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This is a review of a mathematical analysis of vortices in the Ginzburg–Landau model: 
phase transitions and effective energies that govern optimal patterns formed by the 
vortices, in particular the Abrikosov lattice, are discussed. Analogies with Coulomb gases 
are also mentioned.
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r é s u m é

Cet article présente une analyse des vortex dans le modèle de Ginzburg–Landau : 
les transitions de phase ainsi que les énergies effectives qui gouvernent les structures 
optimales formées par les vortex, en particulier le réseau d’Abrikosov, sont discutées. Des 
analogies avec les gaz de Coulomb sont aussi évoquées.

© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. The Ginzburg–Landau model of superconductivity

As discovered by Kamerlingh Onnes in 1911, certain metals, when cooled down below a critical temperature, lose their 
resistivity, and permanent currents can flow without energy dissipation. This phenomenon is called superconductivity, and 
(together with its brother, superfluidity) is one of the most striking macroscopic manifestations of a quantum phenomenon, 
see [1–3] for a presentation.

A characteristic feature of superconductors is that they exhibit the Meissner effect: they expel an applied magnetic field 
(by creation of an opposite magnetic field generated by a superconducting current)—this is responsible for the classic pho-
tograph of a magnet levitating above a superconductor. If the magnetic field is too large, however, then it destroys the 
superconductivity and penetrates the sample. Superconducting materials are often classified as type-I or type-II according 
to their response: type-I superconductors have one critical field at which the material undergoes a transition from super-
conducting to normal, while type-II ones have two critical fields, between which—as first discovered by Shubnikov—they 
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Fig. 1. Abrikosov lattices.
Source: H.F. Hess et al. Phys. Rev. Lett. 62, 214 (1989).

allow for a mixed phase with partial penetration of the magnetic field via vortices, which are small regions of normal phase 
surrounded by a loop of superconducting current. When the field is large enough, the experiments (dating from the 1960’s) 
show that vortices arrange themselves in perfect triangular lattices, cf. http :/ /www.fys .uio .no /super /vortex/ or Fig. 1. These 
are named Abrikosov lattices after the physicist Abrikosov who had predicted, from the Ginzburg–Landau model, that peri-
odic arrays of vortices should appear [4]. These vortices repel each other like Coulomb charges would, while being confined 
inside the sample by the applied magnetic field. Their triangular lattice arrangement is the result of these two opposing 
effects.

1.1. The model

In the 1950’s Landau and Ginzburg introduced their celebrated model on phenomenological grounds [5]. Gorkov later 
showed that it coincides with the quantum Bardeen–Cooper–Schrieffer (BCS) theory [6] near Tc, see also [7], and for a 
rigorous derivation of Ginzburg–Landau from BCS, see [8]. In the Ginzburg–Landau model, the energy of a superconductor 
occupying Ω , in the presence of a constant applied field Hex, when the exterior region is insulating, is:

G(ψ, A) = G0 +
ˆ

R3

| curl A − Hex|2
8π

+
ˆ

Ω

1

2m∗

∣∣∣∣
(

h̄∇ − ie∗

c
A

)
ψ

∣∣∣∣
2

+ α|ψ |2 + β|ψ |4 (1)

Besides the physical constants h̄ and c, additional constants m∗ and e∗ are present (see [1] for an explanation of these 
constants) as well as two quantities α and β that depend on the temperature T and on the superconducting material. Near 
the so-called critical temperature Tc, it is assumed that β is a positive constant and α is proportional to T − Tc and has the 
same sign. The quantity G0 represents the energy of the normal state and does not depend on ψ or A. From then on, we 
consider that we are below the critical temperature Tc. After some nondimensionalizing procedure (described for example 
in [9, Chap. 2]) and reduction to a two-dimensional domain, the energy functional can be reduced to:

Gε(ψ, A) = 1

2

ˆ

Ω

∣∣(∇ − iA)ψ
∣∣2 + | curl A − hex|2 + 1

2ε2

(
1 − |ψ |2)2

(2)

This is an idealized situation where the sample is assumed to be a three-dimensional infinitely long cylinder with 
cross-section Ω , submitted to an external field parallel to the axis of the cylinder and of intensity hex . It can also be used 
to describe thin films, such as high-Tc superconducting compounds for which the Ginzburg–Landau theory has turned out 
to work quite well [10].

In the above energy functional, the parameter ε is a material constant, it is the inverse of the “Ginzburg–Landau pa-
rameter” usually denoted κ . It is also the ratio between the “coherence length”, usually denoted ξ (roughly the vortex-core 
size), and the “penetration length” of the magnetic field, usually denoted λ. We are interested in the regime of small ε, 
corresponding to high-κ , or extreme type-II superconductors, also called the London limit.

The energy depends on two unknown functions ψ and A. ψ is a complex-valued function, called order parameter and 
indicating the local state of the sample: |ψ |2 is the density of Cooper pairs of superconducting electrons. With our normal-
ization |ψ | ≤ 1, and where |ψ | � 1 the material is in the superconducting phase, while where |ψ | = 0, it is in the normal 
phase (i.e. behaves like a normal conductor), the two phases being able to coexist in the sample. A vortex is an object 

http://www.fys.uio.no/super/vortex/
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centered at an isolated zero of ψ , around which the phase of ψ has a nonzero winding number, called the degree of the 
vortex. A typical vortex centered at a point x0 is the ansatz ψ = ρei ϕ with ρ(x0) = 0 and ρ(x) = f ( |x−x0|

ε ) where f (0) = 0
and f tends to 1 as r → +∞, i.e. its characteristic core size is ε, and

1

2π

ˆ

∂ B(x0,Rε)

∂ϕ

∂τ
= d ∈ Z

is its degree.
The vector field A is the gauge field or vector potential of the magnetic field. The induced magnetic field in the sample 

is deduced by h(x) = ∇ × A = curl A = ∂1 A2 − ∂2 A1, it is thus a real-valued function in Ω .
Note that the Ginzburg–Landau model is also the simplest gauge theory with Abelian gauge U(1). For further details on 

the model, we refer to [5,11,12,1–3] on the physics side, [13,9] on the mathematics side.

The Ginzburg–Landau model has led to a large amount of theoretical physics literature, probably most relevant to us is 
the book by De Gennes [11]. However, a precise mathematical proof of the phase transition at the first critical field, and of 
the emergence of the Abrikosov lattice as the ground state for the arrangement of the vortices was still missing. A series of 
mathematical works in the 1990’s opened the way cf. e.g. [14–16].

1.2. Rigorous results on critical fields and vortices

We summarize here the results of joint work with Étienne Sandier [9], on the vortices in ground states of the energy Gε , 
in other words minimizers of Gε and describe via mathematical proofs, the values of the critical fields for which vortices 
appear, the vortex patterns for energy minimizers, and the limiting energies that govern their interaction, in the limit 
κ → ∞, or equivalently ε → 0.

Recall that a complex-valued map ψ can be written in polar coordinates ψ = ρeiϕ with a phase ϕ which can be multi-
valued. Given a configuration (ψ, A), we define its vorticity by

μ(ψ, A) = curl j + curl A = curl j + h (3)

where j = 〈iψ, ∇Aψ〉 is the superconducting current, with the notation 〈a, b〉 = 1
2 (ab + ab).

When ε is small, we have the approximate (formal) relation:

μ(ψ, A) ≈ 2π
∑

i

diδai (4)

where ai ’s are the vortices of ψ and di ’s their degrees, and δp the Dirac mass centered at a point p. Thus the quantity 
μ(ψ, A) is appropriate as a proxy for the vortices of ψ (it is formally like the vorticity for fluids). We also have the 
following relation between the induced magnetic field h and the vorticity{−�h + h = μ(ψ, A) ≈ 2π

∑
i diδai in Ω

h = hex on ∂Ω
(5)

which is known as the London equation. Thus the induced magnetic field behaves like a potential generated by point charges 
at the vortices, in an electrostatic analogy. The London equation indicates how the magnetic field penetrates in the sample 
through the vortices.

In fact, the relation (5) is only approximately true; what gives a more correct picture is to write

−�h + h = 2π
∑

i

diδ
(ε)
ai

where δ(ε)
x denotes the Dirac mass at x smeared out at the scale ε (or in other words a smooth function of integral 1, with 

support in a disc of radius ε), characteristic length scale of the vortices.

1.3. Formal correspondence with a Coulomb gas

It turns out that it is more convenient to express the energy of a configuration (ψ, A) in terms of the induced magnetic 
field h, via the London equation (5). Some computations (with the help of all the mathematical machinery developed to 
describe vortices), cf. [17–19], lead eventually to the conclusion that everything happens as if the Ginzburg–Landau energy 
Gε of a configuration were equal to

Gε(ψ, A) � 1

2

ˆ

Ω

|∇h|2 + |h − hex|2

= 1

2

¨
GΩ(x, y)

(
2π

∑
i

diδ
(ε)
ai

− hex

)
(x)

(
2π

∑
i

diδ
(ε)
ai

− hex

)
(y) (6)
Ω×Ω
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Fig. 2. Minimizers with small number of vortices.

where GΩ is a type of Green (or Yukawa) kernel, solution to{−�GΩ + GΩ = δy in Ω

GΩ = 0 on ∂Ω
(7)

and h solves (5). With this way of writing, and in view of the logarithmic nature of GΩ , one recognizes essentially a pairwise 
(screened) Coulomb interaction of positive charges in a constant negative background (−hex), supplemented with the (large 
but not infinite) self-interaction of all the charges. This leads to viewing the vortex system essentially as a Coulomb gas (we 
will discuss the Coulomb gas subsequently).

1.4. First critical field

One may guess that at the first critical field Hc1 , i.e. the smallest hex for which vortices appear in energy-minimizers, 
the induced magnetic field is close to that of configurations without vortices, which in view of (5) is the solution h0 to{−�h0 + h0 = 0 in Ω

h0 = 1 on ∂Ω
(8)

In fact, the value of Hc1 can be guessed by perturbing h off of h0 and, starting from (6), expanding Gε in a suitable manner. 
Letting

λΩ = (
2
∣∣min(h0 − 1)

∣∣)−1
(9)

and Λ = {x ∈ Ω/h0(x) = min h0}, we find (see [17] for a simple derivation) that vortices first become favorable at the points 
of Λ, and when hex ≥ λΩ |log ε|. More precisely, we prove (see [20], [9, Chap. 11]) that

Hc1 = λΩ |log ε| + CΩ + o(1) as ε → 0

and that below Hc1 there is no vortex, while for hex = Hc1 isolated vortices appear near points of Λ (with at most one 
vortex near each isolated point of Λ). This improves on the formal expansion of [11], which gave Hc1 ≈ 1

2 |log ε|; the two 
expansions actually agree when the domain Ω becomes very large, because then λΩ → 1

2 .
We assume then on for simplicity that Λ is reduced to only one point, denoted p̄ (this is the case for example when Ω

is convex), and denote Q (x) = 〈D2h0(p̄)x, x〉 its second-order differential, assumed to be definite positive. We are then able 
to characterize further transitions: we prove [20,9] that there exists an increasing sequence of additional “critical” fields 
H2, H3... with

Hn = λΩ |log ε| + (n − 1)λΩ log
|log ε|

n
+ constant-order terms

separated by increments of log |log ε|, for which a second, third, ..., vortex becomes favorable. Each time the optimal 
vortices are located close to p̄ as ε → 0 (cf. Fig. 2) and after blowing-up at the scale 

√
hex
n around p̄, they converge as 

ε → 0 to configurations that minimize an effective interaction energy given by

Hn(x1, · · · , xn) = −
∑
i = j

log |xi − x j| + n
n∑

i=1

Q (xi) (10)

Observe that Hn contains a repulsion and a confinement term; it is in fact exactly the Hamiltonian of a two-dimensional 
Coulomb gas of n particles in a confining potential Q . When Q has rotational symmetry, numerical minimization (see 
Gueron–Shafrir [21]) yields very regular shapes (regular polygons for n ≤ 6, regular stars) which look very much like the 
birth of a triangular lattice asn becomes large (their density tends to be uniform, supported in a fixed disc of Rn as n → ∞), 
see Fig. 3.



S. Serfaty / C. R. Physique 15 (2014) 539–546 543
Fig. 3. Numerical minimization of Hn by Gueron–Shafrir [21], n = 29.

Fig. 4. Optimal density of vortices according to the obstacle problem.

In [22] and [9, Chap. 12], we prove the existence of branches of local minimizers of (2) (i.e. metastable solutions) of 
similar type that have arbitrary bounded numbers of vortices, all of degree +1, and the locations of the vortices in these 
solutions also minimize (15). These solutions exist for wide ranges of the parameter hex. All these results are in very good 
agreement with experimental observations and theoretical findings [11,1,23].

When the applied field hex becomes such that hex − Hc1 � log |log ε|, then we show that the number of vortices in any 
minimizer diverges as ε → 0. The distribution of the vortices can then be described in averaged form, by characterizing the 
limit of μ(ψ, A) normalized by the expected number of vortices. We show [9, Chap. 9] that for hex − Hc1 � log |log ε|, 
vortices of minimizers still concentrate around the point p̄, but when zooming at the appropriate scale their average distri-
bution is uniform in a subregion near p̄, given as the unique minimizer of

F(μ) = −
ˆ

R2×R2

log |x − y|dμ(x)dμ(y) +
ˆ

R2

Q (x)dμ(x) (11)

This is a standard minimization problem in potential theory, known as the capacitor problem (with external field), first 
studied by Gauss and solved by Frostman (cf. [24] for details). When hex − Hc1 is of the same order as |log ε| then as long 
as hex � 1

ε2 , then we show [9, Chap. 7] that the optimal distribution of vortices is uniform and proportional to hex in a 
subregion of ωhex depending on hex and characterized via an obstacle problem (see Fig. 4). In other words, the normalized 
vorticity 1

hex
μ(ψ, A) behaves like a multiple of the characteristic function of ωhex , as ε → 0. This subregion ωhex is reduced 

to the point p̄ when hex = Hc1 and then grows as hex increases. When hex � |log ε|, then ωhex tends to cover the whole 
domain Ω .
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1.5. Next-order results

The results mentioned above show that above Hc1 , for λ > λΩ , the number of vortices is proportional to hex and they 
are uniformly distributed in a subregion of the domain, but it is still far from explaining the optimality of the Abrikosov 
lattice. To (begin to) explain it, one needs to look at the next order in the energy asymptotics, and at the blown-up of (5)
at the inverse of the intervortex distance scale, which here is simply 

√
hex. For simplicity, let us reduce to the case λ = 1

(or hex � |log ε|) where the limiting optimal measure is μ∗ = 1Ω and the limiting h ≡ 1.
Once the blow-up by 

√
hex is performed and the limit ε → 0 is taken, (5) becomes

−�h + 1 = 2π
∑

a

δa in R
2 (12)

where the limiting blown-up points a form an infinite configuration in the plane, and these are now true Dirac masses (one 
may in fact reduce to the case where all degrees are equal to +1, other situations being energetically too costly).

One may recognize here essentially a jellium of infinite size, and E = ∇h the electric field generated by the points (its 
rotated vector field j = −E⊥ corresponds to the superconducting current in superconductivity). The jellium model was first 
introduced by Wigner [25], and it means an infinite set of point charges with identical charges with Coulomb interaction, 
screened by a uniform neutralizing background, here the density −1. It is also called a one-component plasma. It then 
remains first to identify and define a limiting interaction energy for this jellium, and second to derive it from Gε . Of course 
defining the total Coulomb interaction of such a system is delicate because several difficulties arise: first, the infinite number 
of charges and the lack of local charge neutrality, which lead us to defining the energy as a thermodynamic limit; second 
the need to remove the infinite self-interaction created by each point charge, now that we are dealing with true Dirac 
masses. Note that h satisfying (12) has a logarithmic singularity near each a, and thus |∇h|2 is not integrable; however, 
when removing small balls of radius η around each a, adding back π logη, and letting η → 0, this singular energy can be 
subtracted or “renormalized”, roughly like

W (E) = lim
R→+∞

1

|B R |
(

lim
η→0

ˆ

B(0,R)\∪a B(a,η)

|E|2 + π(logη)
∑

i

1

)
(13)

In the particular case where the configuration of points Λ has some periodicity, i.e. if it can be seen as n points a1, · · · , an

living on a torus T of appropriate size, then W can be expressed much more simply as a function of the points only:

W (a1, · · · ,an) = π

|T|
∑
j =k

G(a j − ak) + π lim
x→0

(
G(x) + log |x|), (14)

where G is the Green’s function of the torus (i.e. solving −�G = δ0 − 1/|T|). The Green function of the torus can itself be 
expressed explicitly in terms of some Eisenstein series and the Dedekind Eta function. The definition (13) thus allows us 
to generalize such a formula to any infinite system, without any periodicity assumption. We show that ground states, once 
zoomed in at the scale 

√
hex, form patterns that tend to minimize W , and we obtain an expansion of the ground-state 

energy:

min Gε = C2h2
ex + C1hex + o(hex)

where C2 is a constant identified via the mean-field limit and C1 is a constant that depends in a simple way of min W .
The question of central interest to us thus becomes that of understanding the minimum and minimizers of W . We have 

the partial minimization result:

Theorem 1. (See [19].) The minimum of W over perfect lattice configurations (of density 1) is achieved uniquely, modulo rotations, by 
the triangular lattice.

By triangular lattice, we mean the lattice Z + Zeiπ/3, properly scaled. The proof relies on results from number theory 
about the minimization of the Epstein zeta function of a lattice.

In view of the experiments showing Abrikosov lattices in superconductors, it is then natural to formulate the

Conjecture 1. The “Abrikosov” triangular lattice is a global minimizer of W .

This question belongs to the more general family of crystallization problems. If this is true, then it would justify the 
emergence of the Abrikosov lattice in the regime of applied fields considered here hex � hex � Hc2 and in the asymptotics 
of small ε.
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2. The 2D Coulomb gas

The connection with the jellium is what prompted us to examine in [26] the consequences that our study could have 
for the 2D classical Coulomb gas. More precisely, we are thinking of a 2D Coulomb gas of n particles xi ∈ R

2 in a confining 
potential Q (growing sufficiently fast at infinity) with Hamiltonian

Hn(x1, · · · , xn) = −
∑
i = j

log |xi − x j| + n
n∑

i=1

Q (xi), (15)

which we already encountered in (15).
The Gibbs measure for the same Coulomb gas at temperature 1/β is

dPβ
n (x1, · · · , xn) = 1

Zβ
n

e− β
2 Hn(x1,···,xn)dx1 · · · dxn (16)

where Zβ
n is the associated partition function, i.e. a normalization factor that makes dPβ

n a probability measure. The study of 
this Gibbs measure also finds motivation in the Ginibre ensemble of random matrices [27], the connection between Coulomb 
gases and random matrices was first pointed out by Wigner [28] and Dyson [29]. For general background and references, 
we refer to [30].

The Hamiltonian Hn is easily seen to be connected to (11) in the limit n → ∞: in fact one can prove [24] that under 
suitable assumptions on Q , min Hn ≈ n2 minF as n → ∞ and that for sequences of minimizers (x1, . . . , xn) of Hn , we have 
convergence of the empirical measures 1

n

∑n
i=1 δxi to the equilibrium measure μ0 (minimizer of (11)). This can be called 

the mean field limit, and is analogous to the obstacle problem distribution found for Ginzburg–Landau. Deriving this limit is 
significantly easier than for Ginzburg–Landau, due to the discrete nature of the starting energy, and the fact that all charges 
are +1. As in the Ginzburg–Landau situation, one can go to the next order in the expansion of min Hn . The connection with 
the Ginzburg–Landau situation is made by defining analogously the potential generated by the charge configuration using 
the mean-field density μ0 as a neutralizing background, this yields the following equation playing the role of the analogue 
to (5):

hn = −2π�−1

(
n∑

i=1

δxi − nμ0

)
in R

2.

The next step is again to express this in the blown-up coordinates at scale 
√

n (analogous to the 
√

hex scale previously) 
around x0, x′ = √

n(x − x0), via h′
n the solution to

h′
n

(
x′) = −2π�−1

(
n∑

i=1

δx′
i
− μ0

(
x0 + x′

√
n

))
. (17)

When taking n → ∞, the limit equation to (17) is

−�h = 2π

(∑
a

δa − μ0(x0)

)
in R

2 (18)

analogue of (12), corresponding to another infinite jellium with uniform neutralizing background μ0(x0).
Expanding the energy to next order is done via a suitable splitting, by analogy with Ginzburg–Landau. In fact, in this 

setting the splitting procedure is quite simple: it suffices to write νn := ∑n
i=1 δxi as nμ0 + (νn − nμ0). Noting that

Hn(x1, · · · , xn) =
¨

�c

− log |x − y|dνn(x)dνn(y) +
ˆ

Q (x)dνn(x)

where � denotes the diagonal, inserting the indicated splitting of νn , we eventually find an exact decomposition, and this 
leads us to a next-order expansion of the ground-state energy:

min Hn = n2F(μ0) − n

2
log n + n

(
1

2π
min W − 1

2

ˆ
μ0 logμ0

)
+ o(n) (19)

where W is the same renormalized energy as in (13). Again if Conjecture 1 were established, this would indicate that points 
in zero-temperature Coulomb gases should form a crystal in the shape of an Abrikosov triangular lattice (or perturbations 
of one with equal average energy), in agreement with predictions in the literature (cf. [31] and references therein).

When (15) is considered for xi ∈ R instead of R2, then it is the Hamiltonian of what is called a log gas. The corresponding 
results are proven in [32], together with the definition of an appropriate one-dimensional version of W , for which the 
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minimum is this time shown to be achieved by the lattice configuration (or “clock distribution”) Z. We also treat the case 
of higher dimensional Coulomb gases in [33].

The expansion to next order of Hn is valid for arbitrary configurations, not only ground states. They can thus be inserted 
into the Gibbs measure, yielding new results on the next-order asymptotic expansion of the partition function [26,33] (in 
contrast to the one-dimensional log gas case where Zβ

n is known, at least for Q quadratic, for all β by Selberg integrals), 
and information about thermal states and how they should crystallize as the temperature tends to 0.

Also, the result relates the computation of Zβ
n to that of the unknown constant min W , so to prove Conjecture 1 it would 

suffice in principle to know how to compute Zβ
n for a 2D Coulomb gas.

Minimizers of Hn are also viewed as weighted Fekete sets in approximation theory [24], and our conjecture is equivalent 
to a conjecture of [34] on the order n term in the expansion of the minimal logarithmic interaction on the 2-sphere, as 
shown by [35].

For other self-contained presentations of these topics, one can refer to [18,17].
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