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Magnetic phase transitions that involve multipolar degrees of freedom have been widely 
studied during the last couple of decades, challenging the common approximation which 
assumes that the physical properties of a magnetic material could be effectively described 
by purely dipolar degrees of freedom. Due to the complexity of the problem and to the 
large number of competing interactions involved, the simple (fcc) crystal structure of 
the actinide dioxides made them the ideal playground system for such theoretical and 
experimental studies. In the present paper, we summarize our recent attempts to provide 
an ab initio description of the ordered phases of UO2, NpO2, and AmO2 by means of state-
of-the-art LDA + U first-principles calculations. This systematic analysis of the electronic 
structures is here naturally connected to the local crystalline fields of the 5f states in the 
actinide dioxide series. Related to these we find that the mechanisms which lead to the 
experimentally observed insulating ground states work in distinctly different ways for each 
compound.

© 2014 The Authors. Published by Elsevier Masson SAS on behalf of Académie des 
sciences. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/3.0/).

r é s u m é

Les transitions de phases magnétiques impliquant des degrés de liberté multipolaires 
ont été beaucoup étudiées au cours des vingt dernières années, remettant en question 
l’approximation usuelle selon laquelle les propriétés physiques d’un matériau magnétique 
pourraient être convenablement décrites par des degrés de liberté purement dipolaires. 
Les problèmes à résoudre sont compliqués à cause du grand nombre d’interactions 
concurrentes concernées. C’est pour cette raison que les dioxydes d’actinides, avec leur 
structure cristallographique simple (cubique à faces centrées), représentent une classe 
de composés idéale pour aborder l’étude des ordres multipolaires, tant du point de vue 
théorique qu’expérimental. Dans cet article, nous résumons nos tentatives récentes, qui 
visent à fournir une description ab initio des phases ordonnées des composés UO2, NpO2, 
et AmO2 au moyen de calculs LDA + U avancés. Cette analyse systématique de la structure 
électronique est ici intrinsèquement reliée au champ cristallin local qui détermine la 
composition des états 5f des ions actinides. Corrélativement à ceux-ci, nous mettons en 
évidence le fait que les mécanismes qui conduisent aux états fondamentaux isolants, 
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observés expérimentalement, agissent de manière clairement différente pour chacun des 
composés de la série.

© 2014 The Authors. Published by Elsevier Masson SAS on behalf of Académie des 
sciences. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/3.0/).

1. A general introduction to multipolar order

Magnetically ordered materials have been used as navigational devices since long before a scientific understanding of 
their behavior was even attempted. As we now know, the basic necessary ingredient for magnetic order to occur is exchange 
interaction, a purely quantum-mechanical effect so called because the energy term associated with it arises from specific 
symmetry constraints on the wavefunction that is obtained when two indistinguishable particles are swapped (in the case 
of fermions, this is closely related to the Pauli exclusion principle). In one of the simplest pictures of interacting electrons, 
i.e., the molecular orbital model for the hydrogen molecule, this leads to a low-energy spectra composed of a singlet and a 
triplet, whose energy gap defines the exchange interaction. This result can be easily described in terms of the electron spins 
si by the Heisenberg–Dirac Hamiltonian

HHD = −2 J12 s1 · s2 (1)

where J12 is the exchange constant. A generalization of (1) to atoms or ions with many electrons, having total spin S , reads:

HHD = −
∑

i> j

2 J i j Si · S j (2)

where i, j label the atoms and the J i j are the inter-atomic exchange constants. This Hamiltonian can usually describe very 
well the magnetic properties of localized-electron materials if the orbital moment is quenched. If ligands shared by two 
magnetic ions are present, charge-transfer processes between the two ions are most likely mediated by the ligands rather 
than occurring directly between the ions. Some general features of this superexchange mechanism can already be described 
by the Heisenberg–Dirac formulation: for example the non-degenerate tight-binding Hubbard model with half-filling elec-
tron count, an effective hopping integral t describing charge transfer processes between pairs of nearest-neighbor sites 〈i j〉
and an intra-site Coulomb repulsion energy U that penalizes double occupation,

HHub = −t
∑

〈i j〉

∑

σ=↑,↓

(
a†

i,σ a j,σ + h.c.
) + U

∑

i

ni↑ni↓ (3)

can be perturbatively mapped onto (2) with J i j = −2t2/U in the limit U � t . The situation is more complex when orbital 
degrees of freedom cannot be neglected; even formally simple extensions of (3) which account for this feature contain a 
very large number of adjustable parameters and their use for quantitative studies is therefore unpractical [1].

One way to circumvent this problem is to replace the matrix elements appearing in these complex Hamiltonians by 
the use of conveniently defined effective operators with a strong physical identity. A typical, long-standing example is the 
commonly used formulation of the single-ion crystal-field potential in terms of Stevens’ operator equivalents O Q

K [2]:

HCF =
∑

K

∑

Q

C Q
K O Q

K (4)

The O Q
K operators are related to irreducible spherical tensors, and the number of adjustable parameters in (4) depends 

on the chosen set of basis states (for example, within a given configuration, terms with K larger than a certain value are 
ineffective and can be disregarded) and on the local symmetry of the system under study [3]. The same concept can be 
extended to two-ion interactions, which can take the general form:

H12 =
∑

K ,K ′

∑

Q ,Q ′
I Q Q ′

K K ′ O Q
K (1)O Q ′

K ′ (2) (5)

Because at the same time proper combinations of these irreducible spherical tensors can be associated with charge-like and 
magnetic-like observables, Eq. (5) can be interpreted as the sum of several contributions, each arising from the coupling 
between two specific electronic multipoles. Once again, the symmetry operations imposed by the original Hamiltonian affect 
which I Q Q ′

K K ′ coefficients are non-zero and the eventual relationships between them. For example, time-reversal invariance 
only allows coupling between multipoles with the same parity rank, and both the symmetry of the crystal and that of the 
bond between ions 1 and 2 must be considered as well.

Eq. (5) can drive a transition to a multipolar-ordered phase in very much the same way as (2) leads to conventional mag-
netic order under appropriate conditions. However, other terms in the Hamiltonian (in particular the single-ion crystal-field 
potential) usually reduce the active degrees of freedom at low temperatures, and therefore a strong interaction between two
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Fig. 1. (Left) Arrangement of the ordered magnetic moments (cones) and quadrupoles (ellipsoids) in the 3-k phase of UO2. The four sublattices are labeled 
with different colors. (Right) Arrangement of the Γ5 magnetic multipoles (MMPs) (cones) and of the induced Γ5 quadrupoles (ellipsoids) in the 4-sublattices 
3-k ground state of NpO2. The slice displays the direction of the local magnetic field around one of the Np ions. The cones represent the local D3d axes, 
and the direction in which they point illustrates the sign of the local multipole moment. Adapted from [1,11]. (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)

multipoles does not guarantee that a purely multipolar-ordered state will be generated. As an example, consider a lattice of 
identical odd-electron magnetic ions, subject to a crystal-field potential that selects a well-isolated Kramers’ doublet as the 
ground state. A phase transition driven by the interaction between magnetic multipoles breaks the time-reversal invariance 
of the crystal field, and therefore splits the ground doublet of each ions into two singlets, the lowest of which in general has 
a sizable dipole moment associated with it; as a consequence, magnetic dipoles also order and this multipole-driven tran-
sition might be experimentally indistinguishable from a conventional one. A different situation may occur when a magnetic 
transition is easily detected by peaks in bulk observables (such as susceptibility or specific heat), but the material shows no 
ordered moment when studied by local probes (such as Mössbauer, NMR or neutron diffraction), and it is often referred to 
as “hidden order” [4].

One of the reasons why actinide dioxides are regarded as archetypal systems to study multipolar order is that the O h
local symmetry at their crystallographically equivalent actinide sites means that the cubic crystal-field potential can lead 
to highly degenerate electronic ground states (threefold for U, fourfold for Np). Another reason is that the relatively large 
extension of their unfilled 5f electronic shell translates into a significant superexchange coupling (with respect for example 
to the lanthanide 4f orbitals), but at the same time these electrons remain mainly localized so that the orbital degrees of 
freedom are unquenched (unlike for the 3d electrons in most transition-metal-based compounds). Indeed, uranium dioxide 
shows a first-order transition to a transverse 3-k state at TN = 31 K driven by quadrupolar interactions [5–11]; in the or-
dered phase, the magnetic dipoles and the charge-like electric quadrupoles on four inequivalent sites are arranged according 
to different orientations along the cube diagonal (Fig. 1, left). Conversely, the transition at TH = 25 K displayed by neptu-
nium dioxide [12–16] is driven by a rank-5 magnetic multipole [1], which in turn triggers the order of electric quadrupoles 
in a longitudinal 3-k arrangement (Fig. 1, right).

In the following, we will summarize the recent progresses in the theoretical study of multipolar order parameters in 
UO2, NpO2 and AmO2 by ab initio methods [17,18]. Apart for some brief remarks when necessary, we will not discuss 
the laborious experimental determinations of their order parameters (which is for the most part already covered by a 
comprehensive review paper [1]), nor recent theoretical work [19,20] on the same family of compounds that addresses 
some electronic structure aspects, but is unrelated to their multipolar ordered phases.

2. Uranium dioxide

As mentioned above, the low-temperature physics of UO2 is dominated by a complex interplay of superexchange and 
magnetoelastic interactions, the latter essentially coupling lattice phonons with local electric quadrupoles [21]. Several dif-
ferent types of magnetically ordered structures were proposed as the ground state during the years [1], until the general 
consensus was reached on a transverse 3-k arrangement of the dipole moments following neutron scattering experiments 
performed under an external magnetic field. Indeed, several years later, LDA + U ab initio calculations [22] that accounted 
for the noncollinear magnetic structure and distortions of the oxygen ligand cage showed that the electric field gradient 
calculated at the uranium sites is in agreement with nuclear quadrupole resonance measurements [23] only for a 3-k mag-
netic structure. Nevertheless, both the value of the ordered moment and some distinctive features of the spin-wave spectra 
seemed to be better accounted for by a 1-k order, at least until the separate roles of the Jahn–Teller and superexchange 
mechanisms as sources of quadrupolar interactions were properly accounted for [24]. Recently, the importance of these 
combined effects have been confirmed both experimentally, by polarized inelastic neutron scattering [11], and by ab initio
electronic structure calculations by aspherical-self-interaction free DFT + U [20]; in the latter study all antiferromagnetic 
configurations are shown to be essentially degenerate as a result of the relatively weak and largely isotropic interactions 
between the magnetic centers, and only when lattice relaxations are properly taken into account, the 3-k state becomes 
significantly lower in energy with respect to the others.
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Fig. 2. (Color online.) Charge and magnetic distributions of the U-5f electrons in UO2, ab initio computed with (a) U = 4 eV and J = 0 and (b) U = 4 eV
and J = 0.5 eV. The distributions are viewed from the [1 0 0] direction and from the [1 1 1] threefold axis, as indicated above the corresponding panels. The 
charge distributions are depicted by the isodensity surface, and the distributions of magnetic moments M111(r) = 1√

3
{Mx(r) + M y(r) + Mz(r)} are shown by 

the color code and plotted on the isosurface of the charge density. (c) Computed expectation values of the total (orbital + spin) magnetic dipole moment 
and of the quadrupole moment 〈O 111〉= 1√

3
[〈O yz〉 + 〈O zx〉 + 〈O xy〉] in UO2 as a function of J . Adapted from [18].

The important role of electric quadrupolar ordering in the phase transition of UO2 was studied by ab initio methods 
[18] by expressing the calculated LDA + U energy in terms of its multipole decomposition [25]. LDA + U electronic struc-
ture calculations were performed with an initial density matrix corresponding to the non-ordered state and allowing for 
self-consistent convergence to a symmetry-broken ordered phase. The value of U is fixed at 4 eV, a magnitude which is 
largely accepted as valid for this type of compounds and which, in the ordered phase, correctly reproduces the energy gap 
of about 2 eV measured for UO2. Hund’s coupling parameter J is varied between 0 and 0.5 eV. Fig. 2 shows the calculated 
charge and magnetic distributions of the U-5f electrons in UO2 for the two limiting values of J ; the calculated ordered 
magnetic moment is significantly reduced with respect to that expected for the paramagnetic Γ5 ground triplet, and a clear 
quadrupolar order parameter develops in the calculations and grows with J . One point that might be interesting to notice 
is the change in the quadrupole arrangement (shown by the change of sign in the expectation value in Fig. 2) for small val-
ues of J ; although this choice is apparently in contrast with experiment, we must remark that quadrupolar superexchange 
in UO2 that is included in the calculations [18] is apparently on the same energy scale as spin–lattice-mediated interaction, 
and it has recently been suggested that the former is actually ferromagnetic [26], whereas the competition with the latter 
determines the overall antiferro-quadrupolar ordered structure.

3. Neptunium dioxide

After teasing physicists for more than 50 years [1], the “hidden order” parameter in the low-temperature phase of 
NpO2 was recognized to be a magnetic (odd-rank) multipole [12]. Shortly thereafter, its symmetry was clarified by di-
rectly observing the associated antiferro-quadrupolar order [13]. Initially thought to be an octupole (rank 3), the primary 
order parameter was later suggested to be a rank-5 triakontadipole by careful studies of the low-energy excitation spectra
[15,16]. An attempt to quantify the relative magnitude of different multipolar superexchange interactions from the micro-
scopic point of view was made by means of a Hubbard-type model, whose hopping part Hhop has the same basic structure 
as that of Eq. (3), but takes into account that hopping between different orbitals m on neighboring sites generally has a 
different amplitude [1]:

Hhop =
∑

〈i j〉

3∑

mm′=−3

∑

σ

tmm′
i, j

(
a†

i,mσ a j,m′σ + h.c.
)

(6)

As discussed above, assuming that the energy cost of a double occupation U (which, unlike the hopping amplitude, has 
been considered as independent of the specific state), charge-transfer processes can be eliminated by second-order per-
turbation theory. The resulting Hamiltonian was then projected on the lowest 4 I9/2 manifold of Np4+ and the multipolar 
superexchange coefficients appearing in (5) were determined. Since no estimate of the individual hopping parameters is 
available, this procedure was repeated varying the ten independent hopping parameters relative to a bond of C2v symmetry 
on a hypercubic grid; the results are given in Fig. 3 and clearly show the importance of the interactions between almost 
all higher-order multipoles, in particular those of rank 5 (and 6). Some energy terms involving two multipoles of different 
ranks, not shown in Fig. 3, were also found significant [1].
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Fig. 3. (Color online.) Distribution of the ratio E(K , K )/E(1, 1), with E(Ki , K j) being the ground-state energy of a dimer (C2v bond) of Np4+ ions associated 
with a specific pair of ranks Ki , K j . The relative values of ten independent tΓlΓl

i, j coefficients (which refer to the hopping integrals between the orbitals of 
the magnetic ions labeled by definite irreps of the C2v symmetry group, and define the tmm′

i, j hopping parameters of Eq. (6) through linear combinations) 
are varied on a hypercubic grid. Adapted from [1].

Fig. 4. (Color online.) Charge and magnetic distributions of the Np-5f electrons in NpO2, computed with (a) U = 4 eV and J = 0 and (b) U = 4 eV and 
J = 0.5 eV (for details see the caption of Fig. 2). (c) Computed expectation values of four possible Γ5 multipolar order parameters in NpO2 as a function 
of J . Adapted from [17,18].

Naturally, the fact that multipolar superexchange interaction is sizable is not the only factor that must be taken into 
account to understand the ordered phase, since the single-ion crystal-field potential can strongly affect the multipolar 
susceptibility [15]. For this reason, LDA + U calculations of the electronic structure density in the ordered phase of NpO2
have been performed and the expectation values of multipolar operators of various ranks have been extracted as already 
discussed for UO2. Fig. 4 clearly shows that, when Hund’s rule J is turned on, the magnetic distribution is dominated by 
odd-rank multipoles as several close areas with opposite directions of the local magnetic vector alternate around the Np 
ion. The plot also shows that the main contribution arises from the rank-5 triakontadipoles, a first-principles confirmation 
of the important role of this unique parameter in the hidden-order phase of NpO2.

4. Americium dioxide

Mostly because of the experimental difficulties involving minor actinides, the low-temperature properties of AmO2 are 
not yet as well-known as for its U and Np counterparts [27]. The signature of an antiferromagnetic transition is visible 
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Fig. 5. (Color online.) Charge and magnetic distributions of the Am-5f electrons in AmO2, computed with (a) U = 4 eV and J = 0 and (b) U = 4 eV and 
J = 0.5 eV (for details see the caption of Fig. 2). (c) Computed expectation values of four possible Γ5 multipolar order parameters in AmO2 as a function 
of J . Adapted from [18].

at 8.5 K in its magnetic susceptibility curves as well as in 17O NMR spectra [28], but no evidence of dipolar order was 
found by Mössbauer or neutron diffraction [1]. It seems then natural to suggest that this is a case of magnetic multipolar 
order not unlike NpO2, but there are some questions to consider. Crystal-field calculations [29] and EPR measurements 
[30] suggest that the ground state in the paramagnetic phase is the doubly degenerate Γ7 (rather than the Γ8 quartet as 
in NpO2), which does not support multipolar order without the concurrent ordering of magnetic dipoles. However, a Γ8
ground state cannot be ruled out on the basis of available data [31].

In the case of AmO2, LDA + U calculations (see Fig. 5) lead to a 3-k ordered state with a sizable contribution from 
higher-rank multipoles only for relatively small values of the Hund’s coupling parameter J . Whereas increasing J makes 
a magnetic solution more favorable [18], for J > 0.3 eV the expectation value of all higher-rank multipoles drops to zero. 
Even for smaller values of J the relative weight of the different multipolar components is very different from that found 
for NpO2 [17], where increasing J above a certain threshold rather stabilizes the non-zero triakontadipole expectation value, 
despite the same symmetry of the ordered phase. The possible involvement of multipolar degrees of freedom is especially 
interesting in the light of recent measurements performed on a freshly-prepared sample in order to avoid lattice distor-
tions due to self-irradiation effects; in fact, the rapid broadening of the 17O NMR spectra seems to indicate a short-range, 
spin-glass nature of the transition [32].

5. Conclusions

First-principles LDA + U calculations can reproduce the low-temperature multipolar ordered phases characteristic of the 
actinide dioxides family, using values of the U and J parameters within the usually accepted range. These calculations 
selfconsistently treat the actinide–ligand hybridization effects and provide access to the multipole–multipole superexchange 
coupling that is responsible for the long-range order. The active multipoles in the ordered states are found to be strongly 
dependent on the orbital occupation. The strong electronic correlation typical of 5f electrons, in terms of their spin-orbit 
and Coulomb repulsion, is found to be a crucial ingredient to reproduce the insulating ground states of these compounds 
[18].
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