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The coincidence of a meeting at CECM/CNRS in 1985 to plan work on the newly discovered
quasicrystals with a meeting at IHES on hyperspace crystallography greatly expanded
crystallography and made France a major player in the opportunities provided by this
discovery. Adherence to a paradigm which forbade possible symmetries for sharply
diffracting solids discouraged US crystallographers from the field. Even though there were
many earlier warnings and amendments to this false paradigm, it was considered by many
to be a defining law of crystallography. By 1992, the International Union of Crystallography
changed the definition of crystals to include quasicrystals. This definition still excludes
many ordered structures, like a recently studied isotropic metallic structure that is as
strongly ordered as a related intermetallic crystal.
© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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La simultanéité d’une réunion au CECM/CNRS en 1985 planifiant le travail expérimental
sur les quasicristaux nouvellement découverts et un atelier mathématique à l’IHES sur
la cristallographie N-dimensionnelle a permis un développement des concepts de la
cristallographie moderne et fait de la France l’un des acteurs majeurs du domaine.
Concomitamment, aux États-Unis, les cristallographes se dissuadèrent d’aborder ce sujet du
fait du paradigme interdisant certaines symétries aux solides présentant des diffractions
ponctuées, qui était tenu par un grand nombre pour la loi fondamentale de la cristallo-
graphie, malgré de nombreux exemples et exceptions (non-stœchiométrie, phases
incommensurables, etc.). En 1992, l’Union internationale de cristallographie changea la
définition du cristal pour y inclure les quasicristaux. Cette définition exclut toujours
de nombreuses structures ordonnées, telle une structure métallique isotrope récemment
découverte, qui est aussi ordonnée que le cristal intermétallique dont elle dérive.
© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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Fig. 1. Original early 1985 high resolution images of the Al–Mn quasicrystal provided by Richard Portier [4] showing the Fibonacci sequences of interplanar
spacings. The diffraction pattern (a) and image (b) from the 5-fold axis and the images from the 3-fold (c) and 2-fold (d) axes.

1. The early contributions

Dan Shechtman discovered the Al–Mn quasicrystals with electron diffraction and dark field imaging in the spring of 1982
during his sabbatical at NBS. Shechtman showed me only the five-fold diffraction pattern which I dismissed as twinning.
No one else seems to have been convinced by what they were shown. Nothing more was done for two years. Shechtman
continued to work at NBS on other tasks until he returned to teach in Israel for the academic year 1983–1984. In the spring
of 1984 Ilan Blech at the Technion became interested and created an icosahedral glass model that gave a similar diffraction
pattern. This encouraged Shechtman to submit a paper with Blech to the Journal of Applied Physics that was rejected1 as
boring metallurgy. Because Blech was about to leave academia to return to a brilliant career in Silicon Valley, this model is
his only contribution to quasicrystallography.

When Shechtman returned to NBS, which had become NIST, in August 1984 he showed me the rejected manuscript, and
I realized that the experiments made a compelling case that needed to be sent to the Physical Review Letters. He asked
me to join him in preparing a new manuscript. On a visit to Santa Barbara a month later, I gave an extemporaneous talk
about what had been discovered. It was fortunate for the field — and the French involvement that was celebrated by the
French Academy in 2012 — that Denis Gratias was in that audience. He returned with me to meet Shechtman, to subject the
material to his own tests, and to participate in the writing of the paper [2]. From the outset, Gratias had many ideas about
what needed to be done. Our paper was submitted on October 7th and in print three weeks later. There were immediate
positive responses. Levine and Steinhardt [3] had seen our draft and were in print by December 1984. Already the March
1985 meeting of the American Physical Society had a session on quasicrystals with 13 contributed papers.

In January 1985, Gratias invited Shechtman and me to CECM–CNRS (Vitry, France) to plan our work together with Richard
Portier who had already provided high resolution electron microscopy pictures as those seen in Fig. 1 showing the Fibonacci
sequences in the interplanar spacings [4] and self-similar geometric features with the golden mean τ and τ 3 as scaling units.
By a happy coincidence there was a workshop at the Institut des Hautes Etudes Scientifiques (IHES) on higher dimensional
crystallography organized by Louis Michel and Marjorie Senechal [5]. Within days André Katz and Michel Duneau provided
a most important talk [6] at this IHES workshop. The first international conference on quasicrystals was planned in Les

1 This paper was revised and sent to Metall. Trans. [1].
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Houches [7] organized by Louis Michel and Denis Gratias. So began the amazingly fruitful and dominant French involvement
in quasicrystals. It is indeed a great pleasure for me to participate in the celebration of the rich and profound contributions
of French scientists to the field of quasicrystals.

From the beginning there were many confirmations of the existence of quasicrystals. Beyond the decagonal phase discov-
ered at NIST by Bendersky [8] other icosahedral quasicrystals, some stable, were found [9]. Examples of two space groups,
Pm3̄5̄ and Fm3̄5̄, and an ordering transition between them were studied. Quasicrystals with 5-, 8-, 10- and 12-fold axial
symmetries were found.

It was a revolution in crystallography which was enlarged, but with strong opposition to overthrowing the fundamen-
tal law as will be discussed next. Linus Pauling was the most vocal opponent and his papers [10] influenced American
crystallographers from contributing.

2. What law was endangered and why the opposition?

Two centuries ago, René Just Haüy [11] hypothesized that the shapes of some crystals could be rationalized by assuming
that these crystals where composed of identical molecular units arrayed periodically on a three dimensional lattice. Haüy
could not imply that all crystals would be this way, but it became the starting point for the development of a sophisticated
mathematical and scientific crystallography in the 18–19th centuries.

Catalogs were created of all possible symmetries for these crystals: 7 crystal systems, 11 Laue groups, 14 lattices, 32
crystallographic point groups, 51 crystal forms, 230 space groups, etc. No other symmetries would be possible for such
crystals. Discrete diffraction, based on this idea, became the important tool of 20th century crystallography. Because no
exceptions were found in almost 200 years, it became accepted that all crystals were regular arrays on a lattice, and became
a law or a paradigm that arose from experience, rather than from fundamental principles.

The icosahedral Al–Mn solid was an exception. It could have been accepted as another non-crystalline solid. But its
sharp diffraction peaks implied crystallinity, and therefore violated the paradigm. The finding was challenged. The solid was
proposed as composed of a classical crystal with a very large unit cell, complex modulations, or a five-fold twin, or in
combinations. None of the suggestions survived experimental and/or theoretical scrutiny.

That Haüy’s hypothesis became a law applicable to all crystals is surprising for other reasons. During the 200 years
the hypothesis of periodically arrayed identical unit cells survived many amendments necessitated by many experimental
findings: Haüy’s crystals had to be stoichiometric compounds, obeying the law of definite proportions based on the rational
content of any of the identical unit cells. Non-stoichiometry was an anomaly, not compatible with periodicity. It took a
century to sort out its various causes; defects, solids that absorbed fluids, and mixed crystals were among the many ideas
proposed. Solid solutions, i.e. solids with indefinite proportions, were especially difficult. For crystallography, it was very
important for all these cases that the limits on crystal symmetries remained when Haüy’s hypothesis was amended to
permit defects and allow unit cells to have different mixes of species.

Although irrationally modulated structures have been known for a century, these quasiperiodic structures did not cause
a revolution because they also conformed to the symmetry limitations, if the modulations are ignored. Research on these
structures was important for our work on quasicrystals, because they could be modeled with higher dimensional crystallog-
raphy [12]. Magnetic crystals with irrationally spiral spins is another case that conforms to the symmetry limitations if the
spins are ignored [13].

Modifications of paradigms to keep them successful are common. If a scientific revolution occurs they often were warning
signs. The discovery of a sharply diffracting solid with the non-crystallographic icosahedral symmetry challenged only the
universality of this paradigm. It took considerable time to be accepted by some crystallographers. Sharp diffraction implies
quasiperiodicity; hence the name quasiperiodic crystals, shortened to quasicrystals [3].

Some paradigms survive a scientific revolution. Mechanics was greatly enlarged with quantum and relativistic effects,
but Newtonian mechanics survives with well-known bounds on the ranges of validity. Other paradigms, like the ether
in the 19th century, disappear entirely. Crystallography was enlarged by quasicrystals. Classical crystallography was not
overturned. It continues to be applicable to crystals with lattices, and many of its techniques and concepts have found
enlarged applicability. That this was a preserving revolution was understood from the beginning of quasicrystals. The intense
short-lived opposition was a surprise.

Since 1991 the International Union of Crystallography has defined crystals as objects that exhibit sharp diffraction
peaks [14]. Quasicrystals are now crystals by definition. Any of the 3-D point groups of finite order are now possible
symmetries for crystals; an infinite set of point groups has been added to the 32, although only icosahedral and 5-, 8-, 10-
and 12-fold axes have been observed.

3. What next? The aperiodic zoo . . .

Structural units repeat in both periodic and quasiperiodic solids. Both periodicity and quasiperiodicity allow the frequent
repetition of low energy configurations. But any low energy motif that cannot fill space has to pair with some other higher
energy configurations to create a crystal. For example low energy tetrahedra cannot fill space, but paired with octahedra
they form close packed periodic crystals. We now know that quasiperiodicity provides the alternative packing of repeat-
ing configurations. When more chemical species are added to a solid, the likelihood of finding quasiperiodicity seems to
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Fig. 2. (a) This tiling with 19-fold symmetry is quasiperiodic and long range ordered approximate a 2-D isotropic glass as shown on the corresponding
diffraction pattern (b) created using the website of Steffen Weber, JCrystal (see http://jcrystal.com/steffenweber/JAVA/jtiling/jtiling.html).

Fig. 3. At each decomposition step, every triangle in this Conway pinwheel tiling is subdivided into five congruent triangles with new orientations.

increase. But there are many other ordered arrangements that are neither periodic nor quasiperiodic that might be well
suited for packing low energy configurations.

Should they be excluded objects treated by the techniques of crystallography?
In her book Quasicrystals and Geometry, Marjorie Senechal [15] devotes a chapter to The aperiodic zoo. This chapter is de-

voted to some of the many other ordered arrangements of points that are neither periodic nor quasiperiodic, and cannot be
crystals by the current definition. Among this excluded set are a number of structures that can be studied by crystallographic
methods. A recent study of an isotropic structure may be an example [16].

As a first geometric example in 2-D, consider tilings with n-fold symmetry as n increases. Fig. 2 shows a 19-fold tiling
and its diffraction pattern. While this tiling with a finite value of n is quasiperiodic and ordered, it approximates an isotropic
structure. Although its diffraction pattern is composed of dense discrete peaks, the intense diffraction peaks are clustered
into broad rings reminiscent of a glassy structure. As n approaches infinity this structure becomes isotropic and no longer
has discrete diffraction peaks. In this limit, the tiling ceases to be a 2-D crystal and could be defined as a 2-D glass. Does it
make sense in this mathematical progression from tilings to glass to exclude the glass?

For another example, consider Conway’s pinwheel tiling, as described by Radin [17], and shown in Fig. 3 after various
decomposition steps. They are examples of ordered 2-D arrangements of points that are neither periodic nor quasiperiodic.
They also are structures of identical triangular tiles, packed in an ordered way. In the figure there are a finite set of discrete
line directions; earlier directions are longer than one the ones that arise later in the decomposition steps. In the limit of
infinite decomposition steps all orientations appear, but the structure is not isotropic. Can there be a 2-D physical realization
of adsorbate motifs in which the chemistry dictates triangular unit cells arranged in this way?

http://jcrystal.com/steffenweber/JAVA/jtiling/jtiling.html
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When crystallography was confined to lattices, unit cells had to be parallelepipeds. The 3-D Schmitt–Conway–Danzer
tile is not a parallelepiped. It tiles 3-D space only in an aperiodic way, forming a spiral structure of periodically ordered
layers with successive layers rotated from each other by an irrational fraction of π . Spiral structures are known to exist.
With other tiles or combination of tiles, many other types of aperiodic tilings should be possible. Are there chemical or
magnetochemical motifs that form such unit cells?

Computer simulations have identified a number of ordered non-crystalline structures. In 1992, Dzugutov [18] proposed
an artificial potential for a single component system in which non-crystalline structures would have lower energies than
crystalline structures. Simulations found a first-order reversible phase transition between a melt and a non-crystalline
isotropic solid that is highly structured and has low entropy. One structure seems to be composed of long curved bodies
whose cross-section has pentagonal symmetry. Mendelev [19] found a similar first-order reversible transition in a molecular
dynamics simulation that used an early embedded atom potential for Al. He found an equilibrium melting temperature
where the melt and the non-crystalline solid coexist along an interface. When the temperature is raised melting of the solid
occurs only heterogeneously by motion of the interface, and not by homogeneous liquation throughout the solid. Below the
melting temperature, the solid expands as the interface moves into the melt. Mendelev reported a latent heat and a volume
change and a 104 change in diffusivity.

Occasionally failures create opportunities. In 1987 my colleagues were unsuccessful in creating a quasicrystal from a
rapidly cooled Al–Si–Fe melt [20]. A primary solid formed from the melt. Because it rejected Al into the melt, this solid
formed by a first-order transition. This solid grew from the melt like a crystal, but it proved to be isotropic. This unexpected
result was noted [21,22], but not pursued. Recently we created from melts of different concentrations samples that were
near 100% of three related phases: 1. this isotropic phase, 2. the icosahedral quasicrystal and 3. the crystalline α-AlSiFe.
Using synchrotron radiation with a wavelength of 0.015359 nm, we were able to do high resolution diffraction and create
radial distribution functions for all three phases. The isotropic phase showed strong ordering to 1.2 nm that was a closer
to that in crystalline α-AlSiFe than to that in the quasicrystal. We demonstrated that this ordered isotropic solid phase is a
solution phase with solidity limits with respect to melts at high temperature and against solids at lower temperatures [23].
Thus an ordered isotropic solid phase can occur in real systems. Whether it belongs to the zoo or is similar to what
was seen in simulations remains to be seen. The enlargement of crystallography was a revolution. Can there be a further
enlargement?
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