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In this article, we present new transmission conditions for a domain decomposition
method, applied to a scattering problem. Unlike other conditions used in the literature,
the conditions developed here are non-local, but can be written as an integral operator (as
a Riesz potential) on the interface between two domains. This operator, of order 1

2 , leads
to an exponential convergence of the domain decomposition algorithm. A spectral analysis
of the influence of the operator on simple cases is presented, as well as some numerical
results and comparisons.
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r é s u m é

Nous présentons dans cet article de nouvelles conditions de transmission pour une
méthode de décomposition de domaine appliquée au problème de la diffraction. À l’inverse
d’autres conditions décrites dans la littérature, celles développées ici ne sont pas locales,
mais peuvent s’écrire sous la forme d’un opérateur intégral (tel qu’un potentiel de Riesz)
à l’interface entre deux domaines. Cet opérateur, d’ordre 1

2 , conduit à une convergence
exponentielle de l’algorithme de décomposition de domaine. Une analyse spectrale de
l’influence de l’opérateur portant sur des cas simples est presentée, ainsi que quelques
résultats numériques et comparaisons.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Scattering problems by electrically large objects occur in many domains. Numerical computation of this kind of problem
remains limited by resources (computational time, memory) because of the large number of unknowns, especially when
inhomogeneous materials are present. Domain decomposition methods are of great interest in a finite elements context. The
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problem is decomposed into several coupled subproblems, which can be solved independently. This reduces the memory
required and makes parallel computation easier.

New interfaces are created to split the domain into several subdomains, thus new conditions are required on these
interfaces to get a well-posed problem in each subdomain. Moreover, the conditions on the new interfaces (or transmission
conditions) directly determine the rate of convergence of the domain decomposition algorithm.

Several studies have been made regarding these domain decomposition methods, particularly on the transmission condi-
tions. One can mention the transmission conditions of Després [1], which are a specific linear combination of Dirichlet and
Neumann conditions, or conditions using higher order of derivatives as in [2] or [3]. Some conditions also involve operators
like rational fractions as in [4]. However, all these conditions do not have the properties allowing a theoretical proof of the
geometric convergence of iterative domain decomposition algorithms.

2. General theory of domain decomposition

In this section, we extend the general theory developed in [5] to the case where the transmission operator has a real
and an imaginary parts. We strictly keep their conventions and notations.

Let Ω be a closed domain and Γ its interface. L2(Ω), respectively L2(Γ ), denotes the space of square integrable functions
defined on Ω , resp. Γ . The Hilbert spaces Hm(Ω), where m is an integer, is defined as the space of square integrable
functions whose derivatives are also square integrable up to the order m. Hilbert spaces of fractional order are classically
defined through the Fourier transform:

Hs(Ω) = {
u ∈ L2(Ω) such that F−1[(1 + ξ2) s

2 F(u)
] ∈ L2(Ω)

}
(1)

The problem consists in finding u ∈ H1(Ω) such that:

(P)

{ −�u − ω2u = f in Ω

∂nu + iωu = h on Γ
(2)

If f ∈ L2(Ω) and h ∈ L2(Γ ), then there exists a unique solution to the problem, such that �u ∈ L2(Ω) and ∂nu ∈ L2(Γ ). We
now introduce a non-overlapping partition of Ω: (Ωk)k=1..K . We note Σkj = Ωk ∩Ω j the interface between the two domains.
The restriction of quantities to the domain Ωk (respectively Σkj) will be denoted with subscripts k (respectively kj). With
these notations, the initial problem (P) is equivalent to the collection of problems:

(Pk)

⎧⎪⎪⎨⎪⎪⎩
−�uk − ω2uk = fk in Ωk
∂nk uk + iωuk = hk on Σkk
uk = u j on Σkj
∂nk uk = −∂n j u j on Σkj

(3)

Let Tr,kj and Ti,kj two real operators defined on Σkj . We assume that Tr,kj can be written as Λ∗
kjΛkj (where ∗ denotes the

adjoint operator), and that it is injective, where Λkj is an isometry from H s(Σkj) into L2(Σkj), for some s > 0:

Tr,kj : Hs(Σkj)
Λ−−→ L2(Σkj)

Λ−−→ H−s(Σkj) (4)

We set Tr,kk = I and Ti,kk = 0. We also assume that Tr, jk = Tr,kj and Ti, jk = −Ti,kj , so that Tkj = Tr,kj + iTi,kj = T jk .
We define the following problems:

(
P ′

k
) ⎧⎨⎩ −�uk − ω2uk = fk in Ωk

∂nk uk + iωuk = hk on Σkk
∂nk uk + iωTkjuk = −∂n j u j + iωTkju j on Σkj

(5)

The equivalence between (Pk) and (P ′
k), and thus the well-posedness of (P ′

k) are ensured by the injectivity of Tr,kj .
Indeed, as soon as Tr,kj is injective, then the transmission conditions of (P ′

k) imply that uk = u j and ∂nk uk = −∂n j u j on
Σkj and then the problem (P ′

k) as a unique solution. Let us remark that this general framework contains most of the
transmission conditions proposed in the literature. For instance:

• if Tkj = I , one recovers the original method proposed by Després [1];
• if Tkj is a second-order boundary differential operator (for instance Hodge’s operator, which just becomes in the

Helmholtz equation a double tangential derivative: ∂2
τ ), one gets the conditions of [3].

We now assume that the interfaces Σkj are closed manifolds and that Λkj is an isomorphism from H1/2(Σkj) into L2(Σkj),
i.e. s = 1

2 . Under these assumptions, and using the results proven in [5], the convergence of the iterative algorithm using
these transmission conditions is geometric.

For simplicity, we will now use operators Tkj = zΛ∗Λ where z is a complex constant, and Λ verifies all previous condi-
tions for geometric convergence.
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3. Operators form H 1/2(Σ) into L2(Σ)

The condition s = 1
2 for Λ prevents us from defining the operator with partial derivatives. The operator is a pseudo-

differential operator that can be defined thanks to integral kernels. We look for an operator from H1/2(Rd) where d is the
dimension of Σ (d = 2 for 3D problems, d = 1 for 2D problems). To build such an operator, we use the Fourier transform
u(x) ∈ L2(Rd) → û(k) ∈ L2(Rd). The symbol of the operator must verify:

C−
(
1 + |k|2) 1

4 ≤ ∣∣Λ̂(k)
∣∣ ≤ C+

(
1 + |k|2) 1

4 (6)

where C− and C+ are the constants. Let us study the operator Λ0 whose symbol is |k| 1
2 (one can note that it does not

verify the condition (6) since Λ̂0(0) = 0). We decompose it as follows:

Λ̂0(k) = |k| 1
2 = −ik · (|k|− 3

2 ik
)

(7)

This decomposition allows us to write, if the inverse Fourier transform of |k|− 3
2 is an integral kernel K0:

Λ0u(x) = −div
∫
Rd

K0
(|x − y|)∇u(y)dy (8)

or in a bilinear form:

(Λ0u, v) =
∫
Rd

∫
Rd

K0
(|x − y|)∇u(y)∇v(x)dxdy (9)

This kernel K0 belongs to the class of the Riesz potentials [6], which correspond to a fractional power of the operator −�.
In particular:

K0 = C(d, 3
2 )

|x|d− 3
2

(10)

with C(1, 3
2 ) = −

√
π
2 and C(2, 3

2 ) = 2Γ ( 3
4 ) constants. Finally, we will use operators Λ = α I + βΛ0.

3.1. Case where Σ is of dimension 1

In this case, the operator is written as:

(Λ0u, v) = −
√

π

2

∫
Σ

∫
Σ

|x − y| 1
2 ∇u(y)∇v(x)dxdy (11)

3.2. Case where Σ is of dimension 2

In this case, the operator is written as:

(Λ0u, v) = 2Γ

(
3

4

)∫
Σ

∫
Σ

∇u(y)∇v(x)dxdy

|x − y| 1
2

(12)

3.3. Truncation of the operator

The main inconvenient of that type of operators (or more generally of any operator verifying the conditions required to
get a geometric convergence) is its non-locality. After discretization, they lead to full matrices, and thus to an important cost
to invert them. To overcome this problem, one can introduce a truncation function χδ in the integrand provided that the
function is smooth enough. This truncation will keep the integrand untouched around the diagonal x = y and will nullify it
far from the diagonal. It is a function of the distance r = |x − y|. To keep the appropriate behavior of the Fourier transform
at infinity, the truncation function has to be at least c2. One can take, for instance:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

χδ(r) = χ

(
r

δ

)
χ(r) = 1, ∀r ∈ [0,1]
χ(r) = 0, ∀r ≥ 2

χ(r) = (
6r2 − 9r + 4

)
(2 − r)3, ∀r ∈ [1,2]

(13)
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δ being a parameter governing the locality of the operator. Small values of δ will give very local operators (and thus very
sparse matrices).

4. Discretization of a local problem

The local problem writes as following. Find uk ∈ H1(Ωk) such that:{ −�uk − ω2uk = fk in Ωk

∂nuk + iωzΛ2uk = gin
k on ∂Ωk = Σk

(14)

with the operator Λ:

(Λu, v) = α(u, v) + β

∫
Σ

∫
Σ

K0
(|x − y|)χδ

(|x − y|)∇u(y)∇v(x)dxdy (15)

This local problem depends on an incoming data gin
k . This data comes from the neighbor domains Ω j of the domain Ωk .

This is why we introduce the outgoing data gout
k = −∂nuk + iωzΛ2uk = −gin

k +2iωR(z)Λ2uk . At the iteration l of an iterative
process, this quantity gout

k is computed and will be used as the incoming data gin
j at the next iteration l + 1.

To solve the local problem, we introduce intermediate variables ϕ = Λu ∈ L2(Σ). Let (Ψn) be the basis function associ-
ated with u and (Φm) those associated with ϕ in a finite-element context. We write:

u =
∑

n

unΨn, ϕ =
∑

m

ϕmΦm (16)

The weak formulation of the problem can be written:⎧⎪⎨⎪⎩
∫
Ω

(∇u∇ũ − ω2uũ
)
dx + iωz(Λϕ, ũ)Σ =

∫
Ω

f ũ + (gin, ũ)Σ ∀̃u ∈ H1(Ω)

(ϕ, ϕ̃)Σ = (Λu, ϕ̃)Σ ∀ϕ̃ ∈ L2(Σ)

(17)

Let us define the following matrices:

Mi, j =
∫
Ω

Ψi · Ψ j, Ki, j =
∫
Ω

∇Ψi · ∇Ψ j, MΣi, j =
∫
Σ

Φi · Φ j (18)

Bi, j = α(Φi,Ψ j)Σ + β

∫
Σ

∫
Σ

|x − y| 1
2 χδ

(|x − y|)∇Φi(y)∇Ψ j(x)dxdy (19)

and the following vector:

bi =
∫
Ω

f · Ψi + (gin,Ψi)Σ (20)

With these notations, the local system can be written in a matrix form:

Ak ·
[

u
ϕ

]
=

[
K− w2

M iωzB
B

T
MΣ

]
·
[

u
ϕ

]
=

[
b
0

]
(21)

u is defined on the whole domain, and thus the matrices K and M are Nv ∗ Nv where Nv is the total number of vertices.
ϕ is defined on the interfaces only, thus MΣ is Nb ∗ Nb where Nb is the number of vertices on the boundaries. These three
matrices are sparse. B is Nv ∗ Nb and is full if no truncation is made. When adding truncation, one will sparsify this matrix.

The global iterative process to solve the global problem would write:

1. Start with gin
k = 0 for all k,

2. Form the right-hand side b and solve every local system Ak ,
3. Form the quantity gout

k = −gin
k + 2iωR(z)Λ2uk ,

4. In each domain, exchange the quantity gout
k with the neighbors and put the received data in gin

k ,
5. Iterate to point 2. while the stopping criterion is not verified (e.g., residual norm of the error).
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Fig. 1. Geometry of the problem.

5. Spectral analysis on an infinite plane

We consider a 1D problem (translationally invariant along the axes x and y, z being the third axis in this section)
as presented in Fig. 1. It is made of a free infinite half-space (z > 0) and a material layer of thickness d (−d < z < 0).
An impedance boundary condition is prescribed in z = −d. Moreover, the domain can possibly be closed by an absorbing
boundary condition in z = H . The domain is excited by a plane wave u = ei(kxx+k0z z+2π f t/c) with k2

x + k2
0z = k2

0. k0 = 2π f
c

is the free-space wave number and k = k0
√

με is the wave number in the material, c being the speed of light in the free
space. In the material, we also have k2 = k2

x + k2
z . We denote s = kx/k0 the mode of the wave.

Maxwell’s equations write, in each polarization:

TE:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂2

∂x2
+ ∂2

∂z2
+ k2

)
E y = 0, Ex = Ez = 0

Hx = 1

ik0μ

∂

∂z
E y

Hz = − 1

ik0μ

∂

∂x
E y

H y = 0

(22)

TM:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂2

∂x2
+ ∂2

∂z2
+ k2

)
H y = 0, Hx = Hz = 0

Ex = − 1

ik0ε

∂

∂z
H y

Ez = 1

ik0ε

∂

∂x
H y

E y = 0

(23)

5.1. Solution to the exact problem

In this section, no decomposition domain is applied: the problem is solved globally. In each part (free space and material),
the solution can be written as the sum of an incoming and outgoing wave:(

A(s)eikz(s)z + B(s)e−ikz(s)z)eik0sx (24)

In particular, in the free space, and with no absorbing condition, A(s) = Av
s = 1 and B(s) = Bv

s = Rs is the reflection coef-
ficient. In the material, the coefficients A(s) = Am

s and B(s) = Bm
s depend only on s and on the geometry of the problem.

The continuity of the tangential fields in z = 0, the absorbing boundary condition and the impedance condition gives us the
four equations needed to solve the problem. One can formulate it in matrix form:⎡⎢⎢⎣

ϕs 1 0 0
1 1 −1 −1
1 −1 −γs γs

0 0 ϕABC 1

⎤⎥⎥⎦
︸ ︷︷ ︸

Ps

·

⎡⎢⎢⎣
Bm

s
Am

s
Bv

s
Av

s

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ (25)

with, for each polarization with absorbing boundary conditions (ABC):
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TE:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕs =
1 + Z kz

k0μ

1 − Z kz
k0μ

e2ikzd = μ + Z
√

με − s2

μ − Z
√

με − s2
e2ik0d

√
με−s2

γs = k0zμ

kz
= μ

√
1 − s2√

με − s2

ϕABC = 1 − ZABC
k0z
k0

1 + ZABC
k0z
k0

e−2ik0z H = 1 − ZABC
√

1 − s2

1 + ZABC
√

1 − s2
e−2ik0 H

√
1−s2

(26)

TM:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕs = Z+ kz
k0ε

Z− kz
k0ε

e2ikzd = Zε+√
με−s2

Zε−√
με−s2

e2ik0d
√

με−s2

γs = k0zε
kz

= ε
√

1−s2√
με−s2

ϕABC = ZABC− k0z
k0

ZABC+ k0z
k0

e−2ik0z H = ZABC−
√

1−s2

ZABC+
√

1−s2
e−2ik0 H

√
1−s2

(27)

With no ABC (infinite half free space), it suffices to take ϕABC = 0. One can note that TM polarization consists in TE polar-
ization with the change of parameters:

(μ,ε, Z , ZABC) →
(
ε,μ,

1

Z
,

1

ZABC

)
(28)

From Eq. (25), one can calculate the determinant of the system, as well as the exact solution of the problem.

det P s = −[
ϕs(γs + 1) − (γs − 1)

]− ϕABC
[
ϕs(γs − 1) − (γs + 1)

]
(29)⎡⎢⎢⎣

Bm
s

Am
s

Bv
s

Av
s

⎤⎥⎥⎦ = 1

det P s

⎡⎢⎢⎣
2γs

−2γsϕs

ϕs(1 − γs) + 1 + γs

−[ϕs(γs + 1) − (γs − 1)]

⎤⎥⎥⎦ (30)

5.2. Transmission conditions

From now on, we will consider only TM polarization. We split the domain into two subdomains by a new interface
located in z = −h, with −d < −h < 0 < H . The interface is in the material. We consider a transmission operator Bu =
1
ε ∂nu + ik0T u. The two transmission conditions are:⎧⎪⎨⎪⎩

1

ε
∂zu1 + ik0(Tr + iTi)u1 = 1

ε
∂zu2 + k0(Tr + iTi)u2

−1

ε
∂zu2 + ik0(Tr − iTi)u2 = −1

ε
∂zu1 + k0(Tr − iTi)u1

(31)

The function eik0sx is an eigenvector of the operator T , i.e. T (eik0sx) = t̂seik0sx . So the two previous equations can be decom-
posed on the basis eik0sx . One gets after some simplifications:

Am
s,1

[
ikz

ε
+ ik0t̂s

]
+ Bm

s,1

[
− ikz

ε
+ ik0t̂s

]
e2ikzh = Am

s,2

[
ikz

ε
+ ik0t̂s

]
+ Bm

s,2

[
− ikz

ε
+ ik0t̂s

]
e2ikzh

Am
s,1

[
− ikz

ε
+ ik0t̂s

]
+ Bm

s,1

[
ikz

ε
+ ik0t̂s

]
e2ikzh = Am

s,2

[
− ikz

ε
+ ik0t̂s

]
+ Bm

s,2

[
ikz

ε
+ ik0t̂s

]
e2ikzh (32)

Thanks to these two last equations, one can form the global system with transmission conditions:⎡⎢⎢⎢⎢⎢⎣
ϕs 1 0 0 0 0

ψ1,s 1 −ψ1,s −1 0 0
ψ2,s 1 −ψ2,s −1 0 0

0 0 1 1 −1 −1
0 0 1 −1 −γs γs

0 0 0 0 ϕABC 1

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Ks

·

⎡⎢⎢⎢⎢⎢⎢⎣

Bm
s,2

Am
s,2

Bm
s,1

Am
s,1

Bv
s

Av
s

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

xs

=

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

fs

(33)

where
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ψ1,s = − kz
ε + k0t̂s

kz
ε + k0t̂s

e2ikzh, ψ2,s =
kz
ε + k0t̂s

− kz
ε + k0t̂s

e2ikzh. (34)

Once again, we can compute the determinant of the new system:

det Ks = (ψ2,s − ψ1,s)det P s (35)

We can see that the new system is invertible, assuming that the original system is invertible, if and only if ψs,1 �= ψs,2 ⇔
R(t̂s) �= 0.

5.3. Decomposition domain algorithms

An iterative process is introduced through two different algorithms: the Jacobi and Gauss–Seidel ones, both in their
relaxed form. For the Jacobi algorithm, the transmission conditions are:

Jacobi:

{
B1ul+1

1 = (1 − r1)B1ul
1 + r1B1ul

2

B2ul+1
2 = r2B2ul

1 + (1 − r2)B2ul
2

(36)

where r1 and r2 are relaxation coefficients, and for the Gauss–Seidel one:

Gauss–Seidel:

{
B1ul+1

1 = (1 − r1)B1ul
1 + r1B1ul

2

B2ul+1
2 = r2B2ul+1

1 + (1 − r2)B2ul
2

(37)

In both cases, we can split the matrix Ks into Ks = Ms − Ns , and the iterative algorithm becomes:

Msxl+1
s = Nsxl

s + f s (38)

The iterative matrix M−1
s Ns governs the algorithm, and the convergence rate of the algorithm is directly linked to its

eigenvalues. Indeed, the convergence rate of the algorithms is ρs = max |λs|, where λs are the eigenvalues of M−1
s Ns . For

more generalities on the Jacobi or Gauss–Seidel iterative methods, the reader is referred to [7].

5.3.1. Jacobi algorithm
For the Jacobi algorithm, Ks is split into Ks = Ms − Ns , where Ms corresponds to the block diagonal part of Ks . Each

diagonal block of Ms is the spectral equivalent of each local problem Ak of the previous sections. The diagonal structure of
Ms means that in transmission conditions, we use data computed for the previous iteration only:

Ks = Ms − Ns, xl+1
s = M−1

s Nsxl
s + M−1

s f s (39)

with:

Ms =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ϕs 1 0 0 0 0
ψ1,s
r1

1
r1

0 0 0 0

0 0 −ψ2,s
r2

− 1
r2

0 0
0 0 1 1 −1 −1
0 0 1 −1 −γs γs

0 0 0 0 ϕABC 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(40)

Ns =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
ψ1,s(

1
r1

− 1) 1
r1

− 1 −ψ1,s −1 0 0

−ψ2,s −1 −ψ2,s(
1
r2

− 1) −( 1
r2

− 1) 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (41)

The only non-zero eigenvalues are:

λ
J
s(r1, r2, Q s) = 1 − r1 + r2

2
± 1

2

√
(r1 − r2)2 + 4r1r2 Q s (42)

where:

Q s = (ψ2,s − ϕs)(ψ1,s − Γs)

(ψ1,s − ϕs)(ψ2,s − Γs)
, Γs = ϕABC(γs + 1) + γs − 1

ϕABC(γs − 1) + γs + 1
(43)
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5.3.2. Gauss–Seidel algorithm
For the Gauss–Seidel algorithm, Ks is split into Ks = Ms − Ns , where Ms corresponds to the lower block triangular part

of Ks . Each diagonal block of Ms is still the spectral equivalent of each local problem Ak of the previous sections. The lower
part of Ms just means that at a specific iteration l, we use data computed at the previous iteration l − 1 as well as some
already computed data of the current iteration l:

Ks = Ms − Ns, xl+1
s = M−1

s Nsxl
s + M−1

s f s (44)

with:

Ms =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ϕs 1 0 0 0 0
ψ1,s
r1

1
r1

0 0 0 0

ψ2,s 1 −ψ2,s
r2

− 1
r2

0 0
0 0 1 1 −1 −1
0 0 1 −1 −γs γs

0 0 0 0 ϕABC 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(45)

Ns =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
ψ1,s(

1
r1

− 1) 1
r1

− 1 −ψ1,s −1 0 0

0 0 −ψ2,s(
1
r2

− 1) −( 1
r2

− 1) 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (46)

The only non-zero eigenvalues are:

λGS
s (r1, r2, Q s) = 1 − r1 + r2

2
+ r1r2

2
Q s ± 1

2

√
(r1 − r2)2 − 2r1r2(r1 + r2 − 2)Q s + r2

1r2
2 Q 2

s (47)

where we also have:

Q s = (ψ2,s − ϕs)(ψ1,s − Γs)

(ψ1,s − ϕs)(ψ2,s − Γs)
, Γs = ϕABC(γs + 1) + γs − 1

ϕABC(γs − 1) + γs + 1
(48)

5.3.3. Some analysis
First of all, we can see that if r1 = r2 = 1 (i.e. no relaxation is applied) then ρ

J
s = |√Q s| and ρGS

s = |Q s|. A Gauss–Seidel
algorithm would require twice fewer iteration than a Jacobi algorithm. More generally, a Gauss–Seidel algorithm is expected
to be more efficient than a Jacobi algorithm.

Besides, we observe that Q s = 1 ⇒ ρs = 1 for both methods, and any relaxation coefficient. Moreover, Q s = 1 is equiv-
alent to ϕs = Γs (i.e. det P s = 0 and the initial system is ill posed), or ψ1,s = ψ2,s (i.e. R(t̂s) = 0 and the problems Pk of
Eq. (3) and P ′

k of Eq. (5) are not equivalent). The analytic computation of lim Q s for large modes (s → ∞) shows that if
R(t̂s) �∼ |s| for large s, we get:

lim
s→∞ Q s = 1 (49)

and thus limρs = 1 for all methods and parameters. This behavior was expected and shows that only appropriate operators
can lead to geometric convergence.

6. Spectral analysis on a circle

The same developments made on the plane surface can be made on a circle. We still consider a 2D problem (translation-
ally invariant along y) made of a circular conductor of radius R0 covered with a homogeneous material layer of thickness d.
We write R2 = R0 + d. Again, an absorbing boundary condition (ABC) is prescribed in R3 = R2 + H . The thickness of each
component of the domain is thus taken identical as the infinite plane case. Maxwell’s equations are written in cylindrical
coordinates and reduce to Helmholtz equation. The general solution is decomposed on the basis eimθ , where m is the mode
of the wave, and can be written (equivalently to Eq. (24)):(

Am Jm(kr) + BmYm(kr)
)
eimθ (50)

where Jm and Ym are the Bessel functions of the first and second kind. We write Am
m and Bm

m the coefficients in the
material, and Av

m and Bv
m the coefficients in vacuum. As previously, the continuity of the tangential fields in r = R2, the ABC

in r = R3, and the impedance boundary condition (IBC) in r = R0 give the four equations required to solve the problem. The
system is really similar to the previous case, see Eq. (25):
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⎡⎢⎢⎣
ϕm 1 0 0
1 αm −βm −γm

1 α′
m −β ′

m −γ ′
m

0 0 ϕABC 1

⎤⎥⎥⎦
︸ ︷︷ ︸

Pm

·

⎡⎢⎢⎣
Bm

m
Am

m
Bv

m
Av

m

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
im

⎤⎥⎥⎦ (51)

with, for each polarization:

TE:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕm =
Ym(kR0) + iZ

√
ε
μ Y ′

m(kR0)

Jm(kR0) + iZ
√

ε
μ J ′

m(kR0)

αm = Jm(kR2)

Ym(kR2)

βm = Ym(k0 R2)

Ym(kR2)

γm = Jm(k0 R2)

Ym(kR2)

α′
m = J ′

m(kR2)

Y ′
m(kR2)

β ′
m = Y ′

m(k0 R2)√
ε
μ Y ′

m(kR2)

γ ′
m = J ′

m(k0 R2)√
ε
μ Y ′

m(kR2)

ϕABC = Ym(k0 R3) − iZABCY ′
m(k0 R3)

Jm(k0 R3) − iZABC J ′
m(k0 R3)

TM:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕm =
Z Ym(kR0) + i

√
μ
ε Y ′

m(kR0)

Z Jm(kR0) + i
√

μ
ε J ′

m(kR0)

αm = Jm(kR2)

Ym(kR2)

βm = Ym(k0 R2)

Ym(kR2)

γm = Jm(k0 R2)

Ym(kR2)

α′
m = J ′

m(kR2)

Y ′
m(kR2)

β ′
m = Y ′

m(k0 R2)√
μ
ε Y ′

m(kR2)

γ ′
m = J ′

m(k0 R2)√
μ
ε Y ′

m(kR2)

ϕABC = ZABCYm(k0 R3) − iY ′
m(k0 R3)

ZABC Jm(k0 R3) − i J ′
m(k0 R3)

(52)

Again, from Eq. (51), we can compute the determinant of the system Pm , which takes the same form as previously:

det Pm = −[
ϕm

(
αmβ ′

m − α′
mβm

)+ (
βm − β ′

m

)]+ ϕABC
[
ϕm

(
αmγ ′

m − α′
mγm

)+ (
γm − γ ′

m

)]
(53)

We now introduce a new interface in r = R +h, where 0 < h < d, which splits the domain. The same transmission conditions
are applied to this interface. The global system which governs the problem is (equivalently to Eq. (33)):

Km =

⎡⎢⎢⎢⎢⎢⎣
ϕm 1 0 0 0 0

ψ1,m 1 −ψ1,m −1 0 0
ψ2,m 1 −ψ2,m −1 0 0

0 0 1 αm −βm −γm

0 0 1 α′
m −β ′

m −γ ′
m

0 0 0 0 ϕABC 1

⎤⎥⎥⎥⎥⎥⎦ , fm =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0
0

im

⎤⎥⎥⎥⎥⎥⎦ (54)

where, this time, the parameters ψ1,m and ψ2,m are:

ψ1,m =
√

μ
ε Y ′

m(kR1) + it̂mYm(kR1)√
μ
ε J ′

m(kR1) + it̂m Jm(kR1)

(55)

ψ2,m =
−
√

μ
ε Y ′

m(kR1) + it̂mYm(kR1)

−
√

μ
ε J ′

m(kR1) + it̂m Jm(kR1)

(56)

Let Γm be:

Γm = ϕABC(γm − γ ′
m) − (βm − β ′

m)

ϕABC(γmα′
m − γ ′

mαm) − (βmα′
m − β ′

mαm)
(57)

With these notations, all previous results from the infinite plane surface apply to the circle, in particular:
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det Km = (ψ1,m − ψ2,m)det Pm (58)

Q m = (ψ2,m − ϕm)(ψ1,m − Γm)

(ψ1,m − ϕm)(ψ2,m − Γm)
(59)

λ
J
m = 1 − r1 + r2

2
± 1

2

√
(r1 − r2)2 + 4r1r2 Q m (60)

λGS
m = 1 − r1 + r2

2
+ r1r2

2
Q m ± 1

2

√
(r1 − r2)2 − 2r1r2(r1 + r2 − 2)Q m + r2

1r2
2 Q 2

m (61)

Q m = 1 ⇒ ρ
J
m = ρGS

m = 1 (62)

Q m = 1 ⇔ det Pm = 0 or R(t̂m) = 0 (63)

R(t̂m) �∼ m ⇒ lim
m→∞ Q m = 1 ⇒ lim

m→∞ρm = 1 (64)

7. Application of the theoretical and spectral analysis to a finite-element context

We present in this section different numerical results of a finite-element code. This code implements the Gauss–Seidel
algorithm, with relaxation on one side of the interface. The numerical modal convergence rate is to be compared to the
analytical one, given by Eq. (61) with r1 = r, and r2 = 1:

ρmodal = |1 − r + r Q | (65)

where Q is given by Eq. (48) for the plane surface, and Eqs. (57), (59) for the circle.

7.1. Optimization of the coefficients, modal comparison

Besides the relaxation coefficient r, some other parameters are to be optimized. Després transmission conditions are
∂nu + iωu. We will call Després-type TC conditions with one complex parameter z written as: ∂nu + iωzu. We will call
operator-type TC conditions written as ∂nu + iωz(α I +βΛ∗

0Λ0)u where z is complex, α and β are real. Després-type TC have
three independent optimization parameters (r, R(z), and I(z)), while operator-type TC have four independent optimization
parameters (r, R(zα), I(zα), and β/α). Operator-type TC may have a fifth parameter δ: the size of the truncation function.
The objective function to minimize is the maximal convergence rate over all modes.

For Després-type TC, we know that ρ∞ = limρ = 1 and thus we cannot minimize over all modes. We have to restrict
the minimization on a range of modes [0; smax] or [0;mmax].

For operator-type TC, we can show that, from a certain mode s0, the convergence rate becomes monotonous and thus
minimizing max[maxs∈[0,s0] ρs;ρ∞] is equivalent to minimizing maxs∈[0,∞] ρs: it is possible to minimize the maximal rate
over all modes for operator-type TC.

Fig. 2 presents the convergence rate as a function of the mode of the exciting wave (it is the modal convergence rate).
The effective convergence rate of a finite element process is the maximum of these functions. The aim of the optimization is
to reduce this maximum. As seen before, the infinite convergence rate for Després-type transmission conditions (optimized
or not) is equal to one: see Figs. 2(a) and 2(c). On the contrary, under operator-type transmission conditions (Fig. 2(d)), we
can adjust the parameters in order to equalize the different maximums of the convergence rate (basically, on simple cases,
we balance the lower modes, the higher modes and the grazing modes).

7.2. Behavior of the transmission conditions against mesh refinement

The interest of non-local operator as transmission operator appears even more clearly when refining a mesh. Indeed, the
finer the mesh is, the more high modes it will represent and the worst it will get for local transmission conditions. On the
other hand, with non-local operators, we insure that each well-represented mode will have a convergence rate lower than
a constant independent of the refinement. Fig. 3 shows such a phenomenon: it represents the evolution of the error of the
solution for different mesh refinement (for 30 points per wavelength to 120 points per wavelength).

7.3. Influence of the truncation

We finally study the influence of the size of the truncation on the convergence rate. This is done numerically thanks to
the analytical formulae obtained in the previous sections. The truncation function introduced previously is used to sparsify
the matrix after discretization. Indeed, a non-local operator such as integral kernels required here leads after discretization
to a full matrix describing the interaction on the interface. A local operator (such as derivatives) usually corresponds to
three-points or five-points stencils. In our case, the truncation uses a specific length δ and then the number of points
depends on the refinement. In 2D problems, the matrix will have (2� δ

h �+ 1) ∗ � L
h � non-zero elements, where δ is the length

of the truncation, L that of the (1D) interface and h is the step size. The ratio δ gives the sparsity of the matrix. In Fig. 4,
L
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Fig. 2. (Color online.) Convergence rate on a circle problem versus the mode m
kR . On the left (2(a)–2(c)), the transmission conditions are not optimized,

while on the right (2(b)–2(d)) the conditions are optimized over m
kR ∈ [0,10]. The optimization objective is to lower the maximum of the functions.

Fig. 3. (Color online.) Convergence rate for several refinement for optimized Després transmission conditions (left) and optimized operator transmission
conditions. For Després TC, the convergence depends strongly on the refinement.
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Fig. 4. Influence on the convergence rate of the length of the truncation.

we have represented the maximal convergence rate over all modes maxs∈[0,∞] ρs (i.e. the effective convergence rate of a
finite-element algorithm) as a function of the size δ of the truncation. The computation is made for the problem with
circular surface. The surface of the interface is located at r = 1.5 and thus the length of the interface is around 10. An
optimum (in the sense as small truncation as possible without degrading the convergence rate) can easily be found (around
0.2 in our case, leading to a matrix density of 2%).

8. Conclusion

In this article, we have presented new transmission conditions for domain decomposition methods. The very particular
order of the transmission operator involved leads to a proven geometric convergence of a Jacobi or Gauss–Seidel algorithm.
Because of their integral nature, these conditions give after discretization full matrices, but a truncation process has been
introduced to address this issue without degrading the convergence. Our first theoretical and numerical results are quite
promising and the interest of this method becomes more obvious when high refinement is required (high precision on the
solution or small geometrical details).

Further numerical investigation, especially 3D and/or realistic cases have to be pursued, as well as the question of
intersecting interfaces.
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