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The (lattice) dynamics of quasicrystals differs in many aspects from that of lattice periodic
systems. This they have in common with other aperiodic crystals. The dynamics of
quasicrystals is discussed here in the context of these general aperiodic crystals, but
the special features of quasicrystals are stressed. The lattice dynamics is now fairly well
understood. Especially for aperiodic crystals, there are excitations related to the possibility
to describe the systems in superspace. These ‘phasons’ are discussed in particular.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

La dynamique de réseau des quasicristaux diffère de celle des structures avec periodicité
de réseau sur un certain nombre de points. Ils partagent cette propriété avec d’autres
structures apériodiques. La dynamique des quasicristaux est discutée dans le contexte
de ces structures apériodiques en général, mais les aspects spécifiques des quasicristaux
sont soulignés. La dynamique de réseau est assez bien comprise maintenant. Un aspect
particulier des excitations des structures apériodiques est lié à la possibilité de décrire ces
systèmes dans un superespace. Ces excitations « phasons » sont discutées spécifiquement.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Since Laue showed in 1912 that the atoms in a crystal are arranged with lattice periodicity, it was assumed for a
long time that this property was the most important characteristic of a crystal. The symmetry groups for such periodic
arrays, the space groups, had been known already from the 19th century onwards. These groups turned out to be very
important for the study of the physical properties of solids, because the states of electrons and lattice vibrations in such
systems could be characterised by irreducible representations of these groups, and the determination of these states could
be greatly simplified using them. The lattice periodicity can be seen in the diffraction pattern: this consists of sharp peaks
on a three-dimensional lattice, besides a diffuse component.

However, 70 years later it became clear to a larger audience that the assumed lattice periodicity was not the property
of all solids, when Shechtman discovered quasicrystals in 1982. The definition of ‘crystal’ had to be adapted to the new
situation. The fact that quasicrystals are not lattice periodic follows from the symmetry of the diffraction pattern, which
contains five-fold symmetry axes, which is incompatible with lattice periodicity. The discovery led to strong objections
from a number of crystallographers, but was welcomed by another group of scientists working also on ordered compounds
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without lattice periodicity: the crystallographers of incommensurate phases, which were known already from the early
sixties. All these structures share the property that they have a three-dimensional set of sharp diffraction peaks, but lack
lattice periodicity, for which reason they are called aperiodic crystals.

Physical properties of solids are, to a large extent, determined by their structure and symmetry. In particular, for linear
problems, this relies on the representations of the symmetry group. Therefore, electrons and small oscillations around
the equilibrium positions can for lattice periodic structures be characterised by wave vectors from the Brillouin zone and
representations of the space group. For aperiodic crystals, the way to proceed is not so obvious. Because quasicrystals form
a subclass of the class of aperiodic crystals, we start with a discussion of the problem for general aperiodic crystals and
come back to quasicrystals later. Dynamics in solids, however, is not restricted to small oscillations. One may consider also
phase transitions and non-linear excitations for aperiodic crystals in general, and for quasicrystals in particular, because
these may also differ in character from those in lattice periodic crystals. However, we start with the small oscillations
around the equilibrium positions, and call this par abus de langage lattice dynamics, even for the systems without lattice
periodicity.

In aperiodic crystals the diffraction pattern shows sharp peaks k at positions given by:

H =
n∑

i=1

hia
∗
i (1)

This formula holds also for lattice periodic systems, and then n is equal to the dimension of space, but for aperiodic
crystals n is larger than that. The smallest number of basis vectors a∗

i in Eq. (1) is the rank of the diffraction pattern, and
this is 3 for a lattice periodic crystal. The set of vectors H of the form of Eq. (1) is called the Fourier module of the aperiodic
system.

If n is larger than the dimension, the system is not lattice periodic, which means that the usual techniques to study
states in these systems fail. One may, however, define a lattice periodic structure that completely defines the aperiodic one
as follows. The n basis vectors in Eq. (1) can be viewed as the projection of n independent vectors a∗s

i = (a∗
i ,b∗

i ) in an
n-dimensional space, and consequently the vectors H are the projection of vectors (H,HI ). The embedding of the aperiodic
structure into the higher-dimensional space then goes as follows. Suppose the aperiodic structure is given by a density ρ(r),
then a lattice periodic system in n dimensions is given by:

ρ(r) =
∑

H

ρ̂(H)exp(iH.r) → ρ(r, rI ) =
∑

H

ρ̂(H)exp
(
i[H.r + HI .rI ]

)
(2)

The density ρ(r, rI ) is by construction lattice periodic, its restriction to rI = 0 is just the density of the aperiodic struc-
ture and the lattice in n dimensions is spanned by the n vectors that are reciprocal to the n vectors (a∗

i ,b∗
i ). Functions

with diffraction spots as in Eq. (1) are called quasi-periodic, and the way to get a quasi-periodic function from a periodic
function in more dimensions was known already in the 1920’s. The embedding, however, of aperiodic crystals in this way
and the determination of the proper space groups in more dimensions was developed in the 1960’s [1]. This approach is
the superspace approach. It may also be applied to a discrete quasi-periodic set of points. If the points in physical space
are rm , and the direct lattice corresponding to the reciprocal vectors a∗s

i is spanned by as
i (i = 1, . . . ,n), the points in the

n-dimensional unit cell have coordinates (a∗
i .rm) modulo integers. The closure of this set in the unit cell is formed by the

so-called atomic surfaces, which may be continuous, or disconnected. They are the n-dimensional equivalent of the point
atoms in a three-dimensional unit cell for a conventional crystal.

2. Lattice dynamics of periodic and aperiodic crystals

The lattice dynamics of a solid gives the small oscillations around stable equilibrium positions. If n0 gives the equilibrium
positions and un the deviations from them, the potential energy is given in powers of the deviations as:

V = V (n0) + 1

2

∑
nn′

si j
nn′ ui

nu j
n′ + terms of higher order (3)

For lattice periodic crystals, the vibration modes are characterised by a wave vector of the Brillouin zone and an arbitrary
solution to the equations of motion is:

uα
n j(t) =

∑
kν

Q kνe(kν| j)α exp
(
i(k · n − ωkνt)

)
(α = x, y, z) (4)

where ν labels the modes with the same k, their frequencies being denoted by ωkν . For an aperiodic crystal with Fourier
module as in Eq. (1), there is no Brillouin zone (BZ) if n is larger than the dimension. But there is, of course, a BZ in the
superspace.

The modes may be measured with inelastic neutron or X-ray scattering. For a lattice periodic crystal, the measured
intensity for energy transfer q and frequency ω is given by the absolute square of the scattering function [2]:



60 T. Janssen, M. de Boissieu / C. R. Physique 15 (2014) 58–69
S(q,ω) =
∑

k,K,ν

∣∣∣∣
∑

j

b j√
M j

e−W j(q)q · e(kν| j)e2πq.r j

∣∣∣∣
2

δ(q − k − K)δ(ω − ωkν)/ω (5)

The sum runs for k over the BZ, for K over the reciprocal lattice, for ν over the branches, and for j over the atoms in the
unit cell. W j(q) is the Debye–Waller factor. For aperiodic crystals, the same formula could be applied, but the size of the BZ
is zero, and the number of particles in the unit cell is infinite, which is in agreement with the fact that all atom positions
can be mapped into the unit cell in superspace, but then they give an infinite number too, the points of the atomic surfaces.

This has also consequences for the density of states. For lattice periodic crystals, the latter shows a finite number of
jumps, the so-called Van Hove singularities [3]. In the derivation of the phenomenon, the lattice periodicity is crucial. For
aperiodic crystals, it is not evident whether there are no or an infinite number of such singularities.

3. Incommensurate modulated phases

To understand the dynamics of aperiodic crystals, one has studied simple models. The simplest are those for incommen-
surate modulated phases. The peaks of the diffraction pattern (Eq. (1)) can be divided into two classes: the main reflections
(hi = 0 for i > 3) corresponding to a lattice periodic structure, the basic structure, and the others, the satellites, correspond-
ing to (multi-)periodic displacements from the positions of the basis structure.

Incommensurate modulated phases occur frequently as intermediate phase between a high-temperature periodic phase
and a low-temperature superstructure of the periodic phase. An early example is the γ -phase of Na2CO3. At high tempera-
ture, anhydrous Na2CO3 is hexagonal. It shows a phase transition to a monoclinic phase, and a second one where satellites
appear with wave vector q = αa∗ + γ c∗ . The positions of the satellites shift with decreasing temperature until they ‘lock in’
at fixed values α = 1/6 and γ = 1/3. Below the lowest phase transition, the values remain constant, and the now periodic
structure has a unit cell that is six times the unit cell of the monoclinic phase. The phase transition towards the incommen-
surate phase is induced by a phonon with wave vector q that becomes unstable. The second (lock-in) transition does not
occur in all incommensurately modulated materials. There are compounds where the incommensurate phase remains to the
lowest observed temperatures.

A simple model for the dynamics in the incommensurate phase is the modulated spring model, consisting of a one-
dimensional chain with harmonic interactions between neighbours and spring constants that vary with the position in the
chain:

V = 1

2

∑
n

βn(xn − xn−1 − a)2, with βn = β
(
1 + 
 cos(2πnb + φ)

)
(6)

where a/b is an irrational number. The spectrum of small oscillations un = xn − na cannot be determined in the usual
way, because the potential V is not periodic. Nevertheless, one may get an idea of the spectrum by calculating it for
approximants: taking values L/N ≈ a/b for integers L and N . Especially for the case 
 = 1, a plot of the spectrum for
varying rational approximants shows an infinite number of gaps with a hierarchical structure (see Fig. 1a). Although this
is a quite pathological model, it shows that spectra and states in aperiodic crystals may differ strongly from those in
lattice periodic crystals. Strictly speaking, for these approximants the vibration states are extended: they differ just by a
phase factor for positions differing by a lattice vector of the periodic lattice. However, inside the unit cell, which grows for
growing approximants, the displacements may fall off almost exponentially (localised states) or with a power law. In the
limit of the incommensurate phase, the latter states are called critical. For commensurate crystals, the spectrum consists
of bands and the states are extended, but for incommensurate crystals the spectrum may have a fractal structure and the
states may be localised or critical (cf. Section 10).

A similar model is the Frank–Van de Merwe model (usually called Frenkel–Kontorova model (FK)), which consists of a
harmonic linear chain in an external sinusoidal potential with periodicity incommensurate with the lattice constant of the
chain. The potential is given by:

V =
∑

n

[
α

2
(xn − xn−1 − b)2 + λ

2π

[
1 − cos(2πxn/a + φ)

]]
(7)

with lattice constant b for the chain, and periodicity a for the external potential, a/b being irrational. The equation of
motion for the particles is, in terms of displacements un = xn − nb:

mω2un = α(2un − un+1 − un−1) + (2πλ/b) cos(2π x̄n/a)un (8)

where the x̄n are the equilibrium positions of the chain in the external potential. Also in this case, the vibration spectra
have been calculated. The basic structure is a chain modulated by the external potential. As Aubry has shown [4], for
small values of λ, the modulation is sinusoidal, but there is a critical value λc above which the modulation function is no
longer continuous. The vibration eigenvectors differ qualitatively in the two regimes. In contrast with the modulated spring
model, the FvdM model does not have a q = 0 mode with frequency ω = 0 due to the non-translational invariance of the
background potential. A rigid shift of the chain does not leave the energy invariant. However, for small values of λ, when



T. Janssen, M. de Boissieu / C. R. Physique 15 (2014) 58–69 61
Fig. 1. (a) Vibration spectra for values of L/N between 0 and 1 in the modulated spring model. (b) Dispersion curves in the DIFFFOUR model with potential
energy given in Eq. (9), for an 11-fold approximant.

the chain is sinusoidally modulated, an arbitrary shift of one atom followed by a relaxation of the whole chain does not
change the energy. In this case, the modulation is shifted with respect to the basic lattice and this gives an ω = 0 mode. It
is called a sliding mode.

In these two models, the aperiodicity is already built in the mutual interactions. A third model gives a first explanation of
the occurrence of modulated phases and makes it possible to compare the vibration properties of the periodic and aperiodic
structures. It is the discrete frustrated Φ4 (DIFFFOUR) model [5]. It is a one-dimensional chain with up to second-neighbour
interactions, with potential energy expressed in the displacements un from the equidistant array as:

V =
∑

n

(
α

2
(un − un−1)

2 + 1

4
(un − un−1)

4 + β

2
(un − un−2)

2 + δ

2
(un − un−3)

2
)

(9)

If one assumes that α, β and δ depend on temperature as a consequence of non-linear terms, there are various phases in the
α–β–δ phase diagram. Among them are incommensurate modulated phases. Normalising to β = −1, the modulation wave
vector q is given by the expression cos(q) = (1 − √

1 − 3αδ + 9δ2)/6δ. There is also a phase with xn = 0 (all n). This is just
a periodic chain. This chain becomes unstable at the phase boundary, where the frequency of two modes with wave vectors
±q go to zero (see Fig. 3). In this case, the aperiodicity stems from the frustration between first- and second-neighbour
interactions.

Close to the transition line between basic structure and modulated phase, the modulation vector in the latter changes
continuously, but there is, like for the FvdM model, a transition line between this area with continuously varying modulation
vector and an area where only rational values of the modulation vector are taken. On the borderline, the integrated density
of states is a non-decreasing function with an almost everywhere vanishing derivative. This is called a devil’s staircase.

In the temperature region where the atomic surfaces are continuous, there are two branches for which the frequency
goes to zero when the wave vector tends to zero (Fig. 1). One is the usual acoustic branch. The other can be described as
a shift of the modulation with respect to the atoms. It is a combination of the two soft modes at ±q and it is called a
phason. Its frequency remains zero in the modulated phase, but it is an overdamped mode, as will be discussed later. The
other combination of the two modes at ±q describes an oscillation of the amplitude of the modulation function, and is
called amplitudon. After the phase transition, its frequency rises steeply.

4. Incommensurate composites

A different class of aperiodic crystals is that of incommensurate composites. They consist of two or more subsystems that
have the structure of an incommensurate modulated crystal each with a lattice periodic basis structure and a modulation
that is usually determined by the interaction with the other subsystems, while the subsystems are mutually incommensu-
rate. Distinguishing the subsystems by a label ν , the reciprocal bases for the subsystems have vectors a∗ν

i (i = 1,2,3). Then
the total diffraction pattern has vectors a∗ (Eq. (1)) such that:
j
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a∗ν
i =

n∑
j=1

Zν
i ja

∗
j (10)

A simple model, also for the dynamics, is the double-chain model (DCM). It consists of two different chains with first-
neighbour harmonic interaction in the chains and a long-range interaction between atoms of different chains. This leads
to two modulated chains: one is modulated with the periodicity of the other. Just as for the FK-model, the modulation is
sinusoidal for small interchain interactions, but becomes discontinuous for stronger interactions.

Without interaction, the two subsystems have their proper lattice dynamics. One can distinguish two Brillouin zones,
one for each subsystem. With interaction, there is no longer a finite Brillouin zone and the dispersion curves become
mixed, especially at the crossing points of these curves. A mode then has non-zero displacements of all the atoms in both
chains, although the participation of the two chains may vary quickly with wave vector. In the case of small interaction, the
modulation functions are smooth, but beyond a certain limit, these become discontinuous, another example of ‘breaking of
analyticity’ [4]. In the superspace description, this means that the atomic surfaces become discontinuous.

In the case of continuous modulation, there are two phonon branches with frequency tending to zero when the wave
vector goes to zero. One is related to the fact that the system is translation invariant. These vibrations correspond to acoustic
waves in both chains. The other branch corresponds to a movement of one chain with respect to the other. Because of the
incommensurability, a relative shift of the two chains gives a situation with the same energy. The motion in the case of
these vibrations is called a sliding mode, and is similar to the situation for the FvdM model.

The models discussed here are essentially one-dimensional. However, considering models in more dimensions is essen-
tial. Otherwise, a phase transition would not be possible. Going to higher dimensions could also wipe out some of the
peculiar properties found for one-dimensional models, like the types of spectra and vibration states, which are not found
for periodic crystals. A possible way to investigate this is considering coupled chains in more dimensions. Here we shall
consider another type of systems, directly related to quasicrystals, the tiling models.

5. Lattice dynamics in tiling model systems with non-crystallographic symmetry

Before the discovery of quasicrystals, aperiodic structures were already studied by mathematicians. The best known
example is the Penrose tiling, with decagonal symmetry. Other examples are the 2D Ammann–Beenker tiling or a 3D gen-
eralisation of the 2D Penrose tiling. These have octagonal and icosahedral symmetry, respectively, and for that reason they
are necessarily aperiodic. Soon there were speculations that similar crystal structures could occur in nature, and would have
perhaps interesting physical properties. Simple models for the vibrations in quasicrystals are obtained by considering a 2-
or 3-dimensional tiling with atoms at the vertices and an interaction between these, which minimises the energy for zero
displacements.

The simplest model is to take such a tiling, put atoms at the vertices and connect close neighbours with harmonic springs
[6,7]. The problem of the aperiodicity can be attacked via a choice of approximants. For example, the Ammann–Beenker
tiling, with eight-fold symmetry, is a tiling with tiles of two types; a square and a rhomb with angle of 45◦ . It may be
obtained from a four-dimensional periodic structure. This has a lattice with 4 basis vectors:

a(1,0,1,0), a(c, c,−c, c), a(0,1,0,−1), a(−c, c, c, c), with c = √
1/2 (11)

and in each lattice point an atomic surface, which is an octagon, the projection of the unit cell on the internal space. An
approximant is then obtained by replacing c in the two last coordinates by a rational number L/N . This gives a lattice
periodic square structure in physical space, for which the eigenvibrations can be calculated in the standard way. One may
expect to learn about the aperiodic system by looking at a series of approximants:

√
1/2 ≈ 2

3 , 3
4 , 29

41 , 70
99 , . . .. In Fig. 2 are

given for the analogous case of the 3D icosahedral tiling the density of states, dispersion curves in the Brillouin zone of the
approximant and the dispersion curve for low energy for two different approximants. In the first the pointed line gives the
result for a simple square lattice, where the Van Hove singularities are clearly visible. But also the approximant has similar
features and this remains so for higher approximants. The second figure shows that there are two curves going to zero, the
two acoustic branches. There is no sliding mode, because the atomic surfaces are disjunct. In the third figure it is shown
hat there is rapid convergence for the dispersion for higher approximants.

6. Tensorial properties of quasicrystals

Sound waves and other long-wavelength lattice vibrations can also be described in terms of tensors, in particular, the
elastic tensor. For lattice periodic crystals, this tensor is a rank-four tensor, and for the general case this has 21 independent
components. It gives the relation between strain and stress. For aperiodic crystals, the displacements from a basic structure
may have components in the physical space as well as in the internal space. For that reason, one has to distinguish phonon
strain ei j = (∂iu j + ∂ jui)/2 (i � j = 1,2,3) and phason strain f i j = ∂iu j (i = 1, . . . ,3; j > 3). The elasticity tensor then has
3 components: the phonon–phonon, the phason–phonon and the phason–phason parts. The elastic energy then may be
expressed as:
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Fig. 2. 3D icosahedral tiling: density of states, dispersion curves, scaling properties [6,7].

F =
∫

dr
(

1

2

∑
i jk�

cE
i jl�eijek� + 1

2

∑
i jk�

cI
i jk� f i j fk� +

∑
i jk�

cE I
i jk�|eij fk�

)
(12)

The number of independent components is determined by the point symmetry of the crystals. For icosahedral quasicrystals,
for example, there are two independent components for cE , 2 for cI and 1 for cE I , called the phonon–phonon, the phonon–
phason, and the phason–phason elastic constants, respectively. With this expression, one may determine the elastic waves
in the crystal.

7. Hydrodynamic modes and phasons

When in a crystal a mode with wave vector q becomes soft and leads to an instability, the two modes at ±q lead to
two new modes in the structure after the phase transition. One describes a motion of the modulation function with respect
to the crystal, the other one corresponds to an oscillation of the amplitude of the modulation function. They are called
phason and amplitudon, respectively. For an incommensurate wave vector, the energy of the system does not change if
the phase of the modulation function is varied. Therefore, this mode has zero frequency. In fact, there is a branch of such
excitations, because the modes q + 
q are degenerate with those at −q + 
q via a wave vector 2q. The frequencies are
non-zero for non-zero 
q. There are two branches, one for phasons and one for amplitudons. These excitations originate
from phonons with wave vector around ±q. These go down in frequency when approaching the transition, and then the
amplitudon frequencies go up steeply, whereas the phason modes keep a low frequency. This shows that the phasons are
not additional degrees of freedom. They are actually phonons that can be described as long-wavelength oscillations of the
phase.

In superspace a change in phase may be considered as a change in the internal space. Therefore, the phasons may be
considered as oscillations of the crystal in superspace with polarisation in the perpendicular direction(s).

Similar dynamics can be found in incommensurate composites. Because of the incommensurate relation between the
subsystems, one subsystem may be moved with respect to the other subsystem(s) without energy change. Also in this case,
the change of relative position may be described as a shift of the whole system in internal space. The corresponding motion
may, therefore, also be called ‘phason’.

The argument, that a shift of the physical space in the direction of the internal space does not cost energy because
the projection of the lattice points in superspace on the internal space is a dense set of points, is valid for all aperiodic
crystals. Therefore, these phasons exist also for quasicrystals. The question then arises whether these motions are also
elementary excitations of the aperiodic crystal. For that we can consider them in terms of hydrodynamics. Hydrodynamic
modes are slowly decaying modes, in contrast to the variables fast decaying towards thermal equilibrium. In general, these
hydrodynamic modes are related to conserved quantities or to broken symmetries. One of the conserved quantities for
aperiodic crystals is the energy connected with displacements in internal space. There is, however, a big difference with,
for example, the situation in an isotropic anti-ferromagnet, where the energy does not depend on the orientation of the
spins. Moreover, mode-counting arguments indicate that the phason modes cannot be propagating modes, but are diffusive
modes; this argument, which has been mainly used for quasicrystals [8–10], is in fact also true for all aperiodic crystals and
in particular incommensurately modulated phases, as was shown in [11]. This apparent contradiction with experiment is
in fact reconciled once the damping of the modes is properly taken into account. Therefore, a long-wavelength disturbance
in the orientation will decay slowly. For aperiodic crystals, a uniform displacement in internal space does not change the
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Fig. 3. Soft mode in ThBr4 [12].

energy globally, but energy loss in one point will be compensated by energy gain in another. Especially with discontinuous
atomic surfaces, the local energy change may be substantial. Therefore, it is not clear whether such modes may be called
hydrodynamic. Anyway, these modes may have an additional damping because of the energy cost of the phason jumps. But
even in the case of continuous atomic surfaces, phasons are expected to be overdamped. In simple models, the quadratic
and the higher-order terms for acoustic modes go to zero, but for phasons the latter tend to a constant. A phenomenological
argument for the damping of phasons in incommensurate phases has been given by Strukhov and Levanyuk [13]. The fact
that phason modes in incommensurately modulated phases have a width which remains constant as q goes to zero (unlike
phonon excitations) means in the long-wavelength limit that phason modes are diffusive excitations. In this long-wavelength
hydrodynamic limit the ‘dispersion relation’ of a phason mode with wave vector q comports only a purely imaginary part
and writes: ω = −iDphasonq2, where Dphason is the phason diffusion constant. Whereas in the case of incommensurately
modulated phases, one can expect a higher wavevector region for which phason modes have the characteristic signature of
a damped harmonic oscillator, this is certainly no longer true for quasicrystals. The question remains open in the case of
composite crystals (see [14] for a discussion on this point). The fact that the phason modes are overdamped means that
there are no oscillations. Use of the term ‘lattice vibrations’ then becomes actually misplaced.

Phasons as extended excitations, comparable with acoustic phonons, but with an overdamped character, correspond
with large-scale oscillation of the crystal positions in superspace with respect to the physical space. Another dynamic
phenomenon is a local oscillation describing a jump between two positions in the quasicrystal. This happens if a gap
between atomic surfaces passes through the physical space when the aperiodic systems moves in internal space. Sometimes
this is also called a phason, but in order to avoid confusion with the collective mode, it would be better to call them ‘phason
jumps’. Such phason jumps have been observed in experiments, and they have a rather well-defined frequency [15,16].

Phasons have three consequences for scattering. In the first place, the phason oscillations will affect the Debye–Waller
factor in the same way as phonons do. In the second place, they will contribute to the diffuse scattering. In a simple
approximation, which neglects phason–phonon coupling, for icosahedral crystals one may calculate this scattering using
the four elastic constants for the materials: the usual two Lamé coefficients and the two phason elastic constants K1 and
K2 [17–19]. The shape of the so-called phason diffuse scattering depends only on the ratio K2/K1. It can reproduce nicely
the observed diffuse scattering in the i-AlPdMn phase, as shown in Fig. 4 [20]. In fact, all icosahedral phases studied up
to now do present a diffraction pattern with a ‘phason’ diffuse scattering, which is most likely quenched in. This phason
diffuse scattering does not show up for a periodic approximant, in agreement with the unique ‘aperiodic’ character of those
‘excitations’. And finally, phasons produce new branches in S(q,ω) when they are not overdamped. The diffusive character
of long-wavelength phason modes has been shown experimentally in the case of the i-AlPdMn icosahedral quasicrystal [21].
Using coherent X-ray photon correlation spectroscopy, it was shown that indeed phason fluctuations decay exponentially
with time above 500 ◦C . At 700 ◦C , the characteristic time is smaller for longer wavevector and goes like 1/q2 as expected
for a diffusive mode [22,21] (see Fig. 6).

8. Dynamics of decagonal and ternary icosahedral quasicrystals

Decagonal quasicrystals are periodic in one direction and are stackings of (puckered) layers that are quasi-periodic and
have a ten- or five-fold axis. The diffraction pattern is 5-dimensional with four basis vectors in a plane perpendicular to the
fifth. In that plane, five-fold symmetry is observed. The structure implies an anisotropy in the dispersion: sound velocities
are expected to be different along the axis or perpendicular to the axis. This has been found, but the effect is not so strong
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Fig. 4. (Color online.) Left two panels: Diffuse scattering measured in a plane perpendicular to a 5-fold axis as measured and simulated using the hydrody-
namic theory. Right panel: evolution of the phason characteristic time decay as a function of q, as measured at 700 ◦C .

Fig. 5. (Color online.) Oscillating potentials between B–B, B–Fe and Fe–Fe pairs according to Mihalkovič et al. [26].

as theoretical models predict [23,24]. Because decagonal quasicrystals are simpler than icosahedral ones, and their structure
was earlier understood, the study of their dynamics is quite natural [25].

In the years after the discovery of quasicrystals, the quality and size of the samples were not high enough to allow
the use of inelastic neutron scattering for the study of lattice dynamics. The first quasicrystals of high enough quality to
permit such experiments were ternary compounds like AlPdMn and AlCuFe [27,28]. For these compounds, rather realistic
models for the structure were developed [29]. These were, however, not realistic enough to allow model calculations of the
vibration modes. In particular, chemical ordering was found to be difficult to model.

The first results obtained in the study of the i-AlCuFe [30,31] and i-AlPdMn icosahedral phases [32] have demonstrated
that well-defined acoustic modes can be observed close to strong Bragg peaks. Then the signal broadens rapidly as the
phonon wave vectors become larger than 0.3 Å

−1
, i.e. for wavelengths of the order of 2 nm, while the dispersion relation

departs from a linear dispersion. This abrupt broadening occurs when the acoustic branch crosses low-lying dispersionless
optical modes and pseudo-Brillouin zone boundaries (PBZB, as proposed by Niizeki [33,34]). The broadening rate is much
larger than the expected q2, and goes as q4. It is interpreted as resulting from a mode mixing between the acoustic ex-
citation and the broad energy distribution (about 4 meV FWHM) of the optical excitation located at about 6.5 meV. This
mode mixing occurs over a rather limited q-range, after which what is measured is a broad distribution of modes centered
at energies corresponding to the crossing of the acoustic branch with the pseudo-Brillouin zone boundaries and has been
observed for other icosahedral phases [32], Zn–Mg–Y [35] and the decagonal Al–Ni–Co phase [24]. In this higher energy
range, the plane wave expansion is certainly questionable, and the very notion of a well-defined phonon excitation needs,
most likely, to be revisited.
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Fig. 6. i-AlPdMn dispersion relation extracted from different measurements. Filled black symbols are for the TA acoustic modes, grey symbols for optic-
like excitations. The open circle stands for the FWHM of the acoustic excitations, the solid line is a q4 fit. The vertical dashed lines indicate the first
pseudo-Brillouin zone boundaries.

Fig. 7. (Color online.) (a) Successive shells in the structure of ZnSc. (b) Simulated motion of the central tetrahedron.

9. Dynamics of binary quasicrystals

A crucial step toward the understanding of the lattice dynamics in quasicrystals was the discovery of binary systems of
high quality by A.P. Tsai [36]. They are of high quality and their structure could be determined on the basis of the clusters
constituting the 1/1 approximant ZnSc [37]. This made it possible to start more refined calculations of the dynamics. The
structure in the approximant consists of a series of successive shells (Fig. 7a). In the center, a tetrahedron is situated. Its
presence would break the icosahedral symmetry, but this is restored by the dynamics. Simulations show jumps between
various positions (Fig. 7b).

Using potentials between the atoms derived from ab initio calculations [26], as given in Fig. 5, the modes could be cal-
culated for the 1/1 approximant in the standard way. Because of the lack of a Brillouin zone, this was not possible for the
quasicrystal. Instead one has compared the 1/1 with the 3/2 approximant calculations with inelastic neutron scattering ex-
perimental data for ZnSc and the icosahedral phase of ZnMgSc [38]. The results are shown in Fig. 8. The observed dispersion
relation is perfectly reproduced by the simulation. As for other quasicrystals, well-defined acoustic modes are seen in the
low-q region for both the 1/1 approximant and the quasicrystal, whereas at higher energy broad dispersionless excitations
are observed. Besides the overall similarity of the dispersion relation, distinct differences are observed [38]. In particular,
the pseudo-gap between the acoustic branch and the optical one is larger and better defined in the 1/1 approximant than
in the quasicrystal. This can be explained by the occurrence of two PBZB in the quasicrystal as opposed to a single one in
the approximant, shown as vertical dashed lines in Fig. 8. The simulation reproduces not only the dispersion relation but
also the overall intensity distribution, which validates both the model and the pair interaction used. The first analysis has
shown that some particular cluster, and in particular the central tetrahedron, plays a crucial role [39]. Indeed recent exper-
iments have shown that the central tetrahedron behaves as a single ‘molecule’ and jumps between different configurations
at high temperature, whereas at low temperature a libration motion of this entity is observed [40,41]. When the tetrahedron
jumps take places, it induces a strong distortion of the successive shells conferring to the system an exceptional dynamical
flexibility.

10. Dynamics of aperiodic crystals from a mathematical point of view

The determination of the diffraction by quasi-periodic structures as introduced by de Wolff [42] was put in a math-
ematically rigorous setting by Hof [43]. At least partially, because there are strong results for the scattering function as
Fourier transform of the autocorrelation function of systems ‘with finite local complexity’. That means that incommensurate
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Fig. 8. (Color online.) S(q,ω) for an approximant ZnSc and the quasicrystal ZnMgSc [38]. Solid symbols: dispersion relation measured in the Zn–Sc 1/1
periodic approximant and in the icosahedral Zn–Mg–Sc quasicrystal. The vertical dashed lines stand for the ZB and PZB. The plain vertical line is a zone
center. The filled circles and triangle stand for the acoustic excitations, whereas the grey one’s correspond to broad optical excitations. The lines are guide
for the eyes. The colored background correspond to the simulation carried out using the oscillating pair.

phases with smoothly varying modulation function do not belong to this class, but tiling models (which are cut-and-project
systems) do. Also the mathematical theory does not include multiple scattering effects on the diffraction intensity. For the
dynamical structure factor, such a rigorous treatment has not yet been given at all. However, for physical properties there
are rigorous results for the spectra and electron states in simple, mostly one-dimensional, aperiodic potentials.

The Bloch theorem, which says that eigenstates in a periodic potential can be written as the product of a plane wave
phase factor and a function with the periodicity of the potential (Ψ (r) = exp(ik.r)U (r)) is essentially a group theoretical
result. As such, it is also valid in the superspace. The reason that this is not as useful as in crystals with 3D periodicity is
that the function U (r) may become very complicated.

The character of this function U (r) is still an open question. There are very few mathematically rigorous results. Numer-
ical calculations on, mainly one-dimensional, models suggest that eigenstates (or phonon eigenvectors in the case of lattice
dynamics) are either extended, or localised or critical. Roughly speaking, these states are not decaying spatially, are expo-
nentially localised or ‘something else’ (for example, decaying with a power law), respectively. For two and three dimensions,
these indications are less clear. There are numerical calculations showing a concentration of an eigenstate on very specific
lattice points. But mathematically the question is open.

The same holds for the spectra. In one dimension, there are examples (e.g., the modulated chain) where the spectrum is
fractal. In structures with aperiodicity in one direction, this fractal property is washed out, and for quasicrystals with ape-
riodicity in all directions, calculations show a delicate fine structure, that is, however, not seen in the present experimental
results.

Even for a fundamental expression, as for the dynamic structure factor, one uses the expression derived for phonons in
lattice periodic structures. Strictly speaking, its derivation for aperiodic crystals has not yet been given.

11. Soft modes and phase transitions

Phase transitions in crystals are usually intimately connected with dynamical effects. An example is the second-order
phase transition from an unmodulated to an incommensurate modulated crystal (see Fig. 3). The standard picture here is
that a phonon branch becomes soft, which leads to the phase transition. In principle, such dynamic phenomena may occur
in aperiodic crystals as well. A theoretical example is here the softening of a phason in an icosahedral quasicrystal [44].
Such phason softening has been observed experimentally in the i-AlPdMn phase, where the diffuse scattering increases as
the temperature is decreased, a very counterintuitive behaviour that can fully be explained by a softening of one of the
phason elastic constants, which points to a 3-fold instability [45]. In this case the phase transition is not realised, most
likely for kinetic reasons.

Other examples have been found in incommensurate composites. In general, one has to distinguish for aperiodic crystals
between phase transitions where the rank does not change and those where the rank is increased. An example of the former
is the centering transition from a primitive to a face-centered icosahedral phase. An example of the latter is the transition
from the unmodulated to the incommensurate modulated structure. Another example has been found for n-nonadecane-
urea, where a rank-four to rank-five transition has been found. This transition goes together with critical phenomena, which
is an indication that the transition is induced by a dynamical effect [46], possibly a soft (phason) excitation.
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12. Summary

The dynamics of aperiodic crystals is an interesting topic in solid-state physics. For these materials, the standard ex-
perimental and theoretical techniques are not directly applicable. New ones had to be developed. In the early stages, the
quality of the samples was a major problem. Now high-quality samples are available. Due to progress in computational
techniques, one now has a fairly good understanding of the phenomena. However, especially from the fundamental point
of view, a number of questions are still open. The precise character of spectra and vibration states is unknown. Also the
problem of characterising states and eigenmodes with representations of the symmetry group remains unsolved. And the
expression for the scattering amplitude (Eq. (5)) for aperiodic crystals needs also a renewed study. Other questions are
concerned with applications. Aperiodic crystals, and in particular quasicrystals, have special properties that possibly offer
new applications. But it is not clear in how far the aperiodicity here is essential. Some of the periodic materials, like (lattice
periodic) complex metallic alloys, seem to have similar properties.
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