume for simplicity that all
first-neighbour distances are equal. Then, in polytope Pi , each disclination edge carries a negative weight δ6, while the other
polytope edges carry a positive weight δ5. Let us introduce the ratio � = L5/L6. If the above relation were exact, then one
expects � = δ5/|δ6| = 8.589, for the fully flattened polytope P∞ . For the iterative polytopes Pi , �(i) reads out from the
knowledge of the respective triplet (n12,n14,n16) as �(i) = 6(n(i)

12 + n(i)
14 + n(i)

16)/(n(i)
14 + 2n(i)

16). At the infinite limit, one finds
�(∞) = 9, which is rather close to the above ideal value.

Being in a situation where no exact results exists, but apparent tendencies are present, we find it interesting to display
some data in the following way. We focus on those close-packed structure that only contains Z12, Z14, Z15 and Z16, and
use their proportions (p12, p14, p15, p16) as barycentric coordinates (Fig. 9) inside a tetrahedron whose vertices correspond
to regular configurations with only one type of site. The set of structures sharing the Coxeter statistical honeycomb mean
coordination would lie on a plane, shown in the figure. Also displayed are several Frank–Kasper phases, polytope {3,3,5}
and the hierarchical polytopes described in the text, all falling in the vicinity of the mean-field plane. This plane separates
ranges of parameters describing positively and negatively curved space structures.

4. Conclusion

In this paper, we have gathered some geometrical ingredients that allow a generic description of close-packed tetrahedral
structures, related to icosahedral order at different scales. At a local scale, sphere packing and associated polytetrahedral
close packing are known to lead to a pseudo-icosahedral local order, whose presence is expected in amorphous metals
and undercooled metallic liquids. The extent to which a perfect local icosahedral order can be propagated is limited by
frustration and leads to the presence of an intrinsic set of disclination defect lines. A disordered disclination network would
lead to an amorphous structure, while such a periodic network corresponds to large-cell Frank–Kasper phases (some of
which are found among quasicrystal approximants). A simple example of a 12-fold quasiperiodic Frank–Kasper phase is also
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Fig. 9. Location of different phases depending on their ratio of four possible Frank–Kasper coordinations (Z12, Z14, Z15, and Z16), using barycentric coor-
dinates. The dark plane corresponds to the mean coordination number of the Coxeter statistical honeycomb. Polytope {3,3,5} sits at the Z12 vertex. The
plane vicinity contains Euclidean structures, separating positively and negatively curved structures. Notice the A15, Z , σ and quasicrystalline (QC) phases,
which are, as expected, in the (Z12, Z14, Z15) plane. (Colour online.)

described here, with its quasiperiod layered disclination network. A final possibility, discussed here, is that of a hierarchical
disclination network (entangling many scales), which is exemplified by the hierarchical polytopes. In all cases, a main
geometrical description tool is provided by the ubiquitous Frank–Kasper polyhedra.
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