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The understanding of wave propagation in turbulent magnetized plasmas can be rather
complex, particularly if they are inhomogeneous and time-dependent. Simulation can be
a useful tool for wave propagation studies, provided that the “model” equations take
into account the characteristics of the medium relevant for the studied problem and
that the numerical scheme including boundary conditions is stable and accurate enough.
The choices for the model equations and the corresponding schemes are analyzed and
discussed as a function of various parameters, such as the order of the numerical scheme
and the number of grid points per wavelength. A quick review of the up-to-date numerical
developments is given on the sheath boundary conditions and on the perfect matching
layer in anisotropic media. Possible developments of plasma diagnostics conclude this
state-of-the-art of simulations of electromagnetic waves in plasmas.
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r é s u m é

Comprendre dans les plasmas les mécanismes régissant la propagation des ondes peut
s’avérer complexe, en particulier s’ ils sont magnétisés, donc anisotropes et turbulents,
donc diffusifs, voire inhomogènes et non stationnaires. La simulation d’un type de plasma
avec ses caractéristiques propres passe d’abord par un choix adapté d’équations, suivi par
celui d’un schéma numérique accompagné de conditions aux limites spécifiques répondant
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aux contraintes du problème étudié. Nous discuterons l’impact de ces choix sur la qualité
des évaluations numériques en fonction de l’ordre du schéma numérique et du nombre
de points de grille par longueur d’onde. Une brève revue des sujets d’intérêt portant sur
des conditions de bord de type « gaine » et « transparent » en milieu anisotrope est réalisée,
et une discussion sur la propagation en plasmas turbulents appliquée, entre autres, aux
développements de diagnostics conclut cet instantané sur les travaux actuels.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The study of wave propagation in plasmas including experiments covers a lot of domains from astrophysics, space
physics, fusion plasmas up to industry using plasmas. Electromagnetic waves are commonly used to determine the plasma
characteristics, which allows for a better understanding or control of its behavior. For instance, using waves to deposit en-
ergy or momentum at a predefined position requires to know or to rebuild the propagation history of the used waves.
The use of electromagnetic waves is obvious when the medium is far away or is too hot. The analysis of the extractable
information requires the knowledge of the full history of the wave propagation along its path into the plasma to recover
all possible data stored in the received signal, from which the wanted parameters can be extracted using adapted data
processing. The prediction of the energy exchange between wave and plasma, which implies to know the wave path and
the wave absorption, is of interest to control the plasma or to induce a given perturbation, for example, to stabilize neoclas-
sical tearing modes or to heat a given volume of the ionosphere. To facilitate the interpretations or the predictions of wave
propagation behavior in plasmas, simulation is an essential tool if pertinent inputs are used and appropriated model equa-
tions are solved using relevant numerical methods with well-posed boundary conditions. However, this requires minimal
knowledge about the simulated plasma data. The impact of the approximations made as well as an analysis on the accuracy,
including the defaults and limitations of the numerical scheme order and the boundary conditions, should be evaluated and
integrated into the interpretation of the results. Once the history of the wave propagation is rebuilt, an additional difficulty
has to be overcome, which is the deconvolution of the information accumulated along the wave path. We have also to take
into account those introduced by the diagnostic itself. Moreover, simulation permits to study in a synthetic manner different
ways to discriminate events relying on the physic effects responsible for each event. Dispersive effects are often used to do
that. Interesting solutions found in simulations require significant improvement of the hardware, for example, through the
development of a perfectly well-controlled ultra-fast sweeping-frequency reflectometer with a locked phase (which does not
exist yet) to measure the wavenumber spectrum of density fluctuations. Although simulation can be used to explore new
methods, such an approach should integrate the hardware limitations or should include directly the hardware specifications
in order to be relevant for experimental applications.

After these general remarks, we look at the new trends and latest developments achieved in plasma wave simulation.
One way to improve the results is to introduce the polarization changes, in particular when the wave goes through an
absorption zone [1], a birefringent medium [2], or a turbulent plasma [3]. Simulations of wave propagation can be also
used to optimize the parameters needed to compute averages, for instance to provide the turbulence characteristics or
macroscopic values and for evaluating the error bars when a restricted number of measurements is processed [4]. Up to
now, only few realistic configurations can be fully computed due to the technical limitations of the current computers, to
the policy of High Performance Computing (HPC) centers, and to the lack of efficient numerical schemes preserving the
physical quantities over long runs [5]. Some limitations are associated with the transparent boundary conditions, which are
not able to support several polarizations in inhomogeneous plasmas [6]. No satisfactory solution exists up to now, though
effective analytical tools exist to describe wave propagation in plasmas [7], even in highly turbulent plasma cases [8,9].
Experiments in tokamaks [3,4,10] are often beyond the scope of application of these analytical models, and simulation
helps us to justify approximate models used for a better interpretation of the measurements. Computation of a transfer
function relating the various parameters studied is also a possibility offered by simulation [4]. The emergence of softwares
called “Multi-Physics” as COMSOL or of more specialized wave codes such as CST or HFSS makes finite-element simulations
more accessible. Although such software may describe non-linear effects [11], however, their applications remain limited.
Coupling wave codes with other codes describing more accurately the plasma response encounters an increasing interest,
for example, to study absorption and emission mechanisms including kinetic effects [12–16], as well as ponderomotive
effects to describe the spread of solitons [17]. As the simulated space size is restricted by the computer potential, a moving
mesh following the localized phenomenon can be used. Anyway, mesh optimization should be done using new trends
on adaptive methods [18] or an asymptotic preserving scheme [19]. To improve the computational efficiency, the domain
decomposition becomes necessary for adapting the changes of numerical parameters scales arising in a simulated system
and is still subject to mathematical developments [20]. Questions remain open on how to deal with a resonance and on the
relevance of the simulation results: is the addition of an artificial damping factor harmless or does it have a major impact?
Recent developments in Mathematics provide an analytical solution for the extraordinary mode in magnetized plasmas [21]
that can provide some answers to these questions.
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2. How to choose, for a given wave propagation case, an appropriate model computable as fast as possible?

To answer this question it is better to define a strategy, which is not unique, but may be the following: at first de-
termine what the spatial dimension should be, then consider if the problem is time-dependent or not, after that choose
the appropriate spatial domain with the adapted boundary conditions, and if is necessary choose the time domain, and
finally implement the necessary diagnostics before choosing the numerical scheme. For the choice of the algorithm, the
desired resolution and accuracy have to be chosen in accordance with the described experiment if possible. In fact, other
considerations might have to be integrated: necessity for parallel computing or not, possibility of minimizing the numerical
operations, optimization of the required memory. All of these choices should include synthetic diagnostic implementation.
All these requirements are established assuming that the implemented code is numerically stable, and preserves physical
quantities.

2.1. Choice of the spatial dimension

For time computing or memory issues, the studied problem may be reduced to 2 or 1 dimensions, though one has
to be aware that some physical effects may be lost, then resulting in misleading interpretations. For example, using a
one-dimension simulation of Doppler effects of backscattered waves in a moving plasma induces some limitations, since
only the component of the velocity in the studied direction is taken into account in non-relativistic cases, which relies
on the fact that only the coupling corresponds to Bragg’s rule [22] in one dimension. Let us consider the case of fixed
frequency plane waves propagating in a plasma with frozen turbulence moving radially or a radially moving plasma density
profile with density fluctuations. In the case of a scattering experiment without reflection at a cut-off layer, these cases are
equivalent for the computation, so it can give some freedom to use the fastest simulation. To interpret the simulation results,
knowing the numerical model makes it easier to interpret correctly the numerical results, but without this knowledge both
computed scattered waves can be also interpreted as time-dependent density fluctuations only. Similar issues exist for 2D
simulations of Doppler reflectometry where both the equilibrium plasma and density fluctuations are rotating, therefore the
choice of the interpretative model becomes crucial [23]. Some physical effects can only be described using 2D simulation,
for example, the probing beam widening induced by the plasma turbulence [24] or the electron cyclotron heating for
ITER. 3D-simulations are required to describe electromagnetic wave phenomena in the Earth–ionosphere system in order to
account for the highly complex geometry and position-dependent properties of such systems. Similarly it is crucial to take
into account multi-reflection and cavity effects in the case of microwave diagnostics used in fusion plasmas such as ITER
[25].

2.2. Partial differential equations (PDEs) choice

Once the order of the spatial dimension is defined, the following stage consists in the choice of the model equation set.
Most of the situations have been considered in [24]. In order to introduce up-to-date considerations on the PDE set describ-
ing wave propagation in plasmas, the Maxwell equations coupled with a plasma response expressed in terms of currents
and charge separation induced by the wave are recalled. Depending on the plasma modeling the wave dynamics includes or
not kinetic effects or non-linear contributions. The choice of plasma modeling determines the physical mechanisms taken
into account during wave propagation. The set of PDEs describing wave propagation can be written formally independently
of the plasma model used as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · −→
E = ρ

ε0
Poisson’s law

∇ · −→
B = 0 magnetic flux conservation law

∇ × −→
E = −∂

−→
B

∂t
Faraday’s law

∇ × −→
B = μ0

−→
J + 1

c2

∂
−→
E

∂t
Ampère’s law

(1)

+ PDEs describing the density current
−→
J and ρ as functions of (

−→
E,

−→
B), where ρ is the charge density, ε0 is the dielectric

constant of vacuum, μ0 is the permeability of vacuum, and c is the speed of light in vacuum. The most general description
uses Vlasov’s equation with the associated definition of

−→
J and ρ [24], in which resonant wave–particle interactions as the

thermal effects are included.
Neglecting ion responses through a cold plasma approximation with density ne and magnetic field

−→
B0(r), the propagation

of an electromagnetic wave at high frequency is described by the following coupled partial differential equations (PDEs):
⎧⎪⎪⎨
⎪⎪⎩

∇ × ∇ × −→
E(r, t) = eμ0ne

∂
−→v

∂t
+ eμ0

∂ne

∂t
−→v − 1

c2

∂2−→
E(r, t)

∂t2

m
d−→v = q

−→
E(r, t) + q−→v × −→

B0(r)

(2)
dt
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where the density ne includes equilibrium density and density fluctuations profiles, and the magnetic field
−→
B0(r) depends

slowly on time and space. However, this set of PDEs does not have up to now any stable numerical discretization in highly
fluctuating plasmas. New algorithms are under development to find a precise time-conservative and stable one. Another
way consists in using the potential vector

−→
A and the scalar potential φ. This modeling has to be considered due to the fact

that the PDEs associated with wave propagation are simply written as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δφ − 1

c2

∂2φ

∂t2
= − ρ

ε0

Δ
−→
A − 1

c2

∂2−→
A

∂t2
= −μ0

−→
J

(3)

where
−→
A and φ are coupled through the Lorentz gauge ∂φ

∂t + c2∇ · −→
A = 0, where c2 is the speed of light. However, we have

to be careful about the definition of ρ and
−→
J as it is done in Jackson’s book [26], where c2 is defined as the phase velocity.

To go back to the electric and magnetic fields, we need to compute both, knowing that
−→
E = −∇φ − ∂

−→
A

∂t and
−→
B = ∇ × −→

A,
and then to solve the equations of the motion or Vlasov’s equation, or use a J-solver to deduce the source terms ρ and

−→
J .

Although the numerical complexity of the potential description is on the same order of magnitude as that of Eq. (2),
it requires additional operations. In fact, the Maxwell equation solver coupled with the J-solver is the most used and
developed approach, but some problems (stability, energy conservation) arise for the large number of iterations required for
ITER [27] or in the case of “high”-frequency waves in the ionosphere [28]. These PDE sets permit in principle to treat the
time-dependent wave propagation cases. However, the time evolution of plasma parameters should have slow time scale
to avoid unphysical effects as the cut-off layer motion moves faster than the wave motion, which is theoretically possible
but unrealistic in practice. Even if unrealistic cases can be computed setting bad inputs, the PDE set can describe all the
possible mechanisms of plasma–wave interaction such as wave-trapping, multi-scattering, diffraction, etc., if the mesh and
the input parameters used are relevant to compute it. Consequently, an interplay between the physical requirements and
the computation constraints has to be traded off for computing-time optimization.

The PDE sets written so far consider only a linear response to the studied wave solicitation. Going towards non-linear
description requires to couple a wave equation or a Maxwell equation code to a code assessing the non-linear plasma
responses for the current density and charge separation, including non-linear effects [29]. The full non-linear response can
be provided by a particle-in-cell code [12] or using a kinetic equation [30]. Taking into account the ponderomotive effects,
solitons or solitary waves can be studied. There are different ways to approximate these non-linear responses. The most
common approach relies on a Boltzmann equilibrium for the electrons with a scalar ponderomotive potential, which includes
partially the polarization of the launched wave, but is unable to describe correctly the non-linear magnetic field generation.
Despite these limitations, this approximation allows us to study the effects of a slowdown of the soliton-induced turbulence,
as it will be shown later. This kind of description assumes also that the non-linear plasma response is instantaneous. For
the Zahkarov equations used in simulations of artificial wave heating of the ionosphere [31], the non-linear response can
propagate, and yields to different kinds of solitary waves, depending on the plasma response velocity [32].

Other kinds of non-linear effects associated with polarization changes exist, as mode conversion [33,34], cross-
polarization induced by turbulence [3] or by non-linear current density excitation [35]. A wave going through a plasma
with a relativistic motion can also introduce polarization variations due its intrinsic birefringent feature [36]. Most of these
phenomena could be used to develop new kinds of plasma diagnostics. The PDE sets describing the last samples are rather
complicated to solve as they consist in two wave equations coupled via non-linear terms plus differential equations giving
the plasma responses. A good choice for the numerical scheme is essential to solve numerically such coupled PDE set. Then
significant developments are still required, and the main rules to follow will be presented in the following paragraph.

2.3. On the choice of algorithm, boundary conditions, and implementation

The first approach to solve a problem with simulation is usually performed using existing codes or tools available in the
surrounding environment. These tools may be adapted to the numerical resolution of the phenomenon to be simulated if
the choice of the numerical scheme or the method used is relevant. As the computation capabilities increase, it is quite
natural to take into account more sophistications, but on the other hand more complexity is introduced in the simulated
systems. In particular, commercial softwares are now optimized using highly evaluated mesh refinement algorithms, and
other sophisticated tools. Own-developed adapted algorithms are often necessary to avoid unphysical results, as illustrated
in Fig. 1, where an expected behavior is found for the potential and an unrealistic one for the current density.

For these reasons, it is useful to recall some major issues involved in the discretization of a model equation. The most
appropriate methods are implicit ones due to their stability. They are generally associated with a sparse matrix inversion
for which significant improvements have been done. The finite-element method is also more adapted to complex geome-
tries than the finite-difference methods. However, when the simulated environments become strongly anisotropic, finite
elements may be ineffective and may exhibit a high level of numerical noise. This kind of problem can be solved by us-
ing an asymptotic preserving scheme [19], which is suitable to support high levels of anisotropy. Current progresses on
this issue are important and are often quickly integrated into commercial softwares. The finite differences explicit schemes
can be useful to simulate very big mesh size over long computing times, but their stability becomes an issue [5] and an
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Fig. 1. (Color online.) Computed DC potential (left) and x-component of current density, which appears unphysical, (right) induced by an RF antenna (white
circle), including boundary sheath conditions with very high anisotropy of the conductivity σ‖/σ⊥ = 105, ne = 1018 m−3, B0 = 1 T.

adapted geometry has to be used. A semi-implicit scheme (explicit in time) can also be a solution to solve this stability
problem under standard stability conditions, especially if specific boundary conditions are used [37,38]. The solutions found
are not always satisfactory due to the lack of numerical accuracy or intrinsic numerical dispersion. To overcome this kind
of numerical problems, if possible, one can upgrade the numerical scheme by changing the order of the scheme. Generally
more computational resources in terms of memory, and longer computation time for one time step are needed. However,
the accuracy improvement can permit to compensate this slowing down by reducing the number of points per wavelength.
Consequently, a higher-order numerical scheme should permit to improve code performance and to reduce numerical dis-
persion. But as the scheme order increases, the stability conditions are more and more restrictive [39]. So, an optimal order
and compact scheme are to be found to optimize the resolution and the necessary amount of memory [40]. In practice,
the 4th order is the most widely used. To finish on algorithm considerations, the best thing to do to avoid the pitfalls of
numerical dissipation is to use conservative schemes, which can be dispersive, but marginally stable. This is a real challenge
for the description of an X mode [5] or of a 3D multi-mode code [41].

For these numerical schemes, the issue of boundary conditions has to be addressed, and the result is generally reliable
as long as these conditions are regular (slowly varying). As soon as the frames of the spatial variations in the computational
domain boundaries are in the order of magnitude of the wavelength or smaller, existing boundary conditions no longer
correspond to the simulated phenomena. For example, sheath boundary conditions have to be treated carefully to avoid
unphysical results [6]. Not all the cases are describable numerically, such as a hybrid resonance cone crossing the edge of
the computational domain. This case presents a wide variation in spatial scale and a strong anisotropy in which domain
decomposition is ineffective to adjust the resolution and mesh. The same is true for the coupled system of equations
describing the conversion of modes involved in the heating process [32–34]. Given the volume of objects to be simulated,
such as ITER or ionospheric surveyed areas, and the frequencies in use, these aspects become essential to have relevant
simulation results. To assess the plasma responses to electromagnetic loads, including nonlinear relativistic effects, one
must couple Maxwell’s equations with a particle code, which has been done for laser–plasma interaction [13], heating ion
cyclotron [12], operation of a gyrotron [16] or interaction of an aircraft with a plasma [42]. These simulations require access
to the most powerful computers and thus are submitted to the policy of computer centers.

3. On the possible ways to develop diagnostics using electromagnetic waves

Simulation is an interesting tool to develop and to improve diagnostics using electromagnetic waves, since it permits to
have a deeper understanding of the basic physics connected to the studied diagnostic. In addition, it provides guidelines to
establish new theoretical models, to test and to validate new concepts or data processing, and to compute transfer functions
able to improve the interpretative model. Just to illustrate the possibilities of simulations to improve the understanding of
the physics of diagnostics, Fig. 2 shows the role of the wave number spectrum on the behavior of the scattered wave. The
first case (see Fig. 2, left) contains wave numbers able to induce only forward scattering, and effectively the scattered field is
in the same direction as the probing wave. In this case, there is no Bragg backscattering. The second one (see Fig. 2, right)
corresponds to a wider wavenumber spectrum including values fulfilling the Bragg rule and gives completely a different
result where the localized turbulence zone seems to be an isotropic source of the incoherent scattered wave. These pictures
represent the difference between the total field squared with and without turbulence, and have been obtained using an
averaging over 200 independent samples. Here the role of the averaging is clearly noticeable. The transition zone between



426 S. Heuraux et al. / C. R. Physique 15 (2014) 421–429
Fig. 2. (Color online.) Role of the wavenumber spectrum on the scattered intensity E2
s averaged over 200 samples of turbulent matrices in the case of linear

density profile and localized density fluctuations (square shape of 7.5λ0, length side centered at (−25, 41.25)) in two cases (left) when forward scattering
dominates and (right) with dominating Bragg scattering (probing frequency ν = 40 GHz, δn = 0.001nc, wave injection with a horn at Y = 0).

Fig. 3. (Color online.) Contour plots of the wave intensity (left) and after time averaging (right) on which are superimposed the density profile and the
density fluctuation profiles.

the central zone and the boundary conditions can be also easily highlighted. The results suggest the possibility to build a
simplified model to describe the scattering processes over the entire probing zone, assuming the existence of an intensity
source point. The beam widening induced by forward scattering at the plasma edge is shown in Fig. 3, on the left, the
intensity for one run (no averaging) is shown and exhibits a multi-sub-beam structure generated after the propagation of
a Gaussian beam through a turbulent zone. Beam spreading is evident looking at the vacuum-plasma interface, but only
after averaging, it appears that the spread beam recovers its Gaussian shape. These illustrations are just an application of
the recent works showing that the average over a large number of samples enables to extract turbulence properties or
determine the influence of density fluctuations on the diagnostic measurements. The first work concerning the extraction
via an averaging technique of the radial wavenumber spectrum from fast sweep frequency reflectometry data was published
ten years ago [43] and was improved later by using transfer function computation [4]. More recently, it has been found that
in the 1D case, even if we are above the Born approximation [22], in average, the intensity of the probing wave follows
the Born approximation results unless the Bragg backscattering dominates [9]. So, the use of statistical properties of a large
set of signals can open new ways to obtain more information about the probed fluctuating medium, especially when the
Born approximation is not valid. Since the information about the turbulence is directly linked to the scattered wave whose
level is proportional to the local intensity of the probing wave and the refractive index fluctuations, the knowledge of
the probing intensity is essential. The role of the simulation is crucial to give access to the local intensity of the probing
wave beyond the Born approximation as shown here. All future improvements and new concepts of diagnostics should
integrate that averages give access to turbulence properties. When the instantaneous wave probing intensity is inaccessible
but can be approximated using averaging, a possible interpretative model can be developed. Based on this idea, we analyze
now different configurations in which the probing electric field has to be evaluated everywhere by full-wave simulations
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Fig. 4. (Color online.) Soliton interacting with bursty density fluctuations, showing a good localization of the scattered wave.

during the measurement. In fact, we also need to identify the main coupling term between the probing wave and plasma
fluctuations, or between the probing wave polarization and the polarization changes induced by the plasma.

In the first example, we assume that there is no polarization variation and the Bragg backscattering is the main mech-
anism generating the scattered wave. If the spectrum of the density fluctuations is wide enough, the scattered signal can
come from everywhere along the path of the probing wave in the probed medium, except if the probing field is a pulse or
a soliton, which are spatially localized. For a known shape of the probing electric field at a given position in the plasma,
it is possible to determine which wavenumber range contributes to the Bragg backscattering. To evaluate now the position
of this scattering zone, measurements of time of flight are required. But to ensure a good spatial resolution, the envelop of
the probing wave should be as narrow as possible. That is to say that a very short pulse should be used, but due to strong
dispersive effects, the pulse becomes wider and wider during its propagation in the plasma. So quickly, we lose the spatial
resolution when the pulse propagates into the plasma. An optimal value for the pulse width can be determined [44]. What-
ever the pulse width needed to minimize the dispersive widening, it gives a poor spatial resolution. One possibility to have
narrow pulses without dispersion in collisionless plasmas is given by solitons [32], for which non-linear effects compensate
dispersion. However, the knowledge of the plasma temperature is required to compute the amplitude and soliton velocity,
which is no longer linked to the group velocity due to non-linear effects. Thus we have increased the spatial resolution
and provided a localized image of the perturbation (see Fig. 4). However, the localization becomes more difficult to obtain
as the soliton velocity has to be known until the interaction zone is reached and the group velocity of the scattered wave
has to be determined. This supposes that the position of the density perturbation is inferred from the time of flight, which
is not easily determined, especially if the plasma temperature changes significantly. When the temperature decreases, the
non-linear effects induces an increase of the soliton’s amplitude, and thus an acceleration of the soliton. So, in fact both the
amplitude of the scattered field and the effective wavenumber spectrum range probed by the soliton are changed. Here, to
interpret correctly the measurements based on soliton, probing simulation is required to have access to the absolute value
of the density perturbations, which is deduced from the local value of the probing wave amplitude and its localization by
computing the needed velocities. However, this diagnostic gives a direct access to the spatial distribution of the density
fluctuations only if the wavenumber spectrum of the soliton covers all the spatial scales of the turbulence in the probed
zone.

Other new developments of diagnostics deal with polarization changes in anisotropic plasmas. The rare developments
of diagnostics using polarization changes are probably a consequence of the 3D-nature of the problem, which induces
difficulties linked to inhomogeneity and anisotropy. To identify the difficulties, let consider a plane wave with a given
polarization propagating obliquely up to a shear magnetic field layer within an inhomogeneous moving plasma, and try
to answer the following question: what should the wavefront evolution of this plane wave during its propagation be? To
answer this question, a possible solution, at this moment, can only come from a 3D Maxwell equations solver coupled to a
J-solver including all the electric components. In such simulations, the wave absorption has also to be taken in account to
integrate most of the mechanisms inducing polarization changes, but in these cases the stability of the numerical scheme is
limited. In spite of these difficulties, the use of different polarizations to probe a plasma has been applied in different cases,
the results cross-checked, and cross-correlated in [45]. As mentioned before, cross-polarization scattering has been used to
determine the magnetic field fluctuations [3,46]. Works on wave polarization changes in turbulent atmosphere have been
published [47]. Polarization changes can also be associated with mode conversion and applied to new heating scenarios in
fusion devices [33] or connected to the propagation through anisotropic media in the presence of relativistic effects [36] or
of an inhomogeneous magnetic field [48]. In plasmas, the polarization changes have not been really considered as a tool
to characterize density fluctuations. However, the role of density fluctuations has been investigated to explain polarization
variations of electromagnetic solar emission [49]. To go further in the development of diagnostics using polarization changes,
the main difficulty is to solve a coupled PDE set in which the coupling terms depend on the fluctuating plasma parameters.
The computation of the electric field for each polarization is required to interpret the measurements. This kind of diagnostics
is able to provide complementary results, and gives access to turbulence parameters not available with other diagnostics;
for example, magnetic field fluctuations are only accessible via cross-polarization scattering [3].
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4. Discussion and conclusions

The state of the art in the simulation of wave propagation in plasmas can be summed up like this: 3D full-wave codes
will be soon operational to provide realistic results that could be compared to experiments, provided the mesh size stays
small enough [41]. The use of commercial softwares is essentially limited to the frequency domain and are still marginally
used due to the fact that they suffer from the lack of relevant boundary conditions, such as sheath boundary conditions
or multi-mode Perfect Matching Layer, which is still under development. They are also restricted to low anisotropy levels.
However, an improvement can be done using asymptotic preserving schemes. Generally speaking, the most efficient codes
remain the “home-made” ones. Their maturity comes from specific numerical schemes, which are stable for any compu-
tation time and conservative (no numerical dissipation). Even if High Performance Computing offers large capabilities, a
long gap has still to be filled before running relevant ITER cases in reflectometry or other experiments requiring more than
100 wavelengths in each direction. In lower dimensions, nonlinear plasma responses (wave–particle interactions, thermal
effects, relativistic corrections...) can be taken into account. As simulation of wave propagation in magnetized plasmas be-
comes more and more reliable, it will become a necessary tool to interpret experimental data especially well adapted to the
computation of transfer functions based on statistical averaging. In this paper, the utility of averaging over probing wave
intensity has been demonstrated, showing that the Gaussian shape of a probing beam is conserved during propagation
through a turbulent plasma, even if the beam is spread. The averaging method also allows us to evaluate the probing wave
intensity appearing in the expression of the scattered field and then to build a transfer function that can be valid even be-
yond the Born approximation. Thus the interest of simulation tools becomes obvious for the interpretation of measurements
and for the development of new diagnostic concepts. That permits to identify the basic mechanisms, the main dependencies,
and to give new methods allowing to determine the wanted parameters. For the characterization of the plasma turbulence,
the knowledge of the probing wave intensity is the key point. To illustrate soliton probing, the presented simulation shows
that it is possible to have an image of the density fluctuations using narrow solitons. Though there is a price to pay: the
soliton velocity has to be known at any time, which is not trivial due to the fact the soliton speed is a function of its
intensity. Knowing also that the soliton width is linked to its intensity and that part of the soliton energy is lost during
its interaction with density fluctuations, this restricts the spatial resolution of this method of turbulence characterization.
The advantage to use soliton probing is to avoid dispersive effects that affect the propagation of pulses. The dispersion
effects can be reduced using wide pulses, but then the spatial resolution is lost as it is at fixed frequency. It is possible to
recover partially the spatial resolution by sweeping the probing frequency and to benefit from the localization of the Bragg
backscattering. Two other parameters have to be included in the design of a new diagnostic: the damping of the probing
wave and the local variations of the refractive index. All these last remarks give a guideline for designing new promising
diagnostics based on the polarization changes, which should enable one to assess more precisely the wanted quantities or
to give access to unexplored ones.
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