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We review recent theoretical and experimental efforts aimed at the investigation of the
physics of interacting disordered bosons (so-called dirty bosons) in the context of quantum
magnetism. The physics of dirty bosons is relevant to a wide variety of condensed matter
systems, encompassing helium in porous media, granular superconductors, and ultracold
atoms in disordered optical potentials, to cite a few. Nevertheless, the understanding of the
transition from a localized, Bose-glass phase to an ordered, superfluid condensate phase
still represents a fundamentally open problem. Still to be constructed is also a quantitative
description of the highly inhomogeneous and strongly correlated phases connected by
the transition. We discuss how disordered magnetic insulators in a strong magnetic field
can provide a well-controlled realization of the above transition. Combining numerical
simulations with experiments on real materials can shed light on some fundamental
properties of the critical behavior, such as the scaling of the critical temperature to
condensation close to the quantum critical point.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous passons en revue des efforts récents, à la fois théoriques et expérimentaux, visant
à étudier la physique de bosons désordonnés interagissant (dénommés bosons sales) dans
le contexte du magnétisme quantique. La physique des bosons sales relève d’une large
varieté de systèmes de matière condensée, incluant l’hélium dans les milieux poreux,
les supraconducteurs granulaires et les atomes ultra-froids dans les potentiels optiques
désordonnés, pour ne citer que ceux-là. Néanmoins, la compréhension de la transition
d’une phase de verre de Bose localisée vers un condensat ordonné, superfluide, représente
encore un problème ouvert fondamentalement. Reste à construire aussi une description
quantitative des phases hautement inhomogènes et fortement corrélées connectées par la
transition. Nous discutons comment des isolants magnétiques désordonnés placés dans un
champ magnétique fort peuvent fournir une réalisation bien contrôlée de cette transition.
La combinaison de simulations numériques et d’expériences sur des matériaux réels peut
faire la lumière sur certaines propriétés fondamentales du comportement critique, telles
que l’ajustement de la température critique à la condensation près du point critique
quantique.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Quantum magnets have established themselves as an experimental and theoretical testing ground for numerous concepts
in many-body quantum physics. Among these are collective excitations, quantum phase transitions, confinement and asymp-
totic freedom, and geometric frustration, just to name a few [1,2]. Disorder and the related spin-impurity effects have been
at the center of attention since the early days of quantum and low-dimensional magnetism [3–6]. This is hardly surprising,
since quantum spin systems are intrinsically more susceptible to disorder than classical ones. The reason is that any spatial
randomness of the Hamiltonian modulates the strengths of local quantum fluctuation and often qualitatively restructures
the ground state and excitations.

For a number of reasons, in the few recent years, the study of Hamiltonian disorder in quantum spin systems has
experienced a renaissance. First, certain field-induced phase transitions in gapped quantum magnets have been recognized
as examples of Bose–Einstein condensation (BEC) of magnetic quasi-particles (triplons) [7,8] (for a comprehensive review, see
[9]). The problem of BEC in disorder has long been a very important topic [10,11] that can now be addressed experimentally
in spin systems. Second, a breakthrough in materials came with the discovery of numerous “clean” realizations of quantum
spin models among organic transition metal halogenides [12–15]. The magnetic energy scales in such compounds make
them much more amenable to experimental investigation than the traditional oxide systems. Moreover, as will be discussed
below, reliable ways of introducing controlled disorder into such materials have been developed. From the theoretical point
of view, the covalently bonded organic halogenides are easier to describe by simple spin Hamiltonians than the transition
metal oxides materials. Last but not least is the recent progress in numerical [16] and experimental [17,18] methods, which
have pushed the study of these materials to new levels.

We are presently in the middle of a new surge in the study of disordered quantum magnets. This is a good time to review
some recent achievements, but also outline the outstanding challenges in this exciting and rapidly developing field. In this
review, we will particularly focus on the effect of disorder in spin-gap magnets exhibiting a magnetic BEC transition, and on
the link between the physics of these systems and that of interacting bosons in the presence of disorder. It is worthwhile
mentioning that recent progress has been made on other remarkable phenomena exhibited by disordered quantum magnets,
such as the random-singlet phase [19,20], the order-by-disorder mechanism induced by impurities in spin-gap compounds
[21–23], the effect of disorder on excitations [24,25] and on transport properties [26,27], to cite only a few.

The structure of this paper is as follows. Section 2 reviews the mapping from a spin-gap system in a magnetic field to a
diluted gas of bosons, and the phenomenon of magnetic BEC; Section 3 introduces the concept of magnetic Bose glass, and
Section 4 reviews the known aspects and open questions concerning the Bose glass/superfluid (or dirty-bosons) transition;
Section 5 reviews the recent experimental developments in the study of the Bose glass and of the dirty-boson transition in
the context of doped halogenides, and Section 6 discusses conclusions and future perspectives.

2. Lattice Bose gases from quantum magnets

The connection between spin physics and boson physics has been exploited since the early days of quantum mechanics
[28], and it allows us to represent the elementary excitations of ordered spin systems as bosonic spin waves. Nonetheless
this connection goes beyond the study of ordered phases of magnetic materials, and it remains valid and extremely insightful
also in quantum paramagnetic phases, as well as at quantum phase transitions. A particularly prominent example – which
will be the focus of the following sections – is provided by magnets in an applied magnetic field (say along the z direction).
For spins of length S , regardless of the ordered or disordered nature of the ground state in a field, one can always represent
the magnetization along the field direction, Sz

i , at the i-th lattice site in terms of the number of bosonic quasi-particles,

ni = b†
i bi = S + lSz

i (with l = ±1), constrained by the condition 0 � ni � 2S . Here bi , b†
i are bosonic operators, satisfying the

commutation relation [bi,b†
j] = δi j . The algebra of commutators between the spin components can then be completed via,

e.g., the Holstein–Primakoff transformation [29], which for l = 1 reads S−
i = √

2S − nibi , S+
i = b†

i

√
2S − ni . The expressions

of S+
i and S−

i are exchanged for l = −1.
This transformation therefore maps formally any quantum spin system to a system of bosonic quasi-particles. We would

like to stress that, if the system does not exhibit long-range magnetic order along the z axis, ni does not correspond to the
local density of elementary excitations in the system – as in spin-wave theory. Therefore the bosons might not correspond
to spin-wave quanta (or magnons), but rather to magnetic quasi-particles with a finite equilibrium density that can be
non-zero even at T = 0. The density is indeed controlled by the magnetic field H , which acts as a chemical potential
through the Zeeman Hamiltonian term:

HZeeman = −gμB H
∑

i

S z
i = −μ

∑
i

ni + const. (1)

where μ = lgμB H , g is the atomic gyromagnetic factor, and μB the Bohr magneton. This situation is generally quite dif-
ferent with respect to spin-wave theory, in which a spin–boson transformation, a linearization of the Hamiltonian and (if
necessary) a Bogolyubov transformation transform the spin system to a lattice gas of free bosons with a vanishing chemical
potential. This aspect has raised some confusion in the recent literature [30–32].
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The point of view of bosonic quasi-particles is certainly most insightful if the particle number is conserved in the bosonic
Hamiltonian – as this allows one to draw a full analogy between the magnetic phases and the phases of lattice-boson
Hamiltonians. Particle number conservation requires an axial rotation symmetry around the field axis (U(1) symmetry) to
be present in the Hamiltonian. Such a continuous symmetry is never exact in magnetic compounds due to the crystalline
field (see discussion in Section 5), but small deviations become only relevant in the very close neighborhood of phase
transitions.

2.1. Magnetic Bose–Einstein condensation at equilibrium

The exact correspondence between axially symmetric spin Hamiltonians in a field and lattice boson Hamiltonians in
the grand-canonical ensemble allows us to investigate a most fundamental phenomenon of lattice bosons using magnetic
insulators: the quantum phase transition from a superfluid BEC1 to an insulator [1,9]. The simplest example of such a
transition is obtained for the S = 1/2 XXZ Hamiltonian in a magnetic field:

H = J
∑
〈i j〉

(
Sx

i Sx
j + S y

i S y
j + λSz

i Sz
j

) − gμB H
∑

i

S z
i (2)

where 〈i j〉 represents a pair of nearest neighboring sites on the lattice, and J > 0. We will consider for simplicity the case
in which this Hamiltonian is defined on a bipartite lattice (namely in the absence of frustration); in this case, the sign of
the coupling for the x and y spin components can be changed arbitrarily via a canonical transformation Sx(y)

i → (−1)i Sx(y)

i .
As first noticed by Matsubara and Matsuda [33], in the case of S = 1/2 the spin–boson transformation simplifies greatly

when considering hardcore boson operators b̃i and b̃†
i , which anticommute on-site {b̃i, b̃†

i } = 1, {b̃i, b̃i} = {b̃†
i , b̃†

i } = 0 (but they

still commute offsite). In this case, choosing l = −1, one has ñi = b̃†
i b̃i = S − Sz

i , S+
i = b̃i , S−

i = b̃†
i , and the spin Hamiltonian

takes the form of an extended Bose–Hubbard model [33]:

H = − J

2

∑
〈i j〉

(
b̃†

i b̃ j + h.c.
) + λ J

∑
〈i j〉

ñiñ j −
(

λ J z

2
− gμB H

)∑
i

ñi + const. (3)

where z is the coordination number. For λ > −1, the spin Hamiltonian is known to exhibit a continuous transition from a
canted antiferromagnetic state at small or intermediate fields, to a fully saturated phase at H > Hc = z

2gμB
(λ + 1) J for a

hypercubic lattice in d = z/2 spatial dimensions. The transition is sketched in Fig. 1. After mapping onto bosonic operators
with l = −1, the canted antiferromagnetic phase is immediately identified with a phase with finite, incommensurate density
and with off-diagonal long-range order, 〈b̃†

i b̃ j〉 = 〈S−
i S+

j 〉 = (1/2)〈Sx
i Sx

j + S y
i S y

j 〉 → (−1)i− jconst. �= 0 when |i − j| → ∞,
corresponding to condensation (in one spatial dimension, the system exhibits quasi long-range order with algebraically
decaying correlations). On the other hand, the fully saturated phase with exact ground state

⊗N
i=1 |Sz

i = 1/2〉 corresponds

to the most trivial bosonic insulator, namely the vacuum
⊗N

i=1 |ni = 0〉, with a zero-ranged phase correlation function and a
finite spin gap � = gμB(H − Hc). The critical field corresponds to the condition of the chemical potential μ = λ J z

2 − gμB H
touching the lower band edge for the lattice bosons, μ = −z J/2.

The magnetic Bose-condensation transition represents one of the best understood quantum phase transitions, belong-
ing to the universality class of the diluted Bose gas [1]. A path-integral representation of the partition function for the
Hamiltonian Eq. (3) (in which the hardcore constraint can be relaxed in favor of an arbitrarily strong repulsive interaction),
supplemented with a Hubbard–Stratonovich transformation, maps the system to a quantum complex φ4 theory [11], which,
in any dimension d, is known to possess a “generic” quantum phase transition with dynamical critical exponent z = 2, be-
longing to the mean-field universality class. Above the upper critical dimension, d > dc = 2, the fixed point corresponding
to this transition is a Gaussian model, for which the interaction between quasi-particles can be treated perturbatively and
turns out to be irrelevant – more precisely it is dangerously irrelevant, affecting the scaling close to the transition, and
leading to a breakdown of the quantum hyperscaling relation ν(d + z) = 2 −α (where α is the free-energy critical exponent
and ν is the correlation length critical exponent).

In the case of a d = 3 system, condensation in the BEC phase persists up to a critical temperature Tc whose scaling with
the distance to the critical point can be obtained via Popov’s theory for the diluted Bose gas [34,8], to give Tc ∼ |μ−μc|φ ∼
|H − Hc|φ with φ = 2/3 – as sketched in Fig. 1(c).

2.2. Realizations of magnetic Bose condensation

As discussed above, the saturation transition of an axially symmetric antiferromagnet (as well as of a ferromag-
net with easy-plane anisotropy) represents the simplest realization of a magnetic BEC transition. This transition has the

1 The superfluid nature of the condensate phase realized by the Hamiltonians of magnetic insulators is well established theoretically, but in practice
current experiments cannot probe superfluidity – which would imply probing persistent spin currents. At a more fundamental level, the absence of a strictly
exact particle-number conservation in the experiments could lead to a rapid decay of supercurrents, so that some fundamental aspects of superfluidity
would not be observable.
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Fig. 1. Sketch of the magnetic Bose-condensation transition for (a) the XXZ model, Eq. (2) and (b) its bosonic analog, Eq. (3); here m = ∑
i〈Sz

i 〉/N represents
the field-induced magnetization of the system, and n = S − m the density of bosonic quasi-particles. (c) Generic temperature-field phase diagram. Color
online.

experimentally inconvenient feature that extremely high (or even prohibitively high) magnetic fields might be required in
order to saturate the magnetization in real magnetic insulators. A convenient alternative to the above scenario for mag-
netic BEC is offered by magnetic compounds that can be thought of realizing an insulating state of bosonic quasi-particles
already in zero applied field; applying a field drives the system towards an insulator-to-superfluid transition at a lower
critical field (Hc1), followed by a second superfluid-to-insulator transition at an upper critical field (Hc2) corresponding to
the above-mentioned saturation (see Fig. 1(c)). Experimentally relevant examples of such systems are: (a) weakly coupled
antiferromagnetic dimers; (b) integer-S spins with a strong single-ion anisotropy; (c) weakly coupled Haldane chains.

Weakly coupled dimers. In the case of weakly coupled dimers, e.g., for S = 1/2, the building block – a spin dimer with
antiferromagnetic coupling Jd – is in a singlet ground state |s〉 = (| ↑↓〉 − | ↓↑〉)/√2, separated by a gap � = Jd from
three triplets. Under application of a magnetic field, the triplet aligned with the field, |t1〉 = | ↑↑〉, is brought towards
degeneracy with the singlet, while the other two triplets remain well separated in energy. In a coupled dimer system, the
coupling J between dimers, being much weaker than the dimer gap, J � � = Jd, leaves the energy of the upper triplets
essentially unaffected, so that they can be eliminated as far as the low-energy properties of the system are concerned. As
a consequence, each dimer can be approximated as a two-state system, |s〉 and |t1〉, analog to a pseudo-spin S = 1/2. The
effective Hamiltonian for coupled dimers in a magnetic field in terms of pseudo-spin variables takes precisely the form of
an XXZ Hamiltonian, as in Eq. (2) [35,36], and therefore the same BEC transition is expected.

Anisotropic integer-S systems. A very similar mapping can be obtained in the case of integer-S spins with a strong single-
ion anisotropy D(Sz

i )
2. The anisotropy energy is minimized by the |ms = 0〉 state, where |ms〉 indicates an eigenstate of the

Sz
i operator, and a gap � = D separates this state from the states with ms �= 0. The application of a magnetic field brings

the state with mS = S to degeneracy with the mS = 0 ground state, keeping the other states higher up in energy by at least
an energy D . If the spin–spin coupling J is much weaker than D , truncating the Hilbert space to |ms = 0〉 and |ms = S〉
leads again to a S = 1/2 pseudo-spin system governed by the XXZ Hamiltonian of Eq. (2) [37].

Haldane chains. As for weakly coupled Haldane chains in a field, the connection to the physics of the diluted Bose gas is
more involved, and it requires a mapping of the spin Hamiltonian to a non-linear σ -model, as first described in [38–40] (see
also [41] for a critical discussion). An alternative approach is based on bosonization, as described in [42]. The BEC nature of
the field-induced transition has been verified numerically [43].

3. The magnetic Bose glass

3.1. Basic concepts

Disorder can have a dramatic impact on the physics of the diluted Bose gas, and hence on magnetic BEC. As we will
further discuss in Section 5, magnetic insulators offer various ways of disordering the Hamiltonian Eq. (2) and its bosonic
analog Eq. (3), as for instance via the appearance of random couplings J , or via site dilution of the magnetic lattice. From
the point of view of bosonic quasi-particles, disorder effects are intimately related to the drastic change of the (low-energy)
single-particle eigenstates in the presence of disorder, from extended propagating states to exponentially localized states à
la Anderson [44]. Condensation and Anderson localization are two conflicting concepts in the presence of weak, albeit finite
repulsive interactions. Indeed, upon increasing the particle number along with the system size, finite repulsion prevents
bosons to condense in a single localized state: by definition, the support of such a state does not scale with the size of the
system, and hence the (mean-field) interaction energy of a localized condensate would grow like the square of the particle
number. An extensive ground-state energy is instead obtained by fragmenting the condensate over an extensive number
of spatially separated localized states. In the dilute limit the system is therefore in a non-condensed, Anderson insulating
phase: the Bose glass [11,10]. At variance with the condensate phase, in the Bose glass the order-parameter correlation
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Fig. 2. Sketch of the magnetic Bose-condensation transition in the presence of disorder. (a) Sketch of the phases of the disordered XXZ model; (b) corre-
sponding phases for the bosonic analog; (c) generic temperature-field phase diagram. Color online.

function decays exponentially over a distance related to the typical spatial extent of the above-mentioned localized states.
Yet the Bose glass is also substantially different from the gapped insulating phase of the bosonic model. Indeed the single-
particle spectrum in the presence of disorder has generically a finite density of states down to the ground-state energy,
due to the existence of an exponentially decaying Lifshitz tail associated with excitations localized in rare, locally uniform
regions. This implies that the Bose glass is a gapless, compressible bosonic insulator. When increasing the chemical potential
and closing the gap, the system is therefore driven first to a Bose glass phase for low density, while condensation can be
achieved only at higher densities (Fig. 2), as discussed in the next section.

Mapping the bosons back to spins, what is the magnetic analog of the Bose glass? Following the picture of the XXZ
model (Fig. 2(a)), in the magnetic Bose glass a finite fraction of the system is characterized by the appearance of spatially
separated, localized domains in which the spins can fluctuate away from the fully polarized state, exhibiting short-range
correlations between their transverse components – nonetheless different domains are not magnetically correlated. For a
generic magnetization m = ∑

i〈Sz
i 〉/N below the saturation value, a finite fraction of these domains (and hence an extensive

fraction of the whole system) exhibits a nonzero response to a variation of the magnetic field, leading to a finite global
magnetic susceptibility (the analog of the compressibility) down to zero temperature.

3.2. A minimal model for the Bose glass

A very simple (yet quantitatively predictive) model for the Bose glass phase has been introduced in Refs. [45,46], and
consists of modeling the fluctuating domains as two-level systems with a size-dependent local gap (local gap model). The
lower level corresponds to the local vacuum of quasi-particles, while the upper level corresponds to the presence of a
localized bosonic quasi-particle. A fluctuating region is a rare, locally uniform region, e.g., devoid of impurities, or uniformly
rich of impurities, if disorder is introduced via chemical doping (as it will be the case in the magnetic realizations of the
Bose glass described in Section 5). In the case of short-range correlated disorder, we can assume that rare regions of size
N occupy a fraction f N ≈ A exp(−x0N) of the whole system (where x0 is a parameter related to the disorder strength, e.g.,
x0 = | log(1 − x)|, where x is the impurity concentration if the rare region is devoid of impurities). We further assume that a
rare region would exhibit long-range order (namely BEC) if scaled to size N → ∞ when the chemical potential exceeds the
critical value μc,0 for the clean system. Hence we can expect rare regions to exhibit a local gap to excitations which scales
as �N ≈ δ0θ(−δ0) + c/N , where δ0 = μ − μc,0 is the distance to the clean system critical point, θ is the Heaviside function,
and c is a constant. The gap vanishes as 1/N in the BEC phase of the clean system, as the lowest energy excitation of the
Anderson’s tower [47] in a phase with spontaneous symmetry breaking. The density of states of the rare region ensemble
is then expressed as:

g(ε) =
∞∑

N=1

δ(ε − �N) f N (4)

and it exhibits the following behaviors:

• for δ0 > 0, namely in the gapped insulator phase, it vanishes for 0 � ε � δ0;
• at the clean critical point δ0 = 0, it exhibits a Lifshitz tail g ∼ exp(−x0c/ε);
• in the Bose glass phase for δ0 > 0, it goes to a finite value at zero energy, g(0) ∼ exp(−x0c/δ0).

The quasi particle density in the ground state of the rare-region ensemble is directly proportional to the density of states,
n ∼ exp(−x0c/δ0), and hence the system exhibits a finite ground-state compressibility κ = dn/dμ ∼ exp(−x0c/δ0) in the
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Bose-glass phase. The compressibility as well as the gap vanishes at the special value δ0 = 0, realizing a so-called Mott-glass
point.

4. The Bose glass/BEC transition

In the presence of disorder, quasi-particle interactions have a disruptive effect on the condensate in the regime of very
low densities, as already discussed in the previous section. On the other hand, for larger densities, repulsive interactions
reduce the effect of disorder via a screening mechanism, and they can ultimately restore condensation upon increasing
the chemical potential. In the magnetic language, this corresponds to recovering long-range order transverse to the field
when the magnetization deviates sufficiently from the value of the disordered, gapped phase. Hence the system undergoes
a quantum phase transition from Bose glass to superfluid BEC (the so-called the dirty-boson transition), driven by the chem-
ical potential/magnetic field. This insulator/superfluid quantum phase transition is fundamentally different from the one of
the clean system: (1) it takes place at densities arbitrarily far from the diluted regime, and it is fundamentally driven by
interactions; (2) it connects highly inhomogeneous phases, namely a collection of localized domains fluctuating in an un-
correlated manner (the Bose glass) to a system of localized domains which become correlated via the coherent tunneling of
particles along weak links (the inhomogeneous BEC close to the transition). Its theoretical description represents one of the
most important open problems in the theory of critical phenomena, as we will discuss in the following.

4.1. d = 1. Weak vs. strong disorder

The study of the dirty-boson transition has been pioneered in Refs. [48,10] for the case of one-dimensional bosons –
for which the BEC phase is actually a quasi-condensate phase, exhibiting a finite superfluid response. The long-wavelength
effective theory (Luttinger liquid theory) for bosons in a disordered potential has been investigated via the renormalization
group, treating the disorder perturbatively (originally to first order, but more recently the analysis has been extended to
second order [49], confirming the first-order results). The main outcome of this analysis is that the phase transition has a
Kosterlitz–Thouless (KT) nature, and it is characterized by a universal jump of the Luttinger liquid parameter K governing
the algebraic decay of the correlation function 〈b†

i b j〉 ∼ |ri − r j |−1/(2K ) (here expressed for lattice systems of interest in this
paper): one finds that K = Kc = 3/2 at the transition point (while Kc = 2 for the superfluid–insulator transition in a clean
lattice system with commensurate filling), and that the superfluid quasi-condensate is characterized by K > Kc. While the
above result applies to the regime of weak disorder, it has been confirmed by the analysis of Ref. [50] based on Popov’s
effective hydrodynamic theory for the interacting Bose gas [34], relying on the weaker assumption of self-averaging of the
compressibility and superfluid stiffness. On the other hand, a different picture emerges from real-space renormalization
group studies of quantum rotor lattice models with strong disorder, indicating a KT transition with a non-universal critical
value Kc dependent on disorder [51,52]. The reconciliation between the weak- and strong-disorder pictures appears quite
challenging, as each picture is supposed to be quantitatively accurate in its own range of applicability. Recently, Ref. [53]
has provided quantum Monte Carlo results consistent with a universal value Kc = 3/2 at the transition in a strongly disor-
dered link-current model; the Luttinger parameter estimate turns out to be strongly size-dependent, and close to the phase
transition it converges logarithmically with system size to its asymptotic value, indicating that prohibitively large samples
might be necessary to observe the correct physics.

A similar controversy applies to the case of the dirty-boson transition in a system at commensurate filling, namely for the
transition driven, e.g., by the strength of the interaction at fixed, integer density, corresponding to a fixed magnetization.
In this case the transition connects a superfluid with an incompressible, gapless Mott glass [54,55]. For this case, QMC
results on the disordered link-current model [56] point to a conventional KT transition with Kc = 2, unaltered with respect
to the clean case, in agreement with an analysis based on Popov’s hydrodynamic theory. The latter results contradict a
previous real-space RG analysis indicating a disorder-dependent Kc value [57]. A more recent QMC study of disordered
quantum rotors [58], interpolating between the two regimes of weak and strong disorder, shows that Kc might indeed
become disorder-dependent at sufficiently strong disorder.

4.2. d > 1. Scaling theory and its consequences

The study of the dirty-boson transition in dimensions d > 1 has been pioneered by Ref. [11]. The latter reference has
obtained an effective replicated φ4 action for the description of the critical behavior of the disordered Bose gas, but it has
shown that a perturbative renormalization group (RG) approach to the transition fails, as the disorder grows with the RG
flow (see also Refs. [59,60] for successive studies). Yet a few simple arguments led the authors of Ref. [11] to formulate a
phenomenological scaling theory leading to some fundamental, yet highly debated predictions. In the presence of disorder,
the Harris criterion ν > 2/d [61] is satisfied by the mean-field exponent ν = 1/2 for d > 4, so that the upper critical
dimension is dc � 4 (Ref. [11] argues that possibly dc = ∞). All physical dimensions d � 3 are below the upper critical one,
and conventional scaling can be assumed. Hence it is in principle legitimate to assume that, beside the temperature, all
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perturbations at the quantum critical point are strictly irrelevant, leading to the simplest scaling form for the singular part
of the free-energy density:

f s(T , δ) ≈ |δ|2−α F

(
T

|δ|νz

)
= |δ|2−αY

(
ξ z

β

)
(5)

where δ = μ − μc represents the distance to the critical point, and ξ ∼ |δ|−ν is the correlation length. Such a scaling form
implies quantum hyperscaling, 2 − α = ν(d + z). Introducing an imaginary-time twist of the Bose field, which becomes
infinitesimal in the T → 0, β → ∞ limit, namely a phase shift �θ/β , amounts to a shift of the chemical potential, μ →
μ − i�θ/β . The corresponding variation of the (total) free energy density reads:

� f = iρ

(
�θ

β

)
+ 1

2
κ

(
�θ

β

)2

+ · · · (6)

where ρ = −∂ f /∂μ is the particle density and κ = ∂ρ/∂μ is the compressibility. Ignoring arbitrarily the first term of the
above expansion, and assuming (somewhat arbitrarily) that the second-order term of the total free-energy density should
scale in the same way as the singular part, Eq. (5), one can conclude that Y (x) ∼ x2 and that κ ∼ δν(d−z) . Now, given that the
Bose glass/superfluid transition connects two compressible phases, one can argue that κ remains finite across the transition,
leading to the conclusion that z = d for d < dc.

A further consequence of the scaling assumption, Eq. (5), concerns the onset of the critical temperature in the BEC phase.
As Eq. (5) is supposed to hold for finite temperatures close to the quantum critical point, the line of phase transitions at
Tc = Tc(δ) corresponds to a singularity yc of F (y), leading to the scaling Tc = yc|δ|νz . Combining the prediction z = d with
the Harris criterion leads to the inequality νz > 2, so that Tc ∼ |δ|φ with φ > 2, to be contrasted with φ = 2/3 for the clean
system.

4.3. Numerical results and controversies with the scaling theory

The two main predictions coming from the scaling theory of the Bose glass/superfluid transition, namely z = d and φ > 2,
have been both strongly debated in the more recent literature.

z = d
Some quantum Monte Carlo (QMC) studies in d = 2, performed on hardcore bosons [62] and on the link-current model [63],
have found that z = d = 2 is not verified at the Bose glass/superfluid transition (these studies find z ≈ 1.4 and z = 1.80(5),
respectively); in particular Ref. [63] points out that the numerical estimate of z might be strongly size dependent. These
results have prompted a critical reconsideration of the scaling theory. Refs. [64,60] (including one of the authors of the
scaling theory) have pointed out the above-mentioned arbitrariness of the assumptions leading to the compressibility scal-
ing κ ∼ δν(d−z) , and they have proposed that z and d be actually independent exponents. In particular, the main weakness
of the argument leading to z = d according to Refs. [64,60] is the assumption that the free-energy density variation upon
imaginary-time twist obeys the same scaling as that of the singular free-energy density. This assumption is indeed contra-
dictory with the fact that the singular compressibility κs = −∂2 f s/∂μ

2 ∼ |δ|−α vanishes at the transition if hyperscaling is
satisfied, as α = 2−ν(d+ z) < 0 according to the Harris criterion (whatever the value of z > 0). Therefore, a finite compress-
ibility across the transition is dominated by the analytical part of the free-energy density, whose scaling is not necessarily
captured by Eq. (5).

On the other hand, further QMC studies [55,65,66] on softcore bosons in d = 2 observe scaling of the numerical results
consistent with z = 2; scaling properties consistent with z = 3 are also observed for d = 3 link-current simulations [67], as
well as for d = 3 disordered spin Hamiltonians modeling the field-induced transition of one of the compounds discussed in
Section 5 [68]. These results suggest that z = d might still be valid, and that the derivation of Ref. [11] gives coincidentally
the correct result. Indeed, the critical scaling κ ∼ |δ|ν(d−z) is observed at the diluted Bose gas transition in the clean case
in dimensions d � 2 (namely below the upper critical dimension), it is observed at the superfluid–Mott insulator transition
at commensurate filling [11], as well as at the dirty-boson transition in d = 1 [10,11]. To corroborate this result, a very
simple derivation of the compressibility scaling, alternative to that of Ref. [11], can be obtained [68], based on the following
consideration. At T = 0, κ ≈ (�phLd)−1, where �ph is the gap for a particle–hole excitation, �ph = E(N + 1) + E(N − 1) −
2E(N) with E(N) the ground-state energy for N particles, and L is the linear size of the system. Given that by definition
�ph ∼ L−z at the quantum critical point, one readily concludes that κ ∼ L−(d−z) ∼ ξ−(d−z) ∼ |δ|ν(d−z).

φ > 2
The second prediction of scaling theory, φ > 2, is currently emerging as the most controversial one. To the best of our
knowledge, it is not corroborated by any numerical result to date. On the other hand, extensive QMC simulations for dis-
ordered S = 1 antiferromagnets with strong single-ion anisotropy in a magnetic field point at a value φ ≈ 1.1 [69,46], as
shown in Fig. 3. Obviously, one cannot exclude a priori that a crossover to a larger φ value might take place at lower tem-
peratures than those explored in the QMC simulations. Nonetheless the location of the quantum critical fields Hc1 and Hc2
obtained via the extrapolation of the QMC data using φ ≈ 1.1 matches with the QMC estimate obtained by using only data
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Fig. 3. Scaling of the critical temperature in disordered S = 1 antiferromagnets with strong single-ion anisotropy, as obtained from extensive quantum
Monte Carlo simulations [69,46]: (a) 15% site dilution; (b) 15% bond disorder. The axes represent the field strength h = gμB H/ Jc and the temperature
t = kB T / Jc in units of the strongest coupling Jc of the Hamiltonian. Dashed lines are power-law fits to the low-temperature and intermediate-temperature
regimes. The figure is adapted from Refs. [69,46]. Color online.

which are free of thermal effects (obtained via an exponential cooling scheme) [69,46]; this suggests that the estimated
exponent φ might indeed be the one governing the scaling of the critical temperature down to T = 0. Further predictions
for the temperature dependence of the magnetization and specific heat along the quantum critical trajectory (δ = 0, T → 0)
stemming from Eq. (5) disagree with numerics [68]. A phenomenological understanding of all these discrepancies requires
to generalize the scaling Ansatz, Eq. (5), in order to include further arguments in the scaling function. An attempt in this
direction is given by Ref. [68], in which alternative scaling forms are proposed featuring unconventional scaling activated
only at finite temperature – given that all available numerical results are consistent with conventional scaling at the T = 0
quantum phase transition.

Other critical exponents
A finite-size scaling analysis of quantum Monte Carlo data for the dirty-boson transition in d = 3 is presented in Refs. [67]
and [68] for the link-current model and the single-ion anisotropic S = 1 magnets, respectively. A coherent picture emerges,
consistent with z ≈ 3, β ≈ 0.95, ν ≈ 0.75, η ≈ −1.

5. The quest for a “quantum simulator” in doped2 magnetic insulators

The above results show that many crucial points of the dirty-boson transition are still an active matter of debate in the
theoretical community. The whole theory suffers from the lack of a well-controlled approach to study the critical properties
at intermediate disorder strength for d = 1, and at any disorder strength for d > 1. Numerical methods, while very effective,
have to face the challenge of faithfully extracting the bulk properties of systems whose behavior is often dominated by
rare events. Numerical studies can correctly account for these rare events only by averaging the simulation results over a
very large sample of the disorder statistics, or by using very large system sizes – both requirements involve a significant
investment of computer time.

In this situation, a well-controlled experimental realization of dirty bosons with tunable chemical potential and/or inter-
action strength and/or disorder strength would allow a significant advancement of our understanding of this very complex
quantum system. In the spirit of Feynman’s analog quantum simulator idea [70], a material (real or synthetic) exhibiting the
dirty-boson quantum phase transition would provide an invaluable insight, not only in the static properties (which can be in
principle reproduced by efficient numerical methods), but, most significantly, in the dynamic properties (which are instead
challenging, even for numerics). Intense investigations of dirty-boson physics have been or are being currently pursued in
the context of, e.g., Helium absorbed in porous media [71], granular superconductors [72], and ultracold atoms in disordered
optical potentials [73–76].

The focus of the present review is, however, on magnetic insulators with gapped non-magnetic ground states. As
quantum simulators for BEC and Bose glass physics, these systems present numerous practical advantages. The main source
of magnetic interactions in insulators is superexchange, which is short-ranged and often correlated with structural features.
This implies that real magnetic materials can be accurately described by simple spin models with just a few nearest-
neighbor interaction constants. Helpfully, at low temperatures, lattice contributions are often negligible, and spins are the
only degrees of freedom relevant to all thermodynamics and transport properties. In addition, an external magnetic field

2 In its strict definition, “doping” implies the introduction of free charges into a semiconductor or insulator by means of a chemical substitution. In the
present context by “doping”, we only mean a low-concentration chemical modification of the parent compound.
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Fig. 4. (a) Crystal structure of one of the more complex organometallic quantum magnets, (C4H12N2)Cu2Cl6. (b) Large single crystals of (C4H12N2)Cu2Cl6

and (C4H12N2)Cu2(Cl(1−x)Brx)6, x = 0.05, grown from solution for calorimetric and neutron scattering studies [77]. Color online.

presents a very precise and well-characterized experimental handle on the effective chemical potential of the bosonic quasi-
particles. Last but not least, there are a number of particularly powerful experimental techniques, such neutron scattering,
NMR and ESR, which allow a direct and quantitative measurement of the spin–spin correlation function. These measure-
ments cover frequency (energy) scales of the typical exchange constant in real materials. Moreover, neutron scattering
provides momentum transfers corresponding to typical lattice spacings, and NMR allows us to inspect the average magnetic
behavior at specific lattice sites.

5.1. Materials

Most of the early work on quantum magnets was performed on transition metal oxides. These materials have features
which have proved to be very important for seminal studies of quantum magnetism, but which can turn out as drawbacks
in the present context. The energy scale of magnetic interactions, which is typically very large (on the order of hundreds of
Kelvins), leads to magnetic transitions that might occur even at room temperature; but the flip side of such strong interac-
tions is that these systems are then difficult to influence with magnetic fields, and any intrinsic magnetic finite-temperature
effect is hard to separate from those due to lattice vibrations. As an example, for neutron spectroscopy, high energies for
magnetic interactions imply that much of the spin excitation spectrum overlaps with phonon bands, and is very difficult to
separate from the latter. For our particular purpose of modeling disorder physics, oxides have a disadvantage of often being
difficult to modify chemically without severely distorting the crystal structure or influencing the electronic properties.

A true breakthrough came with the realization that excellent quantum spin systems are to be found among tran-
sition metal halogenides, particularly those that additionally incorporate organic ligands in the crystal structure. These
compounds typically feature networks of spin-carrying transition metal cations connected via halogen bridges. The metal–
halogen bonds are covalent in nature, and the resulting superexchange pathways can be unambiguously identified. Typical
exchange constants are of the order of 1 meV (10 K). Cu2+ and Ni2+ are the most popular choices for S = 1/2 and S = 1
cations, respectively, and the (spinless) Cl− or Br− are the most frequently used anions. As an example, the structure of
(C4H12N2)Cu2Cl6, one of the more complicated materials of this type, is shown in Fig. 4(a). In most cases, the organic lig-
ands have a closed-shell electronic structure and are therefore not magnetic. They play the role of spacers in the crystal
structure, and are to a good approximation uninvolved in the magnetism. Hundreds if not thousands of spin systems of this
type have been identified. Among them are spin chains [78,79], spin ladders [80–82], as well as 2-dimensional [13,83] and
3-dimensional spin networks [84,85], and some very interesting geometrically frustrated systems [86]. Compared to oxides,
these organic materials have numerous advantages. The low-energy scale make them ideal for the study of field and finite-
temperature effects. It also enables the study of spin excitations using cold neutron spectroscopy, which is a more precise
and noise-free technique compared to conventional thermal neutron scattering. Finally, for many of the metallo–organic
quantum magnets, it is quite easy to grow large high-quality single crystals for experiments (Fig. 4(b)). Unlike for oxides,
sample preparation for halogenides is usually based on solution chemistry and therefore can be achieved with rather simple
and inexpensive equipment and relatively straightforward synthesis protocols [77].

5.2. Magnetic BEC in transition metal halogenides

It is among the transition metal halogenides that some of the most important experimental realizations of magnetic BEC
were found. Here we shall mention only those materials that are currently being used as parent compounds for disordered
systems realizing the Bose glass phase.
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Fig. 5. A key advantage of quantum magnets as simulators for BEC physics: neutron scattering can directly measure the BEC long-range order parameter
(left, as for the case of TlCuCl3 [87]) and the Goldstone mode (white arrows on right, for IPACC [88]).

Perhaps the most extensively studied is the S = 1/2 dimer compound TlCuCl3, where a field-induced magnetic BEC was
first reported in bulk measurements [84,89,85], and later confirmed by neutron diffraction studies [87,90,91]. The critical
field Hc ∼ 5 T is easily accessible in experiments. The neutron scattering study was particularly important, as it highlighted
one of the key advantages of magnetic insulators as quantum simulators for BEC: in these systems, the complex BEC order
parameter is a directly observable quantity. Indeed, the high-field BEC phase is characterized by spontaneous long-range order
of the spin components transverse to the applied field. This transverse magnetization, written in complex form as m⊥ =
〈Sx + iS y〉, corresponds to the complex wave function of the Bose condensate, while the intensity of magnetic Bragg peaks
observed in neutron diffraction measurements is proportional to the square of its absolute value. Typical field dependencies
of the thus measured BEC order parameter in TlCuCl3 are shown in the left panel of Fig. 5, following Tanaka et al. [87].
Subsequent inelastic neutron scattering studies of TlCuCl3 probed the spin dynamics [90,91], including the field dependence
of the spin gap and the appearance of a gapless Goldstone mode. In magnetic BEC, this mode is simply a spin wave in the
magnetically long-range-ordered phase.

While TlCuCl3 is a pretty good BEC material, it has one subtle but important complication, namely a monoclinic crystal
structure. Its low crystallographic symmetry ensures an intrinsic breaking of U(1) symmetry, that in the ideal case would
only be spontaneously broken at the BEC transition. In fact, due to a residual anisotropy of exchange interactions [92],
the field-induced ordering transition is of the Ising universality class, as in numerous previously studied S = 1 Haldane
chain compounds [93,41]. In particular, the high-field phase is actually gapped [94]. A related problem for TCC is the
presence of Dzyaloshinskii–Moriya interactions. In fact, these interactions eliminate the phase transition altogether, replacing
it with a crossover [95]. Even though the anisotropy effects are rather small, they obviously affect critical behavior. In
particular, the initially observed crossover exponent φ is about 0.47 [89,85,87], instead of the expected φ = 2/3. Only in
later measurements, performed in a deliberately chosen almost axially symmetric geometry, the BEC crossover exponent
was recovered [96]. As will be discussed below, anisotropy takes on a special significance when one attempts to realize a
Bose glass state by introducing chemical disorder.

Two organic materials that are somewhat similar to TlCuCl3, and that are relevant to our discussion of Bose glass physics,
are (CH3)2CHNH3CuCl3 (IPACC, Hc ∼ 10 T [97]) and (C4H12N2)Cu2Cl6 (PHCC, Fig. 4, Hc ∼ 7.5 T [13]). The former is a system
of rather loosely coupled strong-rung spin ladders [81], while the latter realizes a quasi-2d spin network with complex
and somewhat geometrically frustrated interactions [13]. The field-induced BEC transitions have been extensively studied
in both materials using thermodynamic measurements [97,13,98], neutron diffraction [88,98], neutron spectroscopy [99,98],
and ESR [100,101]. For instance, the contrast between excitation spectra measured in the spin-gap and BEC phases of IPACC
are shown in the right panel of Fig. 5 [88]. Here the arrows indicate the clearly visible Goldstone mode of the BEC transition.
The respective quasi-1d and quasi-2d nature of IPACC and PHCC leads to very peculiar features of the spin dynamics in zero
field [81,102–104] and across the BEC transition [88,99]. Nevertheless, the transition itself is a 3-dimensional one, and in
many ways it is similar to that in TlCuCl3. The two organic compounds are of triclinic symmetry and therefore are potentially
subject to the same anisotropy problems [104,101], as TlCuCl3.

It is precisely because low crystal symmetry is potentially a problem for simulating a true BEC transition that one
material, namely NiCl2·4SC(NH2)2 (abbreviated DTN), stands out. It is a S = 1 system, with a large easy-plane single-ion
anisotropy. However, the crystal structure is tetragonal (Fig. 6(a)), so the axial symmetry is preserved as long as the magnetic
field is applied along the unique c axis. The ground state of each Ni2+ ion is a non-magnetic singlet with Sz = 0. A c-axis
field drives the Sz = 1 state below the singlet, which, due to exchange interactions between individual spins, results in
long-range transverse ordering at Hc1 = 2.1 T [105]. A second BEC transition from the fully saturated phase occurs at the
upper critical field of Hc2 = 12.6 T, which is also readily accessible. To date, DTN is the cleanest known realization of
magnetic BEC in a spin-gap system [106,107].
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Fig. 6. Left: (a) The body-centered tetragonal arrangement of S = 1-carrying Ni2+ and the bridging Cl− ions in DTN. (b) Effect of Br substitution on
the coupling between Ni2+ ions. Right: measured upper and lower phase boundary for the BEC phase in Ni(Cl1−xBrx)2 ·4SC(NH2)2, x = 0.05 showing a
low-temperature crossover to φ = 1.1. Both figures are adapted from Ref. [46]. Color online.

5.3. Magnetic Bose glass in transition metal halogenides

5.3.1. Chemical disorder
The main reason that we are focusing on transition metal halogenide quantum magnets is that these materials turn

out to be particularly advantageous for the study of disorder. Disorder is best introduced by a dilute and random chemical
substitution on the halogen site. A sketch of such a substitution is shown in Fig. 6(b). Unlike the much-studied substitution
on the magnetic sites, this type of chemical modification does not affect the spins themselves. What is modified, in a
spatially random manner, are the strengths of exchange interactions. Superexchange via Br− is typically of the same sign,
but several times stronger than via Cl− [108], due to a different degree of covalency in the metal–halogen bond. By growing
crystals with a certain mixture of the two halogens in the starting reagents, one can thus obtain materials that are very good
realizations of random-bond spin models. As discussed above, this is exactly what is needed to realize Bose glass physics
in dimer systems and many other spin-gap systems. Similar types of Hamiltonian disorder can be induced by chemical
substitution of other non-magnetic sites, such as Tl–K substitution in TlxK(1−x)CuCl3 [109].

The larger radius of Br− ions relative to that of Cl− leads to local distortions around substitution sites and affects
single-ion anisotropy. In anisotropic materials like DTN, this too is a source of random potential for the bosonic quasi-
particles [46]. All these effects of chemical disorder (both random exchange and random anisotropy) can in some cases
be very well quantified. This is exemplified by the impressive agreement between measurements on Br-substituted DTN,
Ni(Cl1−xBrx)2·4SC(NH2)2, and first-principle quantum Monte Carlo calculations on a particular disorder model for this com-
pound [46], involving random bonds along the c-axis and correlated random single-ion anisotropies, but fully preserving
the U(1) symmetry of the pure system.

5.3.2. A compressible disordered phase
The most obvious effect of such a chemically induced modification of the Hamiltonian parameters is a shift of the BEC

phase boundary on the H–T phase diagram. The effect can be quite dramatic, as shown in Fig. 7 for the cases of PHCC
and TlxK(1−x)CuCl3. A more careful look reveals a more profound consequence of disorder. For magnetic BEC in disorder-free
materials, the magnetic susceptibility dM/dH remains essentially zero all the way to the critical field, and increases only
in the transversely ordered BEC phase. This corresponds to the gapped (Mott-insulator) phase being incompressible. For
example, as illustrated in solid lines in the left panel of Fig. 8, for IPACC the susceptibility abruptly jumps at Hc = 9.8 T (a),
which coincides with the appearance of the magnetic Bragg peak in neutron diffraction (b). A key observation is that in
all disordered gapped quantum magnets studied to date, non-zero longitudinal magnetic susceptibility already emerges in
magnetic fields below the field of transverse long-range ordering. This disordered compressible state is a prime candidate
for the Bose Glass phase: a phase without long-range order and with a finite compressibility – corresponding to a finite
longitudinal susceptibility. In the present example, for Br-substituted IPACC, (CH3)2CHNH3Cu(Cl(1−x)Brx)3, x = 0.05, the sus-
ceptibility starts to gradually increase at roughly the same field as it jumps in the pure compound (Fig. 8, left panel), but
the antiferromagnetic Bragg peak only appears at a higher field, H ′ = 11 T, where the susceptibility reaches a maximum.
The field range Hc < H < H ′ is interpreted as the domain of a magnetic Bose glass. In contrast, in Br-substituted DTN,
disorder shifts downwards the lower critical field to magnetic BEC, and the Bose glass phase extends from the critical field
of long-range ordering all the way down to zero field [46], as well as above the upper critical field, as discussed below.

In the vicinity of the upper critical field, the presence of a Bose Glass phase can be inferred from the magnetization
curve. The latter may exhibit plateau-like features close to the transition, as is the case for Br-doped DTN and IPACC. These
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Fig. 7. Typical effect disorder on the BEC phase boundary in gapped quantum magnets. Left: K substitution on the Tl site in TlxK(1−x)CuCl3 (Ref. [109]).
Right: Br substitution on the Cl site in (C4H12N2)Cu2(Cl(1−x)Brx)6 [110]. Color online.

Fig. 8. Evidence for a compressible disordered phase (Bose glass) in random gapped quantum magnets. Left: (a) Field dependence of magnetization (Boson
density) and susceptibility (compressibility of the Bose gas) as measured in (CH3)2CHNH3CuCl3 (solid lines) and (CH3)2CHNH3Cu(Cl(1−x)Brx)3, x = 0.05
(symbols). (b) Field dependencies of intensity of the antiferromagnetic Bragg peaks (square of the BEC order parameter) in the two respective materials. The
data are from [115]. Right: measured (solid lines) and calculated (symbols) field dependence of magnetization (boson density, main panel) and susceptibility
(compressibility, inset) in Br-substituted DTN (adapted from Ref. [46]). Color online.

plateaus are in fact pseudo-plateaus, retaining a finite albeit small slope, and they are due to a predominantly discrete (often
bimodal) random distribution of bond energies; the latter is indeed a good approximation for transition metal halogenides,
where the bond-strength-modulating effects of substitution ions are very local. The pseudo-plateau feature is then associated
with the polarization of the spins linked, e.g., by the weaker bonds, while the spins linked by the stronger bonds remain only
partially polarized or unpolarized, hosting localized quasi-particles, as discussed in Section 3. Weak-step features near the
lower critical field were observed in (CH3)2CHNH3Cu(Cl(1−x)Brx)3 [111,112], but the pseudo-plateaus are most prominent
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near the upper critical field of Br-substituted DTN, as shown in the right panel of Fig. 8. The remarkable agreement with
QMC calculations once again emphasizes the validity of the theoretical model for disorder.

5.3.3. The crossover exponent φ

The observation of compressible disordered phases is an important step, but the central physical issue remains that of
the universality class of the BEC transition in disordered systems. The most easily accessible index in the experiments is
the crossover exponent φ that can be measured using a variety of techniques used to trace the H–T phase boundary. As
mentioned in Section 2.1 and in the discussion above, for the BEC transition in 3-dimensional disorder-free systems we
expect φ = 2/3, which increases to φ ∼ 1.1 in a Bose glass to BEC transition in the presence of randomness. To date, the
bulk of experimental data available supports this important theoretical prediction. Indeed, as can be seen from Fig. 7, left
panel, the phase boundary in TlxK(1−x)CuCl3 [109] is essentially a straight line, despite some lingering controversy on this
issue [113,114]. Similarly, a careful analysis of the phase boundary in x = 0.035 (C4H12N2)Cu2(Cl(1−x)Brx)6 (Fig. 7, right
panel) yields φ ∼ 1.02(16) [110]. The most accurate measurements to date are for Br-substituted DTN [46]. Measurements
of magnetic susceptibility performed to the lowest temperatures reveal a crossover from φ ≈ 2/3 at high temperatures to
φ ≈ 1.1 at temperatures � 0.1 K, again in nice agreement with numerical simulations. The experimental results for both the
lower and upper critical fields are shown in the right panel of Fig. 6.

5.4. The order-parameter exponent and potential complications

The most recent efforts were aimed at measuring the order-parameter critical exponent β . As anticipated in Section 3,
theory predicts that the mean-field value β = 0.5 in disorder-free systems should be replaced with a much larger value β ∼
0.95 when disorder is introduced. Unfortunately, to date, there has been no clear verification of this prediction. In fact, the
existing data for (CH3)2CHNH3Cu(Cl(1−x)Brx)3 [115] and TlxK(1−x)CuCl3 [114], as well as much more careful measurements
on (C4H12N2)Cu2(Cl(1−x)Brx)6 [110], suggest that the inclusion of disorder has little effect on the order parameter exponent.
The same studies, however, reveal some crucial features of the high-field phase in these materials that may be at the heart of
the discrepancy. It was shown, for the cases of (CH3)2CHNH3Cu(Cl(1−x)Brx)3 [115] and (C4H12N2)Cu2(Cl(1−x)Brx)6 [110], that
in these disordered compounds, unlike in their stoichiometric counterparts, the high-field phase has only short-range order
with a history-dependent correlation length. For example, Fig. 9 (left panel) shows scans across the magnetic reflections
in zero-field-cooled and field-cooled x = 0.05 Br-doped IPACC samples, revealing hugely different correlation lengths in the
two cases. The right panel shows the field and temperature evolutions of Bragg peak intensities in x = 0.035 Br-doped PHCC,
emphasizing their dependence on the sample’s trajectory in the H–T plane.

Clearly such behavior is inconsistent with a BEC state that should exhibit true long-range order and no history depen-
dence. To understand it, we need to consider the more subtle and often undesired effects of chemical disorder. The first
issue that cannot be ignored is that the random anisotropy introduced by chemical substitution need not be co-axial with
the applied field, and thus should have a component in the plane of the spontaneous transverse magnetization. Random
anisotropy of this type is known to have a drastic effect on thermodynamic phase transitions [116] and will undoubtedly
have an effect on the quantum critical point. Even more disrupting is the fact that local strains around substitution sites
will affect the orientation of the gyromagnetic tensor of the transition metal ion. In an externally applied magnetic field,
this will result in an effective random field acting on the spins. This random field will also have a transverse component,
and is therefore a direct conjugate of the BEC order parameter. That random fields can totally disrupt long-range ordering
in d = 3, replacing it with a short-range ordered state, is rigorously proven [117] and well documented for conventional
magnets [118,119]. In (CH3)2CHNH3Cu(Cl(1−x)Brx)3 and (C4H12N2)Cu2(Cl(1−x)Brx)6, random field effects will be exacerbated
by the fact that even the parent compounds may have some residual Ising anisotropy due to their triclinic structure, given
that a 3-dimensional Ising model in a random field does not show divergent Bragg peaks even in the ordered state.

Due to the tetragonal symmetry of the parent compound, in Br-doped DTN we expect these effects to be small. Indeed, it
has been argued that axial symmetry is preserved when a Br− ion replaces a Cl− one, as shown in Fig. 6(b). Unfortunately,
the symmetry is retained only locally. Except for the Ni2+ ions that are strictly lined up along the affected chemical bond,
strains propagating from each Br defect will distort the local ionic environments in a non-axially symmetric fashion. Just
due to this symmetry consideration, both random transverse anisotropy and random transverse field (in an applied external
field) are to be expected. The key question, of course, is how strong and disruptive they may be. A hopeful sign, suggesting
that they are, in fact, negligible, is that neutron diffraction experiments on x = 0.13 Ni(Cl1−xBrx)2·4SC(NH2)2 show no sign
of short-range correlations or history dependence [120]. The above-mentioned convincing agreement between experiment
and theory in other aspects of the problem for the x = 0.05 material inspires further confidence. Careful measurements
of the order-parameter critical index and other exponents in DTN samples with different levels of Br doping are currently
underway.

6. Conclusions

In this paper, we have discussed how disordered quantum magnets represent outstanding candidates for the quantum
simulation of the physics of disordered bosons. Fundamental theoretical questions in the field of disordered bosons are still
open, such as the quantitative understanding of the onset of Bose condensation in a disordered environment. In particular a
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Fig. 9. Non-BEC behavior of elastic magnetic scattering in disordered triclinic quantum magnets. Left: neutron scans across the magnetic Bragg peak
measured in zero-field-cooled and field-cooled (CH3)2CHNH3Cu(Cl(1−x)Brx)3 (x = 0.05) at T = 30 mK in H = 13 T applied field. The magnetic peaks are
broader than he experimental resolution (dashed lines), [115]. Right: magnetic neutron diffraction peak intensity measured in (C4H12N2)Cu2(Cl(1−x)Brx)6,
(a) as a function of magnetic field and (b) as a function of temperature. Open and solid symbols correspond to zero-field cooling and field cooling,
respectively. Squares (circles) correspond to x = 0.035 and x = 0.07 [110]. Color online.

controlled treatment for the long-wavelength effective action, describing the transition from Bose glass to a superfluid con-
densate in dimensions higher than one, is still lacking; theoretical insight is mostly based upon a phenomenological scaling
theory, which can lead to controversial results. In this context, controlled experimental realizations of dirty-boson physics
offered by magnetic insulators, and validated by extensive numerical simulations, can help resolve the controversies, and
they can provide estimates for the critical and crossover exponents that a fundamental theory for the dirty-boson transition
should be able to reproduce. In the case of one-dimensional dirty bosons, the apparent dichotomy between the Bose-glass
transition at strong disorder and that at weak disorder – specifically for what concerns the value of the Luttinger parameter
at the transition point – can also be investigated with magnetic insulators [121]. Indeed quasi-one-dimensional compounds
with very strong spatial anisotropy are expected to exhibit clear signs of an incipient one-dimensional critical behavior
before crossing over to three-dimensional criticality very close to the transition. If this is the case, then the Luttinger expo-
nent close to criticality can be extracted, e.g., from the temperature dependence of the nuclear-spin lattice relaxation rate
obtained via nuclear magnetic resonance [122].

Understanding dirty-boson physics through its realizations in disordered gapped quantum magnets is very promising, but
also quite challenging. One of the main advantages of these systems is that BEC breaks the axial rotation U(1) symmetry of
the spins, and the resulting absence of quasi-particle number conservation is perfectly acceptable from a physical point of
view. As a result, both the order parameter and relevant excitations are experimentally accessible. On the other hand, the
BEC phase is fundamentally related to the spontaneous breaking of the above-cited symmetry, and hence it is vulnerable
to all sorts of disruptive anisotropy effects, which might be enhanced by doping-induced disorder. This complication is by
no means a show-stopper, but we are only now learning of its experimental implications. Fortunately, theoretical and nu-
merical studies can provide invaluable and quantitative guidance in this endeavor. In particular, beside the transition metal
halogenides discussed explicitly in this review, further compounds – of the transition metal oxide family (see Ref. [123] for a
recent example) – might retain the correct symmetry properties even in the presence of doping, and hence lend themselves
as potential candidates for the observation of Bose glass physics. Future experimental and theoretical studies of magnetic
quantum simulators for dirty-boson physics have the potential to reconstruct the quantum critical behavior at the dirty-
boson transition via fundamental static observables such as specific heat, order parameter and field-induced magnetization,
and, to investigate the evolution of the excitation spectrum across the transition, identifying the fundamental signatures of
the phases connected by the transition at the level of the dynamical response functions.
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