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Direct numerical simulation databases and theoretical analysis for decaying homogeneous 
turbulent flow in a conducting fluid subjected to an imposed magnetic field are investigated 
to evaluate the second-order models proposed by Widlund et al. and Kenjeres et al. The 
case of very small magnetic Reynolds numbers (Rem � 1) is considered in the present 
work. This case corresponds to the quasi-static approximation, which is well suited for 
most industrial flows involving liquid metals. The results obtained from our calculations 
show the performance of the model of Widlund et al. in predicting the Lorentz force 
effects compared with the model of Kenjeres et al.
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r é s u m é

Des données issues de simulations numériques directes et d’analyses théoriques relatives 
à un écoulement turbulent homogène en décroissance libre dans un fluide conducteur 
sujet à un champ magnétique sont utilisées pour évaluer les modèles de turbulence MHD 
développés par Widlund et al. et Kenjeres et al. Nous considérons, dans la présente étude, 
le cas où le nombre de Reynolds magnétique est faible. Ce cas correspond à l’approximation 
quasi stationnaire. Cette dernière est la plus recommandée dans l’étude des écoulements 
turbulents industriels. Les résultats de nos calculs montrent la capacité significative du 
modèle de Widlund et al. à reproduire les effets de la force de Lorentz comparé au modèle 
de Kenjeres et al.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The interaction of the turbulence in a conducting fluid with an external applied magnetic field is important in numerous 
industrial applications in engineering as well as in geophysics and astrophysics. The main difference between these applica-
tions is due to the different values of the magnetic Reynolds number Rem. In astrophysical applications such as interstellar 
medium, stars, etc., Rem is very high (Rem � 1) and is smaller but still significantly larger than 1 in geophysical applications
http://dx.doi.org/10.1016/j.crhy.2014.05.004
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(Earth dynamo). The case where Rem � 1 occurs in a majority of technological processes where a strong applied magnetic 
field is imposed on a conducting liquid. Examples of such applications include liquid–metal cooling systems for fusion reac-
tors, growth of semiconductor crystals and the continuous casting of steel and aluminum. For vanishing magnetic Reynolds 
number (Rem � 1), the quasi-static approximation can be applied to study the turbulence subjected to a magnetic field. 
In this approximation, the induced magnetic fluctuations are negligible in comparison with the imposed magnetic field, 
and their characteristic time scale, based on their diffusion, is much weaker than that of turbulence. The magnetic field’s 
fluctuation and the Lorentz force in the quasi-static approximation are expressed as a linear function of the velocity fluctu-
ations and, when we consider that the imposed magnetic field is uniform and vertical: �B = Bz�ez , these quantities are given, 
respectively, by [1]:

η
∂2b′

i

∂x2
k

= −Bz
∂u′

i

∂z
(1)

f ′[v ′] = −σ B2

ρ
�−1 ∂2 v ′

∂z2
(2)

where ρ is the density of fluid, η is the magnetic diffusivity, σ is the electric conductivity, and �−1 is the reciprocal Laplace 
operator.

The behavior of the turbulence under the action of the Lorentz force has been studied in analytical [2,3], numerical [4,5], 
and experimental [6,7] works. These works showed that the principal effects of an imposed magnetic field on turbulence 
appear clearly in an additional dissipation of kinetic energy via Joule dissipation and becomes anisotropic, its structures 
being elongated along the magnetic field lines. The Fourier representation of the Joule dissipation rate shows that this rate 
is anisotropic; it acts at all scales and modifies the standard Kolmogorov phenomenology of the turbulent spectra, which 
assumes viscous dissipation at small scales [8]. So the anisotropy of the velocity fluctuations for decaying turbulence is due 
essentially to the Joule dissipation.

The dimensionless parameter introduced to characterize the effects of a uniform magnetic field applied to a decaying 
turbulence is the magnetic interaction number N . This number represents the ratio of the Lorentz force 

�j∧�B
ρ to the inertia 

force (�u · �∇)�u : N = σ B2 L
ρv . The results presented in the literature showed that for a vanishing magnetic interaction num-

ber (N � 1), the anisotropy introduced by the magnetic field is negligible. However, when N � 1, the turbulence becomes 
anisotropic. The Joule dissipation tends to eliminate the velocity gradients in the direction of the imposed magnetic field 
and to elongate the turbulent eddies along the lines of the magnetic field. In this case, the turbulence approaches a two-
dimensional state completely independent of the coordinate direction aligned with �B. If N is larger than some critical value 
Nc, the turbulence is completely in a two-dimensional state and the Joule dissipation vanishes. In this case, the inertia force 
takes place again and it opposes to the bi-dimensionality and the anisotropy generated by the Lorentz force, which tends to 
restore isotropy. This picture of the turbulence behavior when N � 1 was first given by Moffat [2] and later by Sommeria 
and Moreau [9].

Because MHD turbulence at low magnetic Reynolds numbers is encountered in technological important flows, several 
models were developed under the quasi-static approximation. In the present work, we restrict our attention to the models 
of Widlund et al. [10] and Kenjeres et al. [11]. We recall here that the evaluation of the Widlund et al. model showed 
good agreement with the DNS of Shumann [4] for decaying MHD turbulence. In these simulations, Shumann restricted the 
attention to short times with magnetic fields corresponding to interaction numbers N = 0, 1, 5, and 50.

The purpose of the present paper is to study, for long times, the effects of the Lorentz force on a decaying homogeneous 
turbulence subjected to a strong magnetic field using the second-order models developed by Widlund et al. and Kenjeres 
et al.

2. Governing equations and models

2.1. Governing equations

In this section, we focus on the derivation of the evolution equations for the turbulent quantities. To this end, we first 
recall the Navier–Stokes equations for an incompressible conducting fluid subjected, at a low magnetic Reynolds number, to 
a magnetic field [12].

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂ p

∂xi
+ ν

∂2ui

∂x2
j

+ f i (3)

∂ui

∂xi
= 0 (4)

In these equations, the ui are the components of the velocity, p, ρ and ν are respectively the pressure, the density and the 
kinematic viscosity. f i is the instantaneous Lorentz force, which is given by:
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f i = 1

ρ
εikl jkbl (5)

The electric current density ji is given by Ohm’s law:

ji = σ(ei + εiknukbn) (6)

where ei is the electric field and bi is the magnetic field. ei can be defined, using the scalar electrostatic potential Φ , by:

ei = −∂Φ

∂xi
. (7)

The divergence of Ohm’s law together with Eq. (7) and the Kirchhoff continuity condition ( �∇ ·�j = 0) allow us to express the 
electrostatic potential as follows:

∂2Φ

∂x2
i

= εi jk
∂(u jbk)

∂xi
(8)

At this point, it is convenient to decompose any flow variable g into an ensemble of mean and fluctuating parts as follows: 
g = ḡ + g′ , where, for homogeneous turbulence, the mean ḡ can be taken as a spatial average or as a statistically steady tur-
bulence; it can be considered a time average. A direct averaging of Eqs. (3)–(4) yields the mean continuity and momentum 
equations which are as follows:
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∂ ūi

∂x j
− u′

iu
′
j

)
+ f i (10)

In order to achieve closure, we need a model for the Reynolds stress tensor. For a homogeneous turbulent flow, Rij = u′
iu

′
j

is a solution of the transport equations:
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where Πi j and ε are respectively the pressure-gradient velocity and the viscous dissipation rate. We recall here that the 
interaction between the velocity field and the magnetic field is characterized by the magnetic Reynolds number Rem. This 
number is defined by: Rem = uL

η . Here u is the r.m.s. fluctuating velocity and L is the integral length scale. As mentioned 
above, in this paper we are interested in a homogeneous MHD turbulent flow at a low magnetic Reynolds number so that 
the induced magnetic fluctuations b′ around the uniformly imposed magnetic field �B are small. In this case the electromag-
netic fluctuations, under the quasi-static approximation, are:
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Hence a full Reynolds stress closure is achieved in incompressible MHD turbulence if models are provided for:

(i) the viscous dissipation rate ε;
(ii) the pressure–strain correlation Πi j ;

(iii) the turbulence–Lorentz force interaction terms u′
m f ′

l .

The modeling of the pressure–strain correlation Πi j is one of the central issues in the development of Reynolds stress 
closure models. Most of the popularly used models are based on the Poisson equation for the fluctuating pressure, which is 
obtained by taking the divergence of the Navier–Stokes equations [10]:
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This equation contains three terms. The first one arises from the mean of strain and its interaction with the turbulence. The 
second term is generated by a mutual interaction between turbulence components, and the last term represents the contri-
bution of the divergence of fluctuating Lorentz force. The models proposed for pressure strain correlations must reflect the 
mechanisms implied in the fluctuating pressure field. Thus, the models will be comprised of a rapid part Π r

i j representing 
the linear interaction of turbulence with the mean velocity field, of a slow part Π s

i j responsible for the nonlinear interac-
tions between the velocity fluctuations, and of a magnetic part Πm

i j , which represents the interaction between turbulence 
and the Lorentz force:

Πi j = Π r
i j + Π s

i j + Πm
i j (17)

2.2. Literature models for the Lorentz force effects on turbulence

At low magnetic Reynolds numbers, the Lorentz force tends to counteract the turbulence, in the process causing a net 
dissipation of turbulent kinetic energy called the magnetic dissipation, or Joule dissipation, which reduces the turbulent 
transport of heat and momentum. The modeling of the Joule dissipation tensor, in physical-space, received little attention. 
To our knowledge, there is a few authors who worked on this problem. In this section we present the second-order MHD 
models of Widlund et al., Kenjeres et al. and the theoretical analysis of Davidson [13,14], which are developed under 
stationary conditions.

2.2.1. The model of Widlund et al. [10]
In the second-order closure model developed by Widlund et al., the components of the Reynolds stress tensor are given 

by the transport equations:

dRij

dt
= dRij

dt

∣∣∣∣
hyd

− mij (18)

where dRij
dt |hyd is the hydrodynamic part of the Navier–Stokes equations:

d
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3
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As mentioned above, our principal object is to study the decaying homogeneous MHD turbulent flow. In this case, the 
turbulent production and the rapid part of the pressure–strain correlation vanish. For the slow part Π s

i j , we admit the Rotta 
model [15]: Π s

i j = −3εbij . In the Widlund et al. model, the Lorentz force effects are incorporated into a Joule dissipation 
tensor mij defined as:

mij = −u′
i f ′

j − u′
j f ′

i − Πm
i j (20)

When we consider li , the unit vector parallel with the imposed magnetic field, the model of Widlund et al. is given by:

mij = 2σ B2

ρ

[
G(α, I la)Rij + H(α)

2
(lilk Rkj + l jlk Rki)

]
(21)

where

H(α) = −27

10
α2(1 − α) (22)

G(α, I la) = α − 2H(α)

(
I la + 2

3

)
(23)

I la = lilk Rki

K
− 2

3
(24)

K is the turbulent kinetic energy and α = lil j Y i j/2K is the normalized dimensionality anisotropy variable of Yij . The last 
one is defined by: Yij = ∫ kik j

k2 Φnn(
−→
k)d3−→

k . Further details about this tensor could be found in Ref. [10]. In the limit of 
two-dimensional turbulence, α is equal to zero and takes the value 1/3 for isotropic turbulence. Widlund et al. proposed for 
α a phenomenological transport equation. This equation, in homogeneous turbulence, can be written as:

dα

dt
= Pα + Πα + πα − mα. (25)

The source terms in the α model equation are:
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2σ B2

ρ
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where Sij = 0.5(ūi, j + ū j,i) is the mean strain rate and Cα1 = 1.2 and Cα2 = 0.1.
Finally, to close these equations, the model equation given by Widlund et al. for the viscous dissipation rate takes the 

form:

dε
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= −Cε1

ε

K
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iu
′
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K
− Cεα

2σ B2

ρ
εα (30)

in the case of a homogeneous turbulence, where Cε1 = 1.44, Cε2 = 1.83, and Cεα = 0.5.

2.2.2. The model of Kenjeres et al. [11]
The second-order MHD model of Kenjeres et al. is based on the analysis of the direct numerical simulations of Noguchi 

et al. [16] for a turbulent flow in an infinite plane channel subjected to a uniform magnetic field. This model produces 
results that are in good agreement with both the DNS and the experimental data for channel turbulent flows. For a free 
homogeneous turbulent flow, this model can be written as:

dRij

dt
= dRij

dt
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hyd

+ Πm
i j + Q m

i j (31)

where Πm
i j and Q m

i j are respectively the magnetic part of the pressure–strain correlation and the production of the stress 
tensor due to magnetohydrodynamic interactions. These terms are given by:
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In the Kenjeres et al. model, the equations for the hydrodynamic part of the Reynolds stress tensor dRij
dt |hyd are closed by 

the following equation model of the viscous dissipation rate:

dε

dt
= −Cε1

ε

K
u′

iu
′
jui, j − Cε2

ε2

K
+ Cε4

2

ε

K
Q m

ii (35)

this model involves eight constants and their values are given by: Cε1 = 1.44, Cε2 = 1.92, Cλ = 0.6, C4 = 0.6A1/2, Cε4 =
6.5 min(A2, 0.25), A = 1 − 9/8(A2 − A3), A2 = 4bijb ji , A3 = 8bijb jkbki .

2.2.3. The theoretical analysis of Davidson [13,14]
In the present study, the turbulent kinetic energy decay, for high magnetic interaction numbers and long times, obtained 

with the second-order models of Widlund et al. and Kenjeres et al., is compared with the theoretical analysis developed by 
Davidson. In this analysis, the energy flux is modeled according to the integral length scales parallel (Lp ) and normal (Ln) 
to the imposed magnetic field. For Davidson, the energy decay is given by:

dK

dt
= −β1

K 3/2

Ln
− β2

(
Lp

Ln

)2 K

τ
(36)

where τ = (σ B2/ρ)−1 is the Joule dissipation time, and β1, β2 are dimensionless coefficients of order unity.
Lp = Ln for turbulent flow in isotropic state. When the magnetic field is applied, the turbulence becomes anisotropic, 

with Lp > Ln. In the analyses of Davidson, the ratio Lp/Ln increases with the increase of the initial magnetic interaction 
number. The model equation has been tested against direct numerical simulations for Saffman turbulence, in which E(k →
0) ∼ k2, and for Batchelor turbulence, in which E(k → 0) ∼ k4, by Davidson et al. [17]. This test shows that Eq. (36) is a 
good approximation for fully developed turbulence. The same equation has been integrated by Davidson, and gives for the 
previous cases the following expressions, respectively:
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Fig. 1. Time evolution profile of the turbulent kinetic energy.

• Saffman turbulence [13]

K/K0 = t∗−1/2
[

1 + 5β1

9β2

(
t∗3/4 − 1

)
N0

]−6/5

(37)

L/Lp = t∗−1/2[1 + 5β1/9β2N0
(
t∗3/4 − 1

)]−2/5
(38)

• Batchelor turbulence [14]

K/K0 = t∗−1/2
[

1 + 7β1

15β2

(
t∗3/4 − 1

)
N0

]−10/7

(39)

L/Lp = t∗−1/2[1 + 7β1/15β2N0
(
t∗3/4 − 1

)]−2/7
(40)

where N0 is the initial magnetic interaction number, t∗ = 1 + 2β2t/τ is a dimensionless time and L is the integral length 
scale for a turbulent flow in its isotropic state.

3. Results and discussion

The transport equations incorporating the Widlund et al. and Kenjeres et al. models discussed above are solved numer-
ically for homogeneous MHD turbulence using a fourth-order Runge–Kutta numerical integration scheme. In the present 
work, we consider a decaying homogeneous turbulence in a conducting fluid at a low magnetic Reynolds number, which at 
time t1 = 2 is exposed to a uniform magnetic field B = Biδi3. In this case, the x1 and the x2 directions are indistinguishable. 
The axisymmetry around the direction of the magnetic field allows us to distinguish only between components in directions 
parallel to the magnetic field, which are designed by letter p, and to any axes, indicated by letter n, normal to the magnetic 
field. Five simulations are performed in this study with a magnetic fields corresponding to magnetic interaction numbers 
N = 10, 20, 50, 100, 150. In Figs. 1a and 1b, the time evolution of the turbulent kinetic energy predicted by the Widlund 
et al. and Kenjeres et al. models are compared with the theoretical analysis of Davidson [13]. Before t1 = 2, the turbulent 
kinetic energy decreases with time; this is obvious since the turbulence evolves without turbulent production terms. When 
the turbulence is subjected to a magnetic field, we remark that both models predict an increase in the reduction rate of 
the turbulent kinetic energy when increasing the initial magnetic interaction number. These results show the dissipative 
character of the Lorentz force at low magnetic Reynolds numbers; the Lorentz force dissipates the velocity fluctuations via 
Joule dissipation. This result is observed in the numerical experiences of Schumann [4] and Vorobev et al. [1] for short 
times. It is also clear from these figures that the Widlund et al. model is in excellent agreement with the theoretical anal-
ysis of Davidson. While the Kenjeres et al. model is unable to predict correctly the effect of a strong magnetic interaction 
number on the decay of the turbulent kinetic energy, the increase in N has little effect, localized near the moment when 
the magnetic field is applied.

The time evolution of the ratio between the Joule dissipation and the viscous dissipation rates obtained with the Widlund 
et al. and Kenjeres et al. models are shown respectively in Figs. 2a and 2b. It is clear from Fig. 2a that for long times and in 
the presence of a strong magnetic field, the ratio m(t)/ε(t) increases with an increase in the magnetic interaction number, 
and the Joule dissipation is responsible for the major part of the total dissipation rate. This result is in good agreement with 
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Fig. 2. Time evolution profile of the Joule dissipation to viscous dissipation ratio.

Fig. 3. Time evolution profile of the parallel turbulence intensity to normal turbulence intensity ratio.

the DNS of Vorobev et al. [1]. Fig. 2b shows that the Kenjeres et al. model yields bad results for the time evolution of this 
ratio. We note that the Joule dissipation rate becomes negligible for short times compared with the viscous dissipation rate. 
It thus seems that the Joule dissipation time is badly estimated by this model.

As mentioned in the literature, the turbulent intensities are inhibited by the presence of a magnetic field. This inhibition 
is more pronounced in the direction normal to the magnetic field. So the turbulence is dominated by the velocity component 
parallel to the magnetic field. This can be seen clearly in Figs. 3a and 3b, which display the time evolution of the ratio Ip/In
between the turbulent intensities in the directions parallel and normal to the magnetic field predicted by the two models. 
These figures show that for t < 2, Ip/In is equal to 1; this means that the turbulence is isotropic for the time interval [0, 2]. 
After the imposition of the magnetic field, this ratio deviates from its isotropic value and becomes larger than 1. So when 
the magnetic field is imposed, the turbulence transits to an anisotropic state. This anisotropy is generated by Joule dissi-
pation and its degree depends on the strength of the magnetic field. In general, the Reynolds stress anisotropy is captured 
here by both models. This observation agrees with the numerical experiences of Shumann [4] and Vorobev et al. [1]. In the 
time evolution of the ratio Ip/In given by the Widlund et al. model (Fig. 3a), three phases are distinguished. In the first one 
(t < 2), where the magnetic field is absent, the turbulence is dominated by the nonlinear effects which maintain it in an 
isotropic state. However, when a strong magnetic field is applied, the turbulence is developed to a strongly anisotropic state 
for t = [2, 4]. In this region, the nonlinear effects decrease with increasing the magnetic interaction number and become 
dominated by the linear effects of the Lorentz force which generate the anisotropy of the turbulence. It is also clear from 
Fig. 3a that the degree of anisotropy of the turbulence, in this phase, increases with increasing the initial magnetic inter-
action number. As confirmed by several works, anisotropy is primarily reflected in an increase of the integral length scale 
in the direction of the magnetic field. Vorobev et al. show that, when the anisotropy is significant, the magnetic interaction 
number should include the longitudinal integral length scale Lp and propose the formula: N = σ B2 L3

ρvL2
p

= N0(L/Lp)2. L is the 
integral length scale of the isotropic turbulent flow. So when Lp grows, the interaction number decreases and the nonlinear 
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effects due to the inertia force take place again. These effects make the turbulence approach a nearly isotropic state for high 
magnetic interaction numbers. This phenomenon is very well presented by the Widlund et al. model. As one can remark, 
for the last phase the magnitude of the anisotropy decreases and the ratio Ip/In approaches its isotropic value. It is also 
observed from these results that eventually the effects of the Lorentz force become weak. There is no important difference 
between the cases N = 100 and N = 150. In this case, the Lorentz force vanishes. According to relation (2), this means that 
the velocity gradients in the direction of the magnetic field are eliminated. So the turbulence transits to a two-dimensional 
state independent of the z-coordinate. This picture of the decaying homogeneous MHD turbulence for strong magnetic field 
is a result of the interaction between linear and nonlinear effects. This interaction, which is controlled by the magnetic 
field, is well predicted here by the Widlund et al. model. When we observe the results plotted in Fig. 3b, we remark that 
the Kenjeres et al. model yields extremely bad results. The return of the turbulence to its isotropic state for high magnetic 
interaction numbers and for long times is not observed in this figure. These predictions are not surprising because in this 
model, the Lorentz term does not appear explicitly in the pp-component of the Reynolds stress tensor, which is inconsistent 
with the Navier–Stokes equations for a free MHD turbulent flow.

4. Conclusion

In this paper, the second-order models of Widlund et al. and Kenjeres et al. are retained to study the effects of strong 
imposed magnetic field on the decaying homogeneous MHD turbulence. Five simulations in which N = 10, 20, 50, 100, 150 
are investigated, and the results are compared qualitatively with theoretical analysis and numerical experience data. The 
computational results show that the Kenjeres et al. model yields poor predictions of the time evolution of a decaying MHD 
turbulence. The results of DNS indicate that the action of a strong magnetic field is twofold. First the turbulent velocity 
fluctuations are dissipated due to the Joule dissipation. Second, the turbulence becomes anisotropic, its structure being 
elongated in the direction of the magnetic field. The limiting case is a two-dimensional state independent of the coordinate 
direction aligned with the imposed magnetic field. This picture of the flow transformation for a strong magnetic field is well 
presented by the model of Widlund et al.
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